
Advanced Data Structures Jan-Apr 2012

Lecture 3 January 20, 2012

Lecturer: Venkatesh Raman Scribe: S M Meesum

1 Overview

In the last lecture we studied Move-to-Front (MTF) Heuristic for a list and its competitive ratio.
We also introduced Binary Search Trees (BST) and optimal BSTs. In today’s lecture, we will
be analysing Splay Trees and see that they perform as well as an optimal static BST without
maintaining extra information for balancing the tree.

We also discuss the scenario when we have the freedom to begin the search anywhere instead of
always starting from the root node.

2 Statically Optimal Search

Given a sequence of length m and having n distinct elements. We look at the elements one by one.
We want to implement following operations:

• insert (i) – If i has not been seen so far in the sequence, insert it in the tree.

• access(i) – If i exists in the tree, return a pointer to it.

Operation of insert(i) is O(n2) atmost. We can ignore insertion and w.l.o.g assume we have a tree
with all the keys initially and we are performing a sequence of access(i) operations on it.

2.1 Information Entropy and Search

Given a set of keys S = [1 . . . n], and frequency of access pi for i ∈ S. The information entropy H
is,

H = −
∑
i

piln(pi)

The expected cost of search for an element is O(H), which for a uniform distribution is O(log(n)).
Huffman coding acheives this bound, a static optimum BST acheives it to a constant factor.

2.1.1 Statically Optimum Tree

If we have are given full access sequence, then we can construct a tree before we start searches.
Such a statically optimal tree is contructed using dynamic programming. Optimal BST minimizes
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the following function,

Cost(T ) =
∑
i

pidepthT (i)

We have discussed this in the previous lecture. See Knuth’s paper [1] for details. The tree is not
changed once contructed. The optimal cost per access satisfies following inequality,

H − log[H]− log[e] + 1 ≤ opt− cost
access

≤ H + 3

For a proof of above see [10].

2.2 Motivation for using Splay Trees

We can construct a statically optimum tree if we have frequencies in advance. Suppose we do not
have frequencies in advance. Can we try some heuristic like Move-to-Root, analogous to MTR for
lists? Suppose we have an access sequence of 1, 2, . . . , n, 1, 2, . . . , n, . . .. If we use single rotations
to bring accessed element to root then our tree transforms as shown in the figure,

Figure 1: MTR using Single Rotations

Taking O(n) time per operation, which is a bad performance compared to online BSTs (O(log(n))
per access). A single rotation can cause the tree to grow to linear height. Instead, if we do double
rotations, by considering parent and grandparent of a node for rotation, we get a structure which
is O(1) competitive with statically optimum trees.

These are called Splay Trees and were introduced by Sleator and Tarjan [2]. They are easier to
implement without extra balancing information for balancing in BSTs. The statically optimal
BSTs have the expected search time of O(log(n)) for all inputs, while Splay Trees being dynamic in
nature perform better if there is some order in the input. For the access sequence described above
Splay Trees take O(1) time per access.

3 Splay Trees

Suppose x is accessed in a Splay Tree. Let p be its parent. When p is not a root node we use
ZigZag (Figure: 2) and ZigZig (Figure: 3) rotations. When p is the root node we use Zig (Figure: 4)
rotation. Zig rotation is not used if the node is at an even distance from the root node.
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Figure 2: Zig-Zig Rotation of a Splay Tree

Figure 3: Zig-Zag Rotation of a Splay Tree

Figure 4: Zig Rotation of a Splay Tree

Rotations are performed till x reaches the root node. For insertion, search is started at root node
and wherever the search ends we insert the new element, and then bring it to the root.

Cost Model: The cost incurred per access is the number of rotations to move the element to
root, which is proportional to its depth.

3.1 Amortized Analysis of Splay Trees

Let T be a Splay Tree. Suppose at tth step x is accessed. Ti is the tree configuation in intermediate
steps, obtained by ZigZag, ZigZig and finally Zig rotation (which places x at the root node). Define
rank r(x) of node x to be,

r(x) = log

 ∑
y∈T [x]

S(y)
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Where T [x] is the subtree rooted at x. Choosing S(y) = 1, rank is the log of subtree size. The
potential is the sum of the ranks of all the nodes.

φ(t) =
∑
x∈T

r(i)

amcost(i) =actcost(i) + φ(Ti)− φ(Ti−1)

Lets consider the ZigZig (Figure: 2) rotation. r(x) and r′(x) refer to rank of node x before and
after rotation respectively.

amcost(i) =2 + r′(x) + r′(p) + r′(g)− r(x)− r(p)− r(g)

amcost(i) =2 + r′(p) + r′(g)− r(p)− r(x)

amcost(i) ≤2 + r′(x) + r′(g)− 2r(x)

In above inequality, we used, r′(x) = r(g), r(p) ≥ r(x) and r′(p) ≤ r′(x). The last sum is atmost
3(r′(x) − r(x)) ie. we need to prove r(x) + r′(g) − 2r′(x) ≤ −2. For this, use the result that
log(a) + log(a), for a, b ≥ 0 is maximized at -2 when a = b = 1

2 . Denote the size of subtree rooted
at x by s(x).

r(x) + r′(g)− 2r′(x) =

log(s(x)/s′(x)) + log(s′(z)/s′(x)) ≤− 2

For above we used, s(x) + s′(g) ≤ s′(x). Thus, we finally get,

amcost(i) ≤3(r′(x)− r(x))

Using similar reasoning, cost for ZigZag is found to be atmost 2(r′(x)− r(x)).

