
Advanced Data Structures Jan-Apr 2012

Lecture 15 — March 15, 2012

Lecturer: Venkatesh Raman Scribe: Esha Ghosh and Sudeshna Kolay

1 Overview

Like in the last lecture we will look at another data structure that supports dynamic operations on
a forest of trees in worst case O(log n) time. Our final aim is to perform these operations efficiently
in general graphs.

In general, data structures supporting dynamic operations can be classified into the following:

• Fully dynamic data structures which support both insertion and deletion of edges on the
given graph.

• Partially dynamic data structures which support one of the two operations on edges.

• Incremental data structures which support insertion of edges.

• Decremental data structures which support deletion of edges.

2 Euler tree data structure

As before we want to maintain a forest of trees and represent this using Euler trees. This data
structure supports the following operations:

1. insert(,), which is a function that takes in as parameters 2 vertices and adds an edge between
them in the graph. In the Euler tree data structure it is no longer necessary that one of the
vertices has to be the root of a tree. This is a natural condition since we know that in fact
the tree structure is still preserved on adding an edge between vertices of two distinct trees.

2. delete(,), which deletes an existing edge between two vertices in a tree.

3. path(,), which determines whether there is a path between two input vertices, ie whether the
two vertices belong to the same tree in the forest.

For each tree in the forest we first duplicate each edge of the tree and find a Eulerian tour starting
from the root of the tree. If the vertex set of a tree is of size n, we can depict the Eulerian tour of
the tree as a sequence of length 2n− 1 which starts and ends at the root of the tree. We store this
sequence of vertices (with copies for repititions in the sequence) in a balanced binary search tree
with the distance from the start of the sequence as the key. This is what we call Eulerian tree.

For each tree in the forest, we will maintain an array for the vertices. Each element of this array
stores an array of pointers to all the occurrences of the corresponding vertex in the Eulerian tree.

1

Note that even if multiple pointers have to be maintained for a vertex all of them point to vertices
in the same Eulerian tree.

This data structure supports the following operations in worst case O(log n) time:

1. path(x,y). We find the root of the Eulerian tree containing x and that containing y. If they
have the same root we know they belong to the same tree and hence have a path between
them. We know that in binary search trees we can do all this in O(log n) time.

2. findroot(u) To find the root of a tree in the given forest, given any node in the tree, we find out
the leftmost leaf of the corresponding Eulerian tree. Since the Eulerian tree has the distance
from start of the Eulerian tour as the key, the root is the minimum by definition.

3. makeroot(x). This operation makes x the root of its tree in the forest. This means the
Eulerian sequence of the tree Tx containing x has to be altered such that the sequence starts
and ends at x.

Suppose Tx = (r, u, . . . v, x, . . . x, . . . x, . . . w, r) be the sequence for Tx.

Then, T ′
x = (x, . . . x, . . . x, . . . w, r, u, . . . v, x) is a rearrangement of Tx where x has been made

the root.

We will call the corresponding Eulerian trees by the same names as the Eulerian sequences.
To get the Eulerian tree T ′

x we first delete the last occurrence of x, which is in fact the
rightmost leaf of Tx. Then we split Tx at x. Let A and B be the left and right subtrees after
split. We first concatenate x with B to get a tree say C. Then we concatenate C with A and
finally the resulting tree with a copy of x. This corresponds to the Eulerian tree T ′

x. Since
only a constant number of splits and concatenates are performed for this operation this can
be done in O(log n) time.

4. insert(x,y). We can check if x and y belong to two distinct trees in O(log n) time using
path(x,y). If not then we can insert the edge (x, y). We will look at what it means to add
the edge (x, y) in terms of the Eulerian sequences for the containing trees of the two vertices.
Suppose T1 = (r1, . . . y, . . . y, . . . y, . . . y, . . . r1) be the sequence for the tree containing y.

T2 = (r2, v, . . . x, . . . x, . . . x, . . . r2) be the sequence for the tree containing x.

Let T ′
2 be the Eulerian tree when x has been made the root of its containing tree, using the

operation makeroot(x).

T ′
1 = (r1, . . . y, . . . y, . . . y, . . . y, T

′
2, y, . . . r1) is a Eulerian sequence of the tree resulting from

adding the edge (x, y) and considering it to be rooted at r1.

We split T1 at the last occurrence of y to get left and right subtrees A and B. We concatenate
A with y. Attach T ′

2 as a subtree of y to get a tree T . Finally we concatenate T with a copy
of y followed by B. This gives us the Eulerian tree T ′

1.

Again only a constant number of splits and concatenations are done and the total time for
this operation is O(log n).

5. delete(x,parent(x)). Again we analyse what to do with the Eulerian sequences. To get the
resulting Eulerian tree we need to split at the first occurrence of x, and then at the last
occurrence of x. Then we concatenate the left and right subtrees obtained respectively from
the two splits. We also concatenate together all other resulting subtrees. This gives us the

2

required Eulerian trees containing x and its parent. Again, the total time for this operation
is O(log n).

Notice that a consecutive subsequence of any Eulerian sequence is represented by a subtree in the
Eulerian tree. Therefore, if the number of distinct vertices in the subsequence is m then the number
of vertices in the Eulerian subtree is 2m− 1. Using this relation we can maintain aggregate values
at internal nodes of the eulerian trees and relate them to actual aggregate values on the trees of the
forest. Therefore we can count the number of nodes in a tree containing x, by maintaining the count
at the Eulerian subtrees and finally relating the number to the actual number of distinct vertices.
More simply, we can find the minimum weighted node in the tree containing x by maintaining the
information at the internal nodes of the Eulerian tree.

