
Euclid’s Algorithm over Rings – The Theory of Subresultants

Euclid’s algorithm, as described in the previous lecture, works well when the coefficients of the input polynomials
A,B, belong to a field F . There are many instances, however, when the coefficients do not come from a field but from
a ring. The most standard examples being the ring of integers Z or the ring of multivariate polynomials R[x1, . . . , xn].
How do we implement Euclid’s algorithm in these cases? Even more fundamentally, is the gcd of two polynomials
well defined for such rings? Suppose the answer to the latter question is yes, then one way to compute the gcd is to
do Euclid’s algorithm in the quotient field w.r.t. the ring of coefficients, i.e., work in Q[x] when the input are integer
polynomials, and R(x1, . . . , xn) the field of rational functions when the input is a multivariate polynomial. There
seems to be no problem. Let us try this approach for the following polynomials:

A0 := x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5

A1 := 2x6 + 5x4 − 4x2 − 9x+ 21.

We get the following remainder sequence

A2 = 11/4x4 + 3/2x3 − 11/2x2 − 19

4
x+

43

4

A3 = −5272

1331
x3 +

664

121
x2 +

15756

1331
x− 21972

1331

A4 =
35003969

3474248
x2 − 296813

868562
x− 39537355

3474248

A5 =
6946037969540

920569380731
x− 740798266924

70813029287

A6 =
208678923016350199413

27774323234433100900
.

(1)

As the example above suggests, the coefficients seem to grow exponentially. Let’s try to understand why. Suppose
A0(x) =

∑n
i=0 aix

i and A1(x) =
∑n−1
i=0 bix

i are integer polynomial with coefficients of bit-sizes L0, L1 resp. Then
the ith coefficient in A2 := rem(A0, A1) is (ai − bi−1an/bn−1). Thus the bit-sizes of the rationals involved in A2

satisfy the recurrence L2 = L0 + L1. If the degrees fall by exactly one at each euclidean step, then we see that the
bit-sizes of the kth polynomial in the remainder sequence is roughly the kth Fibonacci number, i.e., the bit-sizes grow
exponentially if we perform Euclid’s algorithm in Q[x]. Can we avoid this exponential growth? Is it possible to devise
an algorithm that works only with integer polynomials and computes the gcd? Perhaps the gcd, assuming it is well
defined, of the integer polynomials has coefficients of exponential bit-size 1 In this lecture we study these questions.
We only focus on the univariate case in this lecture, since a multivariate polynomial in R[x1, . . . , xn], for some ring
R, can be expressed as a univariate polynomial in xn with coefficients in the ring R[x1, . . . , xn−1]; the additional
differences will be highlighted when necessary.

Throughout this lecture we will use the following notation:

A(x) =

m∑
i=0

aix
i, B(x) =

n∑
i=0

bix
i,m ≥ n, a := lead(A), b := lead(B).

We willl assume that the coefficients are integers, however, all the results generalize to the case when the coefficient
ring is some domain.

1This is unlike the integer case, where the bit-size is trivially bounded in the bit-size of the input numbers. Another point of difference between
polynomials and integers.
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1 Pseudo-Euclidean Polynomial Remainder Sequence
One approach to avoid working in the quotient ring Q[x] is based upon the following unravelling of the euclidean step:
canceling the leading term of A(x) using B(x) gives us a polynomial whose leading term is a(1)xm−1/bn, where
a(1) := bnam−1− bn−1am ∈ Z; again canceling this term gives us a polynomial whose leading term is a(2)xm−1/b2n,
where a(2) is recursively defined in terms of a(1); going on in this manner, we observe that the quotient is a polynomial
of the form

Q(x) =
am
bn
xm−n +

a(1)

b2n
xm−n−1 +

a(2)

b3n
xm−n−2 + · · ·+ a(m−n)

bm−n+1
n

,

i.e., the denominators of the coefficients divide bm−n+1
n ; the same observation applies to the remainder R(x). In other

words, the polynomials bm−n+1
n Q(x), bm−n+1

n R(x) are integer polynomials, which implies that rem(bm−n+1
n A(x), B(x))

is an integer polynomial. Define the pseudoremainder of two polynomials as

prem(A,B) := rem(lead(B)m−n+1A,B) = lead(B)m−n+1rem(A,B)?. (2)

Similarly define the pseudo-quotient, pquo(A,B) := quo(lead(B)m−n+1A,B); note that the uniqueness of the
pseudo-quotient and pseudoremainder follows from the uniqueness of the quotient and remainder in Q[x]. Further
define the pseudo-Euclidean PRS as A0 := A,A1 := B and recursively

Ai+1 := prem(Ai−1, Ai).

