
Sturm Theory

Counting the number of real roots of a polynomial over a given interval was one of the most fundametal problems
of the 19th Century. Some of the greatest names in Mathematics had worked on it, starting from Descartes’ with his
rule of signs, Newton on counting imaginar roots, to methods of Budan and Fourier. However, all these approaches
only gave an upper estimate on the number of roots and not the exact count. It was Charles-François Sturm in 1829
who gave a method to derive the exact count.

Let A(x) =
∑n
i=0 aix

i be a degree n polynomial with real coefficients. Further suppose A(x) is square-free, i.e.,
GCD(A,A′) is a constant. Consider the prs

A := (A0, A1, . . . , Ak)

where A0 := A and A1 := A′. We know that the following recurrence holds

Ai−1 = QiAi +Ai+1. (1)

Let (a, b) be an interval in which we want to count the roots of A(x). For any point α ∈ R, define VarA(α) as the
number of sign changes, i.e. change from positive to negative or vice versa, in the sequence obtained from A after
dropping all the zeros. Sturm’s theorem roughly states that

VarA[a, b] := VarA(a)−VarA(b)

is the number of real roots of A(x) in (a, b). Clearly, the number VarA(a) changes iff a passes through a root of one
of members of the sequence A. So it makes sense to study the behaviour of the sequence A in the neighborhoods of
the roots of Ai(x), i = 0, . . . , k. Let us break However, the sequence A is not quite the correct one and we will see
why.

We have the following observations about the sequence A w.r.t. α:

LEMMA 1. Let A be the prs of A and A′.

1. No two consecutive elements of A vanish at α.

2. Ak does not vanish at α.

3. If Ai(α) = 0 then Ai−1(α)Ai+1(α) > 0.

The first two statements are a consequence of the fact that A(x) is square-free. The last follows immediately from
(1).

We now consider the quantitty VarA(α) as we move across the roots of Ai’s. There are two essentially two cases
to consider:

Case 1. α is a root of A(x): For x in the vicinity of α we have by the mean value theorem

A(x) = A′(η)(x− α)

where η is between x and α. Since A is square-free the sign of the derivative A′ in a small neighborhood of
the root remains constant (either positive or negative). However, from the above equation it follows that to
the left of α we have A(x)A′(η) < 0 and to the right of α we have A(x)A′(η) > 0. Thus VarA(α) drops by
one as we move across α.
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Case 2. α is a root ofAi(x): Note that α can be a multiple root ofAi(x), 0 < i < k (sinceA(x) is square-freeAk(x)
is a constant). For simplicity’s sake let’s assume α is a simple root of Ai(x). Then we know that in a small
neighborhood around α, Ai−1 and Ai+1 have the same sign. Now when we go across α, Ai changes sign,
and in doing so we either add increase VarA by two or decrease it by two.

Thus we have shown that VarA[a, b] has the same parity as the number of real roots in (a, b). How do we avoid this
difference of two? The crucial observation of Sturm was to change the sequenceA by flipping signs of the remainders:
a sequence A is called a Sturm sequence for A if the following recurrence is satisfied

Ai−1 = AiQi −Ai+1, (2)

where A0 := A(x) and A1 := A′(x). Thus a Sturm sequence is obtained from a prs of A(x) and A′(x) by flipping
the signs of the remainders. Now we have the following analogue to Lemma 1.

LEMMA 2. Let A be the Sturm sequence for A. Then

1. No two consecutive elements of A vanish at α.

2. Ak does not vanish at α.

3. If Ai(α) = 0 then Ai−1(α)Ai+1(α) < 0.

The argument in Case 1. remains unchanged, i.e., we still loose one sign variation in going across a root of A(x).
In Case 2., however, we do not loose any sign variation, because in the neighborhood of α, the sign of Ai−1 and Ai+1

is opposite, and hence whether or not Ai changes sign across α, we do not loose any sign variation. Thus we have the
following classic result.

THEOREM 3. Given a square-free polynomial A(x) ∈ R[x] let A be its Sturm sequence. Then VarA[a, b] is the
number of real roots of A(x) in the interval (a, b), where a, b are not roots of A(x).