3 Fully Dynamic Algorithm for Graph Connectivity

We present a simple O(log2 n) amortized time deterministic fully dynamic connectivity algorithm
described in [1].

High-Level Idea:
The dynamic algorithms maintains a spanning forest F for the input graph G using an Euler-Tour
tree. using this simple structure the following operations are easy:

• Insert(x, y): Given that (x, y) was not an edge in G, check if x and y are connected in F ; if
not add (x, y) to F . Otherwise if x and y belong to the same tree in F then just update the
adjacency matrix of G.

• Path(x, y): Check if x and y belong to the same tree in F . Note that it is not possible that
x, y where connected in G, but not in F .

• Delete(x, y): This is easy when (x, y) is a non-tree edge in F . We just need to update the
information in the adjacency matrix of G.

The main challenge is when (x, y) is a tree edge. We cannot tell whether deleting (x, y) will
disconnect x and y in G. The deletion splits some tree in F , but its correponding components in G
might be connected. To deal with deletes, we will modify our initial idea by hierarchically dividing
G into log n subgraphs and then storing a maximum spanning forest for each subgraph.

3.1 Algorithm

To implement this idea, we partition the edges into log n levels. We start by assigning a level to
each edge. The level of an edge is an integer between 0 and log n inclusive that can only increase
over time. We define Gi to be the subgraph of G composed of edges at level ≥ i. Note that G0 = G.
Let Fi be the spanning forest of Gi.

During the execution of this algorithm we will maintain the following two invariants:

• Invariant 1: F0 ⊇ F1 ⊇ F2 ⊇ . . . ⊇ Flogn. In other words, Fi is the maximum(w.r.t level)
spanning forest of Gi.

3

• Invariant 2: Number of vertices in any tree in Fi is ≤ bn/2ic.

The algorithms associates with each edge e a lebel l(e) ≤ lmax = blog nc. We will also maintain the
adjacency matrix for each Gi.

Initially all edges have level 0. Hence both invariants are satisfied. Notice that since levels of edges
are never decreased, so we can have at most lmax increases per weight. Before describing how to
delete an edge in detail, let us quickly revisit the other functions.

Insert(x, y): Give that level(x, y) = 0 and insert in G0.

Path(x, y): Check in G0.

Delete(e): If e is a tree-edge then we need to find a replacement edge reconnecting F at the hoghest
possible level. Since F is a maximum spanning forest, we know that the replacament edge can come
from level l(e) or lower. So now we need to describe the function Replacement ((x, y), i) which
finds a replacement edge of the highest level ≤ i, if any.
Replacement ((x, y), l): let Tx and Ty be the trees in Fl containing x and y respectively. WLOG,
let |Tx| ≤ |Ty|. Now, note that before deleting the edge (x, y), T = {Tx ∪ (x, y)∪ Ty} was a tree on
level l with twice as many vertices as Tx.

We will look for this replacement edge by doing the following:

Replacement ((x, y), i):

1. By Invariant 2, we know that |T | ≤ bn/2ic, so |Tx| ≤ bn/2i+1c. This means that we can
afford to push all edges of Tx of level i to level i+1, maintaining our invariants, so as to make
Tx a tree in Fi+1.

2. For each non-tree edge f at level i incident to Tx:

(a) If f both endpoints of f are in Tx, make level(f) = i + 1 and insert f in Gi+1.

(b) If f connects Tx and Ty, insert it as a replacement edge in all levels i and below and
STOP.

(c) If no level i edges are left, call Replacement ((x, y), i− 1).

(d) If i = 0, return (No replacement edge for (x, y)) and STOP.

3.2 Analysis

Implementation:

• ET-trees are maintained for each Fi.

• Along with that, maintain a list of non-tree edges of every vertex.

• We will also maintain the adjacency matrix for each Gi.

4

Amortized cost for each operation:

Insert: When and edge is inserted at level 0, the direct cost is O(log n).

Delete: Deleting a non-tree edge takes O(log n) time. Each tree-edge deletion results in

1. O(log n) direct insertions (of the replacement edge to the levels below), each costing O(log n),
so totally O(log2 n) and

2. A number of insertions of edges to higher levels (including in recursive calls), each of the
insertions costing O(log n).

As each edge can move to at most O(log n) levels, total number of insertions of type (2) above
over all operations is O(m log n), each costing O(log n), and so a total cost of O(m log2 n) over
all operations. (Here m is the maximum number of edges in the graph at any point of time.)
Therefore total time for t deletions is = O(t log2 n + m log2 n). Thus amortized time for each
deletion is O(log2 n), when t� m.

Improving the query time

We can apply the Θ(log n)-ary ET trees mentioned in section 2 to the spanning forest F0 and main-
tain BST’s for all other levels. The cost of a split/concatenate on the k-ary trees is: O(log n/log k).
Hence the total cost of a query is O((log n/log k) ∗ k) +O(log2 n). Choosing k = Θ(log n) gives the
cost as O(log2 n/log log n) + O(log2 n), which is subsumed by the O(log2 n) factor from above.

Note that choosing the parameter k as Θ(log n) is optimal as if we increase it further, this additive
cost would not be subsumed by the O(log2 n) factor.

3.3 Decremental Algorithm for Minimum Spanning Forest (MSF)

MSF Algorithm can be obtained from the previous algorithm by some simple changes.

• The initial spanning forest F0 should be a minimum weight spanning forest instead of maxi-
mum spanning forest.

• In the function Replace() push the minimum weight edges in increasing order of weight, i.e,
push the lighest edge first, then the second lightest and so on.

References

[1] Holm, Jacob and de Lichtenberg, Kristian and Thorup, Mikkel, Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity,
J. ACM, 48(4):723-760, 2001.

5