But what is the relation between the euclidean PRS over Q[x] and the pseudo-euclidean PRS? As we would expect,
the pseudo-euclidean PRS is obtained from the euclidean PRS by clearing the denominators. In general, we will
say two polynomials A,B are similar, A ∼ B, if there are non-zero integers α, β such that αA = βB. Thus the
pseudo-euclidean PRS and euclidean PRS are similar sequences.

Does the pseudo-euclidean PRS resolve the exponential growth that we observed in (1)? The following computa-
tion shows that perhaps the answer is no:

A0 := x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5

A1 := 2x6 + 5x4 − 4x2 − 9x+ 21

A2 := 22x4 + 12x3 − 44x2 − 38x+ 86

A3 := −42176x3 + 58432x2 + 126048x− 175776

A4 := 143376257024x2 − 4862984192x− 161945006080

A5 := 1651593431045741213982392320x− 2289861967025219177226960896

A6 := 291650119757942249848140752505336447736745178754780962140763193344.

(3)

We next show that this is indeed the case. For this we need to re-interpet the euclidean step in terms of matrices. The
key idea is that a euclidean step is a special case of Gaussian elimination.

Given A(x) and B(x) consider the following (m−n+2)× (m+1) matrix in which the coefficients of B appear
in the first m− n+ 1 rows and the coefficients of A in the last row:

M :=



bn bn−1 bn−2 · · · b0
bn bn−1 bn−2 · · · b0

bn bn−1 bn−2 · · · b0
. . . . . .

bn bn−1 bn−2 b0
am am−1 am−2 · · · a0


(4)

The Euclidean step can be interpreted in terms of elementary row operations as follows: take the last row and subtract
from it a multiple of am/bn of the first row; this eliminates the first entry of the last row and is equivalent to the getting
the leading entry of the quotient; next eliminate the second entry of the last row by multiplying with a suitable scaling
of the second row; so on and so forth, we keep on modifying the last row; this can be done at most m− n+ 1 times;
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the entries of the last row, which are now rational numbers, are clearly the coefficients of rem(A,B), and the resulting
matrix looks as follows

M ′ :=



bn bn−1 bn−2 · · · b0
bn bn−1 bn−2 · · · b0

bn bn−1 bn−2 · · · b0
. . . . . .

bn bn−1 bn−2 b0
0 0 0 · · · cn−1 cn−2 c0


, (5)

where ci ∈ Q are the coefficients of rem(A,B). Associate a degree (n − 1) determinantal polynomial with M
defined as follows:

dpol(M) := det(M1)x
n−1 + det(Mn−2)x

n−2 + · · ·+ det(Mn+1), (6)

where Mi is the square-matrix obtained from M by taking the first m − n + 1 columns and the (m − n + 1 + i)th
column of M , where i = m− n+ 2, . . . ,m + 1. Since elementary row operations do not change the determinant, it
follows that

dpol(M) = dpol(M ′) = bm−n+1rem(A,B) = prem(A,B). (7)

The equation above gives us a very explicit description of the coefficients of the pseudoremainder in terms of the
coefficients of A,B. It also implies the following relation: for two integers α, β

prem(αA, βB) = αβm−n+1prem(A,B). (8)

Based upon this relation, we can now show that the coefficient growth in pseudo-euclidean PRS is exponential.

¶1. Coefficient growth in pseudo-euclidean PRS Suppose A0, . . . , Ak is the pseudo-euclidean PRS with degree
sequence (n0, n1, . . . , nk) and δi := ni−1 − ni. Let β := cont(A2) and A′2 := prim(A2). Then

A3 := prem(A1, A2) = prem(A1, βA
′
2).