Note: It’s not clear in the first place how the drop in the sign changes are stored in the sequence A. What is
interesting is that between two roots α, β of A, even though A and A′ have the same sign to the right of α, by the
time we reach β their sign differs, which it must by Rolle’s theorem, so that we again have a drop of sign across β.
In between the two roots there is no change in sign variation, but the distribution of signs across Ai’s, 0 < i < k,
changes.

Is the restriction of square-freeness really necessary? The surprising thing is that it is not. Suppose α is a root of
multiplicity m of A(x). Then we know that (x − α)m−1 divides A′(x) and hence (x − α)m−1 divides GCD(A,A′).
This implies that (x − α)m−1 divides all the polynomials in the Sturm sequence. Define φi, i = 0, . . . , k, s.t.
Ai = (x − α)m−1φi; further define φ as the sequence (φ0, . . . , φk). Then Lemma 2 applies to the sequence φ. We
claim that the sequence φ drops a sign variation as we move across α. The two cases again apply. Since α occurs with
multiplicity one in φ0 zero in φ1, we always loose a sign between φ0 and φ1 when going across α. If α is a root of
some φi, i > 1, then the sign of φi−1 and φi+1 is different, so we do not loose any sign variations when φi changes
sign across α. But what is the relation between Varφ and VarA at some point x? The two quantities are the same
because Ai = (x − α)m−1φi, for i = 0, . . . , k, i.e., as we have have scaled all the polynomials by the same quantity
so the sign variations remain the same. Thus we have completed the proof of the following famous result.

THEOREM 4 (Sturm’s Theorem). Given a polynomial A(x) ∈ R[x] let A be its Sturm sequence. Then VarA[a, b] is
the number of distinct real roots of A(x) in the interval (a, b), where a, b are not roots of A(x).

Remark: The theorem applies to integer polynomials, where the Sturm sequence is obtained by changing signs of
the remainders in the Subresultant PRS algorithm.

We can generalize the notion of a sturm sequence to any two polynomialsA,B ∈ R[x], as the sequence (A0, A1, . . . , Ak)
satisfying (2), where A0 := A,A1 := B. Note that if deg(A) < deg(B) then A2 = −A, and subsequently the se-
quence proceeds as the standard sturm sequence. Given an interval [a, b], the concept of VarA,B [a, b] is well defined.
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1 Algorithm for Isolating Real Roots
In this section we describe and analyse an algorithm for isolating real roots of an integer polynomial A(x). The
algorithm is a straightforward bisection algorithm.

INPUT: An integer polynomial A(x).
OUTPUT: A sequence of pairwise disjoint intervals (I1, . . . , I`) such that each interval
contains exactly one real root of A(x) and together the account for all the real roots of A(x).
1. Compute the sturm sequence A of A(x).
2. Compute an interval (−B,B) containing all the real roots.
3. Initialize a queue Q← (−B,B).
4. While Q is not empty do:
5. Remove an interval I from Q.

If VarA(I) == 1 then output I .
Else If VarA(I) == 0 then discard I .
Else

If midpoint of I is a root then output [m,m].
Split I into two equal halves and push them onto Q.

There are three quantities that we have to bound:

Step 1. Complexity of computing the Sturm sequence in step 1.

Step 2. Complexity of evaluating a sturm sequence at a given point.

Step 3. The size of the subdivision tree.

Complexity for Step 1: A half-gcd approach can be used to evaluate the subresultants. Very crudely speaking
this takes O(M(n) log n) operations on numbers of bit-size O(nL). Thus the overall complexity is O(M(n) log n ·
M(nL)) = Õ(n2L), where Õ means we ignore logarithmic factors.

Complexity for Step 2: The right approach to evaluate a Sturm sequence is to store A,A′ and the pseudoquotients
sequence. It can be shown that the bit-complexity of the pseudo-quotients is O(δinL). The overall complexity for
evaluating the sturm sequence at a rational of bit-length O(nL) is O(

∑k
i=1 δ

2
i nL) = Õ(n3L).

