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1 Overview

In these two lectures we will study the classic algorithmic problem of string searching. We will
describe two simple approaches to solve this problem. Then we will look at some simple data
structures, namely Tries, Suffix tree and Suffix array which not only solves the aforementioned
string matching problem they also solve a host of other interesting problems. Finally, we will
present a brief introduction to succinct data structres. These data structures use very little space
but still support many queries efficiently.

2 Introduction

2.1 String Matching Problem

Assume that the text is in array T [1..n] of length n and that the pattern is an array P [1..m] of
length m ≤ n. Assume that elements of p and T are characters from a finite alphabet Σ. We are
interested in the following questions:

1. Is there an occurrence of P in T?

2. Find all occurrences of P in T .

3. Find the number of occurrences of P in T .

Figure 1 illustrates an instance of this problem where the solutions of 1, 2 and 3 are Yes, (0, 4) and
2 respectively.

A naive algorithm will compare the pattern with the text characters one by one until a mismatch
occurs at which point shift the pattern by one and continue. In case of complete match report the
occurrence. Clearly this algorithm takes O(mn) time.
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Now consider the situation when we have a fixed pattern P and texts are online. In this case one
can build a finite automaton (DFA) that scans the online texts for all occurrences of the pattern
P .

Consider an example in figure 2 where we build a DFA for the pattern P = abab.

These string matching automata are very efficient: they examine each text character exactly once,
taking constant time per text character. The matching time used − after preprocessing the pattern
to build the automaton − is therefore Θ(n). The preprocessing time for building the DFA for a
pattern P , where |P | = m is O(m3|Σ|): as there are O(m|Σ|) transitions (m + 1 states and |Σ|
alphabet) and computing each transitions takes O(m2) time ( since δ(i, a) = the length of the largest
prefix of the pattern that is the suffix of p1p2 . . . pia). Hence total time required is O(m3|Σ|+ n).

However, Knuth-Morris-Pratt algorithm solves this problem in time O(m|Σ|+ n) [1].

2.2 Tries and Suffix tree

In real world we usually have a large amount of static data which we consider as text T and queries
for string matching comes online which we consider as pattern, where |P | << |T |. We would like
to answer the query in time O(|P |). Certainly preprocessing has to be done.

Tries: For solving this problem we uses Tries (a data structure) in preprocessing stage. We define
a Trie for a set of strings S1, S2, . . . , Sl (no string is a prefix of another) as a rooted tree with the
following properties:

1. It has l leaves,

2. Children of each node are labelled with distinct characters,

3. path labels of each leaf 1, 2, . . . , l corresponds to S1, S2, . . . , Sl.

For example we will build a trie for the set of strings S = {S1 = abaab, S2 = bab, S3 = acb}. Figure
3 shows a required trie. Now can we build a trie for the set of string S′ = S ∪ S4, where S4 = aba?
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The answer is no because we won’t have all the strings as leaves (as one (S4) is a prefix of the other
(S1)) violating condition 1.

Suffix Trees: For a text T = t1t2 . . . tn. A Suffix tree is a trie build on the |T |+ 1 suffixes of T$.
Assuming that $ /∈ Σ. Figure 4 shows a Suffix tree for the text ababbac$.
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Membership: Observe that P exist in T if and only if P is a prefix of some suffix of T . Now
given a Suffix tree for T$ checking if P ∈ T takes linear time in |P |: just follow the path from root.
Observe also that there are O(n2) number of nodes in Suffix tree. Now we will optimize on space.

Reducing space: Notice that if we assign only one letter per edge, we are not taking full advantage
of the Suffix tree’s structure. It is more useful to consider compressed Suffix trees, where we remove
the one letter per edge constraint, and contract non-branching paths by concatenating the letters
on these paths. In this way, every node branches out, and every node traversed represents a choice
between two different words.

Observe that after contraction as above every node in the Suffix tree either has two (‖Σ|) children
or none. And since there are n + 1 leaves, the number of nodes is bounded by 2n. At each node
in the Suffix tree we will store an array of pointers. The array include pointers to children, a pairs
of pointers (s, e), where s points to the starting index and e points to the ending index of the
contracted stings on the edge. Thus total space is bounded by O(n|Σ|).

Counting occurrences: To find the number of occurrences of P we can simply store number of
leaves in that subtree at each internal node. Thus time to solve this problem is O(|P |). Notice that
it will take O(|P |+k) time to get the number of occurrences of P without storing this information,
where k is the number of occurrences of P .

Checking occureences in multiple texts: To check if P occurs in texts T1, T2, . . . , Tl, we can
build Suffix trees for each Ti and run P on each of the trees. Clearly the time is bounded by
O(ml). To avoid building Suffix tree for each Ti, we can build a Suffix tree say S for the text
T = T1$1T2$2 . . . Tl$l, where $i /∈ Σ. Now run P on S to solve the problem. Every leaf on S stores
a pair (i, j) indicating ith position in Tj .