Thus from (8) it follows that βδ2+1|A3. Similarly, let A3 = βδ2+1A′3. Then we have

A4 := prem(A2, A3) = prem(A2, β
δ2+1A′3)

and from (8) it again follows that
β(δ2+1)(δ3+1)|A4.

Continuing in this manner we see that
β(δ2+1)(δ3+1)...(δk+1)|Ak.

Since δi ≥ 1, it immediately follows that β2k |Ak, i.e., the bit-sizes of Ak are exponential in k.

2 Primitive PRS
As pseudoremainders do not solve the exponential coefficient growth, we have to look at other alternatives. Can we
find other similar sequences that have polynomial growth? Perhaps one way to avoid the coefficient growth in (3) is to
try to remove the part common to all the coefficients, or more precisely the content of the polynomial. That is, at each
step we do the following:

Ai+1 := prim(prem(Ai−1, Ai)).
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Call such a PRS as the primitive PRS. The primitive PRS for our example is

A0 := x8 + x6 − 3x4 − 3x3 + 8x2 + 2x− 5

A1 := 2x6 + 5x4 − 4x2 − 9x+ 21

A2 = 11x4 + 6x3 − 22x2 − 19x+ 43

A3 = −1318x3 + 1826x2 + 3939x− 5493

A4 = 26299x2 − 892x− 29705

A5 = 3998585x− 5543863

A6 = 1.

(9)

Clearly, the primitive PRS is similar to pseudo-euclidean PRS, but it seems to have the added advantage of small
coefficient growth. We can show that the coefficient sizes are polynomially bounded in the input. We will next
develop a more general framework to develop such bounds.

3 Subresultant PRS
Despite its polynomial coefficient growth, primitive PRS does have one drawback, namely at each step we have to do
a multi-gcd computation, which becomes more prominent when we are working over the ring of multivariate polyno-
mials since then the computation would proceed recursively in the dimension and so the cost increases dramatically.
Thus a desirable PRS algorithm should avoid computing multiple gcds. This aim was successfully achieved by Collins
subresultant PRS algorithm [1]. The algorithm reduces the coefficient growth by dividing by an integer at each step,
i.e., it obtains a sufficiently large factor of the content at each step without doing any multiple gcds. In the remaining
lecture we focus on this algorithm and show that it has nearly linear coefficient growth. .

All the modifications of the standard PRS can be captured by the following notion: A generalized PRS for two
polynomials A0, A1 ∈ Z[x], based upon sequences {αi} and {βi} is a sequence of polynomials Ai, i = 1, . . . , k such
that

βiAi+1 := αiAi−1 −QiAi, (10)

where Qi := pquo(Ai−1, Ai). This immediately implies that

Ai+1 ∼ prem(Ai−1, Ai)

and
GCD(A0, A1) ∼ Ak

In general we have the following chain of relations

GCD(A0, A1) ∼ GCD(A1, A2) ∼ · · · ∼ GCD(Ak−1, Ak).

Let ni := deg(Ai), and δi := ni−1 − ni.
For pseudo-euclidean PRS the base sequences are βi = 1 and αi = lead(Ai)

δi+1; for primitive PRS the base
sequences are βi = cont(Ai+1) and αi = lead(Ai)

δi+1. Thus pseudo-euclidean PRS and primitive PRS choose
the extreme values for βi. Collin’s subsresultant PRS covers the ground in between by choosing a value for βi > 1
without computing multiple gcds.

Our definition (4) helps us to understand one euclidean step. To understand a chain of such steps, we need a more
general definition of dpol(M) where the coefficients of A and B are treated more equally. One way to express the
matrix in (4) is as

dpol(xm−nB, xm−n−1B, . . . , B,A).

Based upon this formulation we have the following definition: The ith subresultant, i = 0, . . . , n, of A and B is
defined as

sresi(A,B) := dpol(xn−i−1A, xn−i−2A, . . . , A;xm−i−1B, xm−i−2B, . . . , B). (11)
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For convenience, we will use the shorthand Si for sresi(A,B). The underlying matrix has (m + n − 2i) rows and
(m + n − i) columns and so deg(Si) ≤ i; as the leading coefficients could vanish; see Figure 1 for illustration. We
will say that Si is regular if the degree is equal to i; otherwise, we will say it is defective. Note that

Sn = bm−n−1n B. (12)

It is convenient to extend the definition to cover the cases i = n+ 1, . . . ,m:

Sm := A

Sm−1 := B

Sm−2 = Sm−3 = · · · = Sn+1 := 0.