The Zig rotation is performed as a last rotation to bring x to root if it does not have a grandparent.

amcostZig ≤ 1 + r′(x)− r(x)

Adding together all costs we get,

Amcost(x) ≤3(rfinal(x)− rinitial(x)) + 1

Amcost(x) ≤3log(n) + 1

In the final step x is at the root node (so subtree size is n), while rinitial(x) ≥ 0.

3.1.1 Amortized cost in terms of frequencies

Suppose the frequency of access for each element x is f(x). Note that,
∑

x∈T f(x) = m. We use
the same form of rank and potential and choose S(y) = f(y). Thus, rank becomes log of sum of
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frequencies of elements in subtree rooted at x,

r(x) :=log

 ∑
y∈T [x]

f(y)


φ(T ) =

∑
x∈T

r(x)

Amcost(x) ≤3(rfinal(x)− rinitial(x)) + 1

For above inequality the previously used analysis works. Substituting values of ranks,

rfinal(x) =log(m)

rinitial(x) ≥f(x)

We get,

Amcost(x) ≤log
(

m

f(x)

)
+ 1

Amcost(x) ≤− log(pi) + 1

Summing over the access sequence we see that Splay Trees acheive static optimality.

3.2 Static Finger

Throughout the above discussion, we always assumed the search for an element begins from the
root node. The element where we begin search changes everytime a different element arrives at
root node. Suppose we were given a pointer to an element and start the search from it everytime
a query arrives. We call such a pointer static finger. Suppose we were given pointer to a fixed
element x. Searching y should now take O(log(d(x− y))).

3.2.1 Amortized Analysis for Static finger

For a fixed finger f . Choose S(y) = 1
1+(y−f)2 . Use the same form of potential and rank function.

The amortized complexity for searching element i is O(log|i− f |).

4 Some Theorems

4.1 Working Set Theorem

Suppose x is searched in ith operation. Let wi(x) denote the number of distinct elements searched
since the last search to x. For example, if the sequence queried is 7, 9, 5, 6, 4, 3, 2, 4, 3, 5, then w10(5)
is 4. The Working Set Theorem states that,

Theorem 1. The amortized cost of accessing an element x in ith step is log(wi(x)).

Intuitively this means that rotations do not throw away recently accessed elements far from root.
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4.2 Dynamic Finger Theorem

The Dynamic Finger Theorem was first conjectured in [2] and finally proven by Cole et al.[3], [4],

Theorem 2. The amortized cost of accessing the ith element xi is O(log[1 + |xi − xi−1|]).

4.3 Scanning Theorem

The Scanning Theorem, demonstrated by Tarjan [7], states the following:

Theorem 3. If elements of a splay tree are accessed sequentially in order, then the total running
time is linear, regardless of the initial structure of the splay tree.

5 Conjectures

5.0.1 Dynamic Optimality Conjecture

In our analysis we compared performance of a Splay Tree against a static offline optimal tree. If
we remove the restriction of being static, and allow the tree to adjust itself after access requests,
we may get a better algorithm. Call the most efficient such algorithm OPT. Dynamic Optimality
Conjecture [2] states that,

Conjecture 4. The run time of splay trees is within a constant factor of OPT for any access
sequence.

If true, it would imply that Splay Trees are as good as any other dynamic algorithm specifically
designed for an access sequence. They can be easily shown to be at least O(log n)-competitive
dynamically. A result on this problem has reduced the competitive gap from O(log n) to O(log log n)
[6]. We would discuss this result in the next lecture.

Currently it has not been proved that any known search tree is dynamically optimal.

5.1 Unified Bounds Conjecture

In the lecture, we have shown several properties of splay trees, Lets see how they apply on specific
access sequences.

• 1,2, . . . , n, 1,2, . . . , n . . .
Working Set O(log(n)). Dynamic Finger O(1).

• 1, n, 1, n, . . .
Working Set O(1). Dynamic Finger O(log(n)).

• 1, n/2, 2, n/2 + 1, 3, n/2 + 2 . . .
Working Set O(log(n)). Dynamic Finger O(log(n)).
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The third sequence must take time O(1) per access if dynamic optimality holds. Why ?

It was observed in [9] that working-set bound is stronger than other bounds.

• The Working set theorem implies the static finger theorem, which in turn implies the static
optimality theorem, in any data structure.

• The Dynamic finger theorem implies the static finger theorem.

In addition, Iacono [8] has proposed the following unified conjecture:

Conjecture 5. The amortized cost to access element xi is upper bounded by:

O(min
y

log[wi(y) + |xi − y|+ 2])

Intuitively, this suggests that element xi is cheap to access if there exists some different element
y that is both spatially (in terms of the structure of the tree) and temporally (in terms of access
time) close to it. The unified conjecture, if true, would imply both the working set and dynamic
finger theorems. It is not known whether the unified conjecture holds for a BST, but Badoiu and
Demaine [5] have shown that it can be done on a pointer machine.

5.2 Traversal Conjecture

Conjecture 6. Supposing we have two splay trees, each with the same elements. Take a preorder
traversal of one of the splay trees to obtain an access sequence. The conjecture is that the cost of
accessing elements in this access sequence in order in the other splay tree is O(n) [2].

This conjecture generalises the Scanning Theorem. Suppose that T is a splay tree with keys drawn
from [1..n]. Suppose T ′ is another tree on the same keys. This conjecture becomes the Scanning
Theorem when T ′ has 1 at root node and all other keys are right children of their parents. Preorder
traversal of T ′ is then simply the keys in sequential order. This conjecture says that for any T ′ the
cost of accessing is O(n).
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