Longest common substring: The problem is to find longest common substring of T1, T2, . . . , Tl.
Find a node X in S of greatest string depth such that subtree of X contains {1, 2, . . . , l}. For this
compute and store for each node the subset of {1, 2, . . . , l} that appears in the leaves of the subtree
rooted at that node. Thus the time is bounded by O(n|Σ|l): Since there are O(n) nodes and each
node can have atmost |Σ| children and each of them has a subset of size atmost l.

Maximal repeats in a text: Maximal repeat denotes the subtrings that appears more than once
in the text and is not a proper substring of some other repeating string. For example in the text
abacdabacba, ba is repeating string with 3 occurrences but not a maximal repeating string. However
abac is a maximal repeat substring. To solve this problem just store the previous character with
each leaf. Now we look for internal nodes that have at least two different previous characters in
the leaves of their subtree. They are the maximal repeats. And we can compute this bottom up in
O(n) time.

3 Suffix Arrays

A closely related data structure of Suffix tree is suffix array. It contains most of the informations as
in Suffix tree in much simpler and compact way. Formally Suffix array is a data structure designed
for efficient searching of a large text. The data structure is simply an array containing all the
pointers to the text suffixes sorted in lexicographical (alphabetical) order. Each suffix is a string
starting at a certain position in the text and ending at the end of the text. Searching a text can
be performed by binary search using the suffix array.
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As an example we will build a suffix array for a sample string T = abracadabra$. First we will
index the given string T$ characterwise. See figure 5.

Secondly we will index all the suffixes of T$ based on their lengths (larger length gets smaller
index). See figure 6.

In our example we have Σ = {a, b, c, d, r} and a special symbol $. Fix an ordering among them say
a < b < c < d < r < $. Now Lexicographically sort all the suffixes. See figure 7.

Finally, the resulting index points in figure 7 becomes the suffix array for the sample text. Clearly
the length of the suffix array is n+ 1. See figure 8.
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Now for searching a pattern in the sample text we can do a binary search on the created suffix
array. This will take O(mlogn) time and O(n) space.

3.1 Improving time complexity

In this section we will improve the time complexity of searching a pattern in the text from O(mlogn)
to O(m+ logn).

Definition: Define LCP (i) to be the length of the longest common prefix of suffix i and i+ 1 in
the suffix array. We will store this in information in an LCP [1..n] array. Thus LCP [i]← LCP (i).
See figure 9 for LCP array of our sample example. Also define lcp(i, j), to be the length of the
longest common prefix of suffix i and j in the suffix array ( i and j may not be adjacent). Let L (R)
denote the suffix of our sample text which is lexicographically smallest (largest) among all suffixes.
Clearly the index of L (R) is in the first (last) position of suffix array. Similarly M denotes the
suffix whose index is strored in the middle position of the suffix array.

See figure 9 for LCP array computed from suffix array of sample text.

Suppose we are given LCP array along with lcp(i, j) for each i, j. Let lcp(P,L) = l and lcp(P,R) =
r, where P representing pattern to be searched. Now we will use these information for searching
pattern in the text efficiently.

Let (L,R) denote the range where we have to search P .

Algorithm: Case a: l > r ( other case is symmetric).

1. if l < lcp(L,M) then search in (M,R) (in this case in constant time we had pruned atmost
half of total range)

2. if l > lcp(L,M) then search in (L,M) ( again pruned atmost half range in contant time)

3. if l = lcp(L,M) then start comparing M [l + 1] and P [l + 1] (saved l comparisons).

case b: l = r, start comparing M [l + 1] and P [l + 1] (saved l comparisons).
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It is clear that now the time complexity of the binary search for searching pattern using suffix array
is bounded by O(m + logn). The only thing left is to compute LCP array and lcp(i, j). Suppose
we are given LCP array and we need to compute lcp(i, j). Consider the computation tree τ of a
binary search algorithm on [1, . . . , n]. So we have at the leaf level of τ LCP . Now evaluate bottom
up in τ the values of lcp(i, j) at each node by:

lcp(L,R) = min[lcp(L,M), lcp(M,R)],

which will take O(n) overhead.

4 Connection between Suffix array and Suffix tree

Suffix array to Suffix tree: We will read strings marked in suffix array one by one and make a
binary tree on it and we will label the edges with the characters of the string. See figure 10.

The compressed Suffix tree for figure 10.c is shown in figure 11.