(13)

The sequence
(Sm, . . . , S0) (14)

is called the subresultant chain. Let Ci := lead(Si) be the nominal leading coefficient of Si, also called the
principal subresultant coefficient; define Cm := 1 and not lead(A). If all the subresultants are regular then the
chain is called regular.

Our main result would be along the following lines: for a generalized PRS A0, A1, . . . , Ak

Ai ∼ Sni−1−1 ∼ Sni
, i ≤ k

and
Sj = 0, for ni < j < ni−1 − 1.

That is the subresultant chain captures all types of PRS’s up to similarity. The following properties make them our
focus of study:

1. Snk−1−1 ∼ GCD(A0, A1).

2. S0 = 0 iff deg(GCD(A0, A1)) > 0.

3. They have polynomially sized coefficients.

Thus if we can construct a PRS that equals the corresponding subresultants then we have achieved our desired aim of
a polynomial running time variant of Euclid’s algorithm for rings. Collins [1] was the first to show this result.

Our first crucial observation is the following analogue of (7):

LEMMA 1. For i = 0, . . . , n,

b(m−n+1)(n−i−1)Si = (−1)(m−i)(n−i)sresi(B, prem(A,B)). (15)

Proof. The following steps constitute the proof of correctness (it helps to follow the illustration in Figure 1 simul-
taneously).

1. Multiply both sides of (11) b(m−n+1)(n−i). This gives us

b(m−n+1)(n−i)Si = dpol(xn−i−1bm−n+1A, xn−i−2bm−n+1A, . . . , bm−n+1A;xm−i−1B, xm−i−2B, . . . , B).

2. Now observe that there are (m− n+ 1+ n− i− 1) B-rows, i.e., for each A-row we have (m− n+ 1) rows to
perform Gaussian elimination to get pseudoremainder. Proceeding with the elimination yields the matrix show
in Figure 2(a), i.e., the matrix corresponding to

dpol(xn−i−1prem(A,B), xn−i−2prem(A,B), . . . , prem(A,B);xm−i−1B, xm−i−2B, . . . , B).

3. Swapping the rows gives us

Si = (−1)(m−i)(n−i)dpol(xn−i−2B, xn−i−3B, . . . , B;xn−i−1prem(A,B), xn−i−2prem(A,B), . . . , prem(A,B)).
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am am−1am−2 a0

am am−1am−2 a0

am am−1am−2 a0

am am−1am−2 a0

bn bn−1 bn−2

bn bn−1 bn−2

bn bn−1 bn−2

n− i

m− i

b0

b0

b0

b0

m + n− i

bn bn−1 bn−2

Figure 1: Illustrating sresi(A,B)

4. As the main diagonal of the the first (m− n+1) columns and rows contains bn, we pullout a factor of bm−n+1

in the dpol to get

(−1)(m−i)(n−i)b(m−n+1)(n−i−1)Si = dpol(xn−i−1prem(A,B), xn−i−2prem(A,B), . . . , prem(A,B);xn−i−2B, xn−i−3B, . . . , B).

The resulting matrix is shown in Figure 2(b).

Q.E.D.

In particular, from (15) it follows that for i = n− 1 we have

Sn−1 = prem(A,B); (16)

in Figure 2(b), if we substitute i = n − 1 then all the B-rows vanish and only one row corresponding to prem(A,B)
survives. Thus so far we have that

Sm = A,Sm−1 = B,Sm−2 = · · · = Sn+1 = 0, Sn = bm−n+1B, and Sn−1 = prem(A,B).

Call such a sequence of subsresultants a block. More precisely, a block is a sequence of polynomials (T1, . . . , Uk)
such that T1 ∼ Uk and the intermediate polynomials are all zeros; T1 is called the top and Uk the base of the block.
In general, we will see the same phenomenon, i.e., the subresultant chain (Sm, . . . , S0) can be partitioned into blocks
B0, . . . , Bk.

