Schedule For Summer Program 2015

Date	9:30 - 11:00	11:30 - 13:00	14:00 - 15:15
June 1	Combinatorial Nullstellensatz	Randomized Algorithms by	Algorithms Tutorial by Dip-
	and its applications: Arvind	Swaroop	tapriyo
June 2	Do	Do	Do
June 3	Do	Do	Do
June 4	Do	Communication Complexity	Data Structures tutorial
		Anuj	by Divyarthi
June 5	Do	Do	Do
June 8	Range Queries: Data struc-	Computational Geometry by	Graph Algorithms tutorial by
	tures and applications by	Pradeesha	Diptapriyo
	Venkatesh		
June 9	Basics of Graph Coloring by	Do	Pigeonhole Principle Tutorial
	Mathew		by Swaroop
June 10	Range Queries: Data struc-	Do	Self-adjusting binary search
	tures and applications by		trees: What makes them tick?
	Venkatesh		Talk by Laszlo Kozma
June 11	Basics of Graph Coloring by	Do	Finite Automata Tutorial by
	Mathew		Jayakrishnan
June 12	Range Queries: Data struc-	Do	Pushdown Automata Tuto-
	tures and applications by		rial by Jayakrishnan
	Venkatesh		
June 15	Games and Distributed Algo-	Upper and Lower Bounds for	Tutorial Followup Discussions
	rithms: Ramanujam	Selection by Venkatesh	
June 16	Do	Do	Do
June 17	Do	Algebraic Automata Theory	Do
		by Ramanathan	
June 18	Do	Do	Do
June 19	Do	Do	Do
June 22	Learning formal languages us-	On Graceful Tree Conjecture	Tutorial Followup Discussions
	ing queries: Kamal	and its present status by	or Student Presentations
		Ragukumar	
June 23	Do	Harmonious coloring of	Do
		graphs by Ragukumar	
June 24	Do	B-coloring of graphs by	Do
		Ragukumar	
June 25	Do	Introduction to succinct data	Do
		structures by Sankardeep	
June 26	Do	Do	Do
June 29	Student Presentations	Student Presentations	
onwards			

Abstracts of Lectures

0.1 Computational Geometry by Pradeesha

We will see geometric algorithms, especially those designed for geometric query problems like range searching and nearest neighbor search. This also covers many geometric data structures and some techniques in designing geometric approximation algorithms.

No previous exposure in geometry is assumed. However, a familiarity with data structures and design and analysis of algorithms is useful.

References: Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars, Computational Geometry: Algorithms and Applications Sariel Har-Peled, Geometric Approximation Algorithms : Mathematical Surveys and Monographs

0.2 Communication Complexity by Anuj

We will see Yao's two-party communication model. This model consists of two parties, Alice and Bob holding inputs $x \in X$ and $y \in Y$ respectively. They exchange messages in order to compute a function $f: X \times Y \to \{0, 1\}$ at (x, y) and the goal is to do this with minimum amount of interaction. We will prove some lower bounds for some specific functions.

References:

- 1. Eyal Kushilevitz and Noam Nisan. Communication Complexity
- 2. Lecture notes available at http://www.tcs.tifr.res.in/~prahladh/teaching/2011-12/ comm/lectures

0.3 Randomized algorithms by Swaroop

The goal of this lecture series would be to understand the use of randomness in obtaining algorithms that perform better than their usual deterministic counterparts. We shall start with some basic tools from discrete probability and use it to understand how randomness improves the quick sort method. Then, we shall see another application of randomness in determining whether a polynomial given as a black box is identically zero.

0.4 Algebraic Automata Theory by Ramnathan

In this introduction to Algebraic Automata Theory, we will see how a monoid can be associated in a natural way with any regular language. This allows us to use algebraic tools and gives us algorithms to determine meta-properties of a given regular language : for example, how can we find out if a given regular language can be described using a star-free regular expression?

Suggestions for presentations:

- 1. Logic and regular languages http://www.cmi.ac.in/~kumar/words/lecture02.pdf and http: //www.cmi.ac.in/~kumar/words/lecture02a.pdf
- Regular languages over infinite words http://www.cmi.ac.in/~kumar/words/lecture07. pdf

0.5 Basics of Graph Colouring by Mathew

A vertex-colouring of a graph is an assignment of colours to the vertices of a graph in such a way that no two adjacent vertices get the same colour. The chromatic number of a graph is the minimum number of colours required in any vertex-colouring of the graph. Similarly, an edge-colouring of a graph is an assignment of colours to the edges of a graph such that no two edges incident on the same vertex get the same colour. The chromatic index of the graph is the minimum number of colours required in any edge-colouring of the graph. We take a look at some basic theorems about vertex-colouring and edge-colouring of graphs.