Suffix tree to Suffix array: Given Suffix tree we can create Suffix array in O(n) time: just do
an in-order traversal of the leaves of the Suffix tree.
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5 Reducing the Space of Suffix tree

Observe that in Suffix tree internal nodes do not contain any information as against Red-Black,
AVL trees. Here all information are at leaves only which leads to space saving. Recall that at each
node of the Suffix tree we were storing an array of pointers which also includes a pair (s, e), where
s points to the begining of the string and e points to the end. Instead we can store the length of
the edge label which reduces the required space.

5.1 A Brief Introduction to Succinct Data Structures

A succinct data structure is data structure which uses an amount of space that is “close” to the
information-theoretic lower bound, but still allows for efficient query operations. The concept was
originally introduced by Jacobson to encode trees.

An example is the representation of a binary tree: an arbitrary binary tree on n nodes can be
represented in 2n+ o(n) bits while supporting a variety of operations on any node, which includes
finding its parent, its left and right child, and returning the size of its subtree, each in constant
time. The number of different binary trees on n nodes is 1

n+1

(
2n
n

)
[4]. For large n, this is about 4n;

thus we need at least about log2(4
n) = 2n bits to encode it. A succinct binary tree therefore would

occupy only 2 bits per node.

Two Example of Succinct Encoding of Binary tree:
Example 1:[3] Consider figure 12 which shows a DFS encoding of a binary tree.

In this encoding in order to find the left child of a node (index of which is given) just go right and if
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we find “(” return corresponding index. If we find “)” then the given node has no child. Similarly
for right child. Observe that the size of the subtree of any node i is l

2 , where l is the number of
parenthesis (open or close) between Si and Fi. Similarly this encoding supports many more queries
in constant time.

Example 2: In this encoding we will encode the given binary tree to a string of zero’s and one’s.
For this first convert the binary tree into full binary tree by inserting external nodes. Then do a
breadth first traversal in the full binary tree and encode each internal node by one and leaf node
by zero. The resulting string of zero’s and one’s is the required encoding. Let i be the ith 1 in the
encoded string. Define rank1(i) to be the number of one’s to the left of i in the encoding including
itself. Observe that,

left-child(i) = 2rank1(i)

where i represents a location in the bit (encoded) array. And,

right-child(i) = 2rank1(i) + 1

Example 2 is illustrated in figure 13.
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     (a)

     (b)

Figure 13: (a): A full binary tree T after inserting 
external nodes. (b): T's encoding as defined in 
example 2

Computing rank1(i) Succinctly:

Solution 1: Store the rank1(i) for every i. Clearly space required is O(n log(n)) bits and finding
rank1(i) requires constant time.

Solution 2: Store the ranks at every lognth position in the bit array. Clearly the space required is
O( n

log(n) log(n)) = O(n) and time O(log(n)): if i is a multiple of log(n) then we can find rank1(i)

in constant time because we have stored those values otherwise compute rank of i in its block (by
checking sequentially which takes O(log(n)) time) and add to it number of 1’s in all preceding
blocks (already stored).
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Solution 3: [2] Store the ranks at every log(n)
2 positions in the bit array. Note that there are

2
log(n)

2 =
√
n possible strings of size log(n)

2 , so we will just store a lookup table for all possible bit

strings of size log(n)
2 . For each such string we have O(log(n)) possible queries, and it takes log( log(n)2 )

bits to store the solution (ranks) of each query. Since there are O(logn) look up tables and each
require O(

√
n log(log(n))) bits, the total space required is bounded by O(

√
n log(n) log(log(n))) =

o(n) bits. Now due to lookup tables for each blocks we can find rank1(i) in O(1) time: if i is a

multiple of log(n)
2 then we can find rank1(i) in constant time because we have stored those values

in the bit array otherwise i has an entry in the lookup table corresponding to the block in which i
resides. That entry stores the number of one’s before i in that block, add to it number of 1’s in all
preceding blocks (already stored in bit array).

Solution 4:[2] [5] We will split the bit string into n
log2(n)

blocks of size log2(n) each. To find rank(i),

we need to find (rank of i in its block) + (number of 1’s in all preceding blocks). We will show how
to find rank(i) within a block. But we also need, for each block, the total number of 1’s among all
of the preceding blocks. There are n

log2(n)
blocks, and for each of them we have to store a number

(with log(n) bits). So we can store all the data using O(n/ log(n)) bits.

Now we have blocks of size log2(n). We will subdivide each blocks into 2n
log(n) sub-blocks each of

size log(n)
2 . The rank within the sub-block can be found using look-up table. Now we need to find

the number of one’s in the preceding sub-blocks within the block. We have 2n
log(n) sub-blocks. But

since we are in the block of size log2(n) the number of one’s in preceding sub-blocks can not be
more than log2(n). Thus store each of these 2n

log(n) numbers (ranks) by O(log(log(n))) bits. Again

the total space required is o(n).
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