We start with a simple case first, namely when n = m − 1 and the subresultant chain is regular. In other words,
we treat the coefficients purely symbolically. Let’s call this interpretation as the symbolic resultant chain. Pictorially
it is as shown in Figure ??. What can we say about this symbolic chain? The following theorem gives us a handle on
this chain.

THEOREM 2 (Habitch’s Theorem). LetA(x) andB(x) be degreem and degree (m−1) polynomials and (Sm, . . . , S0)
the corresponding symbolic subsresultant chain. Then for all j < m,

C
2(j−i)
j+1 Si = sresi(Sj+1, Sj), i = 0, . . . , j − 1. (17)
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Proof. The proof is by induction on j.

1. The base case is j = m − 1. Observe that when j = m − 1, (17) is just the definition of subresultants (15) as
Cm was defined as 1, so (17) holds.

2. So suppose that (17) has been demonstrated for some j. Then we have for i = j − 1

C2
j+1Sj−1 = sresj−1(Sj+1, Sj) = prem(Sj+1, Sj), (18)

where the second equality follows from the same argument that was used to show (12) by substituting n = j−1,
A← Sj+1, and B ← Sj . Now we show that (17) holds for j − 1 and for i < j − 1.

3. Since (17) holds for j by assumption we know that

Si = C
−2(j−i)
j+1 sresi(Sj+1, Sj).

Substituting b = Cj , A = Sj+1, B = Sj in (15) we get that

sresi(Sj+1, Sj) = C
−2(j−1−i)
j sresi(Sj , prem(Sj+1, Sj)).

Thus we have for i < j − 1

Si = C
−2(j−i)
j+1 C

−2(j−1−i)
j sresi(Sj , prem(Sj+1, Sj))

= C
−2(j−i)
j+1 C

−2(j−1−i)
j sresi(Sj , C

2
j+1Sj−1)

= C
−2(j−1−i)
j sresi(Sj , Sj−1).

Q.E.D.

We now study the effect of removing the constraint that n = m − 1 and the chain is regular, i.e., we specialize
the coefficients to their actual values. In particular, we want to understand what happens when we have defective
subresultants.

THEOREM 3 (Subresultant Block Structure Theorem). Let j < m. Suppose Sj+1 is regular and Sj is defective with
degree d < j. Then

1. Sj−1 = Sj−2 = · · ·Sd+1 = 0.

2. Cj−dj+1Sd = lead(Sj)
j−dSj , i.e., Sd ∼ Sj and

3. Cj−d+2
j+1 Sd−1 ∼ prem(Sj+1, Sj).

This theorem gives us the block structure that we wanted. It explicitly gives us the coefficients of similarity
between the top and the base of a block. Moreover, the third item gives the relation between two consecutive blocks.
Proof. We consider the following three cases depending on how many leading zeros Sj has, i.e., how j − r interacts
with j− i. Each of the three cases give us the desired results respectively. See Figure 3 for an illustration of each case.

1. d + 2j − 2i + 1 < 2j − i + 1: In this case, the coefficients involved in the subresultant all vanish, because
the matrices are upper triangular with zeros on the main diagonal. The condition is equivalent to i > d. See
Figure 3(a).

2. d+ 2j − 2i+ 1 = 2j − i+ 1: That is the coefficients of Sj+1 and Sj are exactly on the main diagonal. From
(17) it follows that

C
2(j−i)
j+1 Si = sresi(Sj+1, Sj) = Cj−dj+1lead(Sj)

j−dSj .

The condition is equivalent to i = d. See Figure 3(b).

3. d+ 2j − 2i+ 1 = 2j − i+ 2: In this case, we expand the determinant along the first j − d rows to get

sresd−1(Sj+1, Sj) = Cj−dj+1dpol(Sj+1, x
j−d+1Sj , . . . , Sj) = Cj−dj+1 (−1)j−d+2prem(Sj+1, Sj)

where the last equality follows from (15). The condition is equivalent to i = d− 1.
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Q.E.D.

We now consider a specialization of (10) which gives us a direct approach to compute subresultants.

THEOREM 4 (Subresultant PRS Theorem). GivenA,B, consider the PRS obtained from (10) based upon the standard
choice of αi and

βi+1 := −lead(Ai)(−Cni)
δi+1 , β1 := 1. (19)

Then
Ai = Sni−1−1, i = 1, . . . , k.

That is Ai’s are the top of the blocks in the subresultant chain.

Proof. The proof is by induction on i. The base case i = 0, 1 holds by definition since A0 := A = Sm = Sn0 and
A1 := B = Sm−1 = Sn0−1. Assume the theorem holds for Ai and Ai+1, i.e.,

Ai = Sni−1−1 and Ai+1 = Sni−1.

Note that both Sni−1−1 and Sni−1 are defective. Our assumption that Ai = Sni−1−1 implies that Sni−1−1, . . . , Sni

forms a block. Applying Theorem 3(2) with j + 1 = ni−1 and d = ni, we obtain that

Cδi−1ni−1
Sni

= lead(Ai)
δi−1Ai. (20)

On comparing the leading coefficients on both sides we further get

Cδi−1ni−1
Cni

= lead(Ai)
δi . (21)

Furthermore, substituting of j + 1 = ni and d = ni+1, Theorem 3(3) gives us

(−Cni)
δi+1+1Sni+1−1 = prem(Sni , Ai+1). (22)

Note that the choice of αi implies that
βi+1Ai+2 = prem(Ai, Ai+1).

Substituting Ai in terms of Sni
using (20) gives us

βi+1Ai+2 = Cδi−1ni−1
lead(Ai)

−(δi−1)prem(Sni
, Ai+1).

From (22) we further obtain

βi+1Ai+2 = Cδi−1ni−1
lead(Ai)

−(δi−1)(−Cni
)δi+1+1Sni+1−1.

But from (21) we get that
βi+1Ai+2 = −lead(Ai)(−Cni

)δi+1Sni+1−1.

But from (19) we know that the constant on the RHS is βi. Thus

Ai+2 = Sni+1−1.

Q.E.D.

¶2. Coefficient Growth of Subresultant PRS A straight forward application of Hadamard’s bound shows us that
the coefficients in subresultant PRS are O(n(L + log n)), where n is the degree of the larger polynomial and L the
maximum bit-length of the input coefficients.
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4 Resultant
Given two polynomials A(x), B(x) ∈ Z[x], we want to “eliminate the variable x”, i.e., find two polynomials P,Q ∈
Z[x] such that the linear combination res(A,B) := AP +BQ is independent of x and only belongs to the coefficient
ring Z. The linear combination res(A,B) is called the resultant or eliminant.2. In this section, we study one special
resultant, namely Sylvester’s resultant. We have already encoutenred it as the subresultant S0, but let’s see why it
naturally arises as the resultant of A and B. The starting point is the following result.

LEMMA 5. The deg(GCD(A,B)) ≥ k iff there exists two polynomials P and Q, of degree at most n − k and m − k
respectively such that PA+QB = 0.

Proof. If deg(GCD(A,B)) ≥ k, we can choose P := B/GCD(A,B) and Q := A/GCD(A,B).
Conversely, suppose PA + QB = 0. Since deg(P ) ≤ n − k, this implies that a certain factor of A of degree at

least k must divide Q. Thus deg(GCD(A,B)) ≥ k. Q.E.D.

The lemma above states that A and B have a non-constant gcd iff there exists two polynomials P and Q of degree
n− 1 and m− 1 resp. such that PA+QB = 0. Considering the coefficients of P and Q as variables, we want to find
a solution to the m+ n− 1 equations

k∑
j=0

pjak−j +

k∑
j=0

qjbk−j = 0

where k = 0, . . . ,m+ n− 1. We can conveniently express these equations as solution to a system of linear equation

(pn−1, . . . , p0, qm−1, . . . , q0) · Syl(A,B)

where Syl(A,B) is the matrix shown in Figure 4. Clearly, the above system of linear equations has a solution iff
det(Syl(A,B)) = 0. Thus

res(A,B) = det(Syl(A,B)). (23)

is the desired resultant. Thus we have a direct proof of the following result

LEMMA 6. The res(A,B) is zero iff A and B have a non-constant gcd.

Another surprising equivalent condition for the vanishing of res(A,B) is iff there exists a common root of A and
B in the algebraic closure Z (not necessarily in Z!). This relation is captured by the following theorem, which gives
the beautiful correlation between the algebra of coefficients and the geometry of roots.

THEOREM 7. Let α1, . . . , αm ∈ Z be the roots of A(x) and β1, . . . , βn ∈ Z the roots of B(x). The following are all
equivalent expressions for res(A,B):

1. an
∏m
i=1B(αi),

2. bm
∏n
i=1A(βi), and

3. anbm
∏n
i=1

∏m
j=1(αi − βj).

The result follows from recursive application of the following observation: for any α ∈ Z

res((x− α) ·A,B) = B(α)res(A,B). (24)

For convenience we will take A(x) to be a degree m− 1 polynomial. Thus (x− α)A =
∑m−1
i=0 (ai − αai+1)x

i. The

2The definition can be generalized to a system of more than one variables
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resultant has the following form:

M :=



am−1 am−2 − αam−1 am−3 − αam−2 · · · a0 − αa1 −αa0
am−1 am−2 − αam−1 am−3 − αam−2 · · · a0 − αa1 −αa0

. . . . . .
am−1 am−2 − αam−1 am−3 − αam−2 · · · a0 − αa1 −αa0

bn bn−1 bn−2 · · · b0
bn bn−1 bn−2 · · · b0

bn bn−1 bn−2 · · · b0
. . . . . .

bn bn−1 bn−2 b0


Do the following operations on M in the prescribed order: multiply α to column i and add it to column (i + 1), for
i = 1, . . . ,m+ n− 1. Let M ′ be matrix obtained. To describe the entries in M ′ corresponding to the rows of B, the
following notation will be useful: define

B|xi := B(x) quo xi, for i ≥ 0. (25)

For a certain value of x = α, B|αi means the B|xi evaluated at x = α; thus

B|xn = bn, B|xn−1 = bnx+ bn−1, . . . , B|x0 = B(x), B|x−1 = xB(x) . . . .

With the notation above, we can conveniently write

M ′ =



am−1 am−2 am−3 · · · a0 0
am−1 am−2 am−3 · · · a0 0

. . . . . .
am−1 am−2 am−3 · · · a0 0

B|αn B|αn−1 B|αn−2 · · · B|α0 αB(α) · · · αm−2B(α) αm−1B(α)
B|αn B|αn−1 B|αn−2 · · · B|α0 αB(α) · · · αm−2B(α)

B|αn B|αn−1 B|αn−2 · · · B|α0 αB(α) · · · αm−3B(α)
. . . . . .
B|αn B|αn−1 B|αn−2 · · · B|α0 αB(α)

B|αn B|αn−1 B|αn−2 · · · B|α0


Now do the following operations starting from the last row to the (n+1)th row: subtract α times jth row to (j − 1)th
row, where m+ n ≥ j > n+ 1. This yields us the following matrix

M ′′ =



am−1 am−2 am−3 · · · a0 0
am−1 am−2 am−3 · · · a0 0

. . . . . .
am−1 am−2 am−3 · · · a0 0

bn bn−1 bn−2 · · · b0 0 · · · 0 0
bn bn−1 bn−2 · · · b0 0 · · · 0

bn bn−1 bn−2 · · · b0 0 · · · 0
. . . . . .
bn bn−1 bn−2 · · · b0 0

B|αn B|αn−1 B|αn−2 · · · B|α0


Since the determinant does not change in doing these operations, it follows that

det(M) = det(M ′) = det(M ′′).

ExpandingM ′′ along the last column, which only contains one non-zero entry, namelyB(α), it follows that det(M) =
B(α)res(A,B).
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¶3. Computing the Resultant. A straightforward determinant computation will be costly. The key to computing
resultants is based upon the following recursion:

res(A,B) = (−1)mnbm−rres(B,R)

where R := rem(A,B) and r := deg(R).
Note: Given two multivariate polynomials A(x1, . . . , xn), B(x1, . . . , xn) ∈ Z[x1, . . . , xn] we can still take their

resultant w.r.t. the variable xn by treating them as univariate polynomials in xn with coefficients in Z[x1, . . . , xn−1].
We will represent this resultatnt as resxn

(A,B), which is a polynomial in Z[x1, . . . , xn−1].

4.1 Algebraic Numbers and Algebraic Integers
We know that every degree n polynomial has n roots in C. However, when our polynomials are integer polynomials,
it is not necessary to go to C to get all the roots. A root of an integer polynomial is called an algebraic number. The
set Z containing all the algebraic numbers is called the algebraic closure of Z. 3 What is the structure of this set? Is
it a ring or a field?

Clearly, Z,Q ⊆ Z. Moreover, Z ⊂ C, since there are numbers such as π, e that are not the roots of any integer
polynomials; such numbers are called transcendental numbers. In fact, by Cantor’s diagonalization argument it
follows that most numbers are transcendental in nature. We will show that Z is a field, and just as Z provides the
underlying arithmetic structure for Q, there is a set that acts in an analogous manner to Z.

THEOREM 8. Let α, β be two algebraic numbers and let A(x), B(x) be polynomials such that A(α) = B(β) = 0.
Then

1. 1α is a root of xmA(1/x), if α 6= 0.

2. β ± α is a root of resy(A(y), B(x∓ y)).
3. αβ is a root of resy(A(y), ynB(x/y)).

Proof.

1. Immediate.

2.

resy(A(y), B(x∓ y)) = an
m∏
i=1

B(x∓ αi)

= anbm
m∏
i=1

n∏
j=1

(x∓ αi − βj).

3.

resy(A(y), y
nB(x/y)) = an

m∏
i=1

αni B(x/αi)

= anbm
m∏
i=1

αni

n∏
j=1

(
x

αi
− βj)

= anbm
m∏
i=1

n∏
j=1

(x− αiβj).

Q.E.D.

An algebraic integer is an algebraic number that is a root of a monic polynomial, i.e., a polynomial with leading
coefficient one. From the theorem above, it follows that O forms a ring. Furthermore, the set of algebraic integers is
denoted as O and it plays the same role as the integers in rationals.

3In general, the set containing all the roots of polynomials in D[x], for some domain D, is denoted as D.
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LEMMA 9. Every algebraic number α = β/a, where β is an algebraic integer and a ∈ Z.

Proof. Suppose A(α) = 0. Consider the polynomial

an−1A(x) =

n∑
i=0

aia
n−1−i(ax)i = xn + an−1(ax)

n−1 + an−2a(ax)
n−2 + · · ·+ a0a

n−1.

Clearly, aα is a root of the polynomial. But the polynomial is monic, so aα must be an algebraic integer, say β. Thus
α = β/a. Q.E.D.

By definition, an algebraic number α is a root of an integer polynomial A(x). It is often convenient to choose
a specific polynomial as follows: we choose A(x) to be a primitive polynomial that has the smallest degree, such a
polynomial is called the minimal polynomial of α. They have the following property:

Let A(x) be the minimal polynomial of α and suppose B(x) is s.t. B(α) = 0 then A divides B.

If not, then let R(x) be the remainder, i.e., B(x) = A(x)Q(x) + R(x); since both A(α) = B(α) = 0 it follows that
R(α) = 0; but deg(R) < deg(A), which is a contradiction to the definition of minimal polynomial.
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0 0 0 cn−1

c00 0 0 cn−1
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n− i− 1

bn bn−1 bn−2 b0
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Figure 2: After reducing the first (n− i) rows to get the pseudoremainder
∑n−1
i=0 cix

i
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2j − 2i+ 1 d

0

0

j − i
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Sj
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d

0
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Figure 3: Illustration of proof of Subresultant Theorem
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am am−1am−2 a0

am am−1am−2 a0

am am−1am−2 a0

am am−1am−2 a0

bn bn−1 bn−2

bn bn−1 bn−2

n

m

b0

b0

m + n

bn bn−1 bn−2 b0

bn bn−1 bn−2 b0

Figure 4: Sylvester matrix of two polynomials
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