In the remaining section we bound the size of the subdivision tree. In particular, we will show that the size is
Õ(nL). This is surprising because a straightforward estimate would be Õ(n2L): the worst case depth of the tree is
Õ(nL), and there are at most n leaves in the tree. The improvement is obtained by amortizing over all the leaves
simultaneously. Multiplying the tree size, with the worst case complexity of each node from Step 3 is Õ(n3L), we
obtain that the overall complexity of the algorithm is Õ(n4L2).

1.1 Size of the subdivision tree
Let T be the subdivision tree of the algorithm. We first prune all the leaves from T to obtained T ′. Since T is a binary
tree |T | ≤ 2|T ′|. We will thus bound |T ′|.

Consider an interval J associated with a leaf of T ′. Since J was not terminal in T , we know that there are at most
two distinct roots αJ , βJ ∈ J . Thus w(J) ≥ |αJ − βJ |. The number of nodes along the path from the root of the tree
T ′, with the associated interval I0, to J is lgw(I0)/w(J). From the lower bound on w(J) it follows that the depth of
this path is bounded by lgw(I0)/|αJ − βJ |. Summing over all the leaves J in T ′ we have the following bound:

|T ′| ≤
∑
J

lg
w(I0)

|αJ − βJ |
. (3)

Since there can be at most n real roots we further have

|T ′| ≤ n lgw(I0)−
∑
J

lg |αJ − βJ | = n lgw(I0)− lg
∏
J

|αJ − βJ |.
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To derive an upper bound on |T ′|, we thus need to derive a lower bound on
∏
J |αJ − βJ |. Note that for two leaves J ,

J ′ of T ′ the associated root pairs are distinct. Applying the Davenport-Mahler-Mignotte bound to the square-free part
of A(x), i.e., to A(x)/GCD(A,A′), it follows that∏

J

|αJ − βJ | ≥ 2−(n
2)M(A)2(1−n).

Thus
|T ′| = O(n(L+ n)).

By a more careful analysis, the bound can be improved to O(n(L+ log n)). Furthermore, it can be shown that for the
Mignotte polynomials this is the best possible.

2 Isolating Complex Roots
A sturm sequence helped us to count the exact number of real roots in any inteval I ⊆ R. To isolate complex roots,
we need a similar analogue that can help us count the exact number of complex roots in any rectangular region in C.
We first develop such a function, and then show how to compute it. This section is based on Herb Wilf’s paper [1].

Consider a point α ∈ C and box B ∈ C. Suppose a point z moves on the boundary of B, ∂B, in a counter
clockwise manner, then how does arg(z−α) change? For any function f : C→ C, let Let ∆B arg f(z) represent the
change of argument of f(z), as z goes around ∂B. There are two cases to consider: if α is inside B then the argument
changes by 2π, as z makes one loop around B; if α is outside B then the argument does not change. Thus

1

2π
∆B arg(z − α) =

{
1 if α ∈ B;

0 if α 6∈ B.
(4)

Now suppose that we have two points α, β, then it is clear that for any point z ∈ C,

arg[(z − α)(z − β)] = arg(z − α) + arg(z − β). (5)

For any polynomial A(z) ∈ C[z], applying (4) and (5) to its linear factors (x− αi) it follows that as z varies over ∂B
in a counter-clockwise direction

1

2π
∆B argA(z) = Number of roots of A(z) inside B. (6)

This observation is called the principle of argument. For correctness, we must assume that no root of A(z) lies on
the ∂B. Thus if we can compute ∆B argA(z) then we can count the exact number of roots of A(z) inside B.

Let’s focus on ∆B argA(z). The curve traced by A(z), as z varies around B in a counter-clockwise direction,
is a closed curve (not necessarily simple, i.e., it may self-intersect). The change in the argument of A(z) is closely
related to the winding number of A(z) around the origin; in fact, it is 2π times the winding number. However, there
is another combinatorial way to express the change in argument which is based upon the following observation: as
the curve A(z) goes from +ve y-axis to −ve y-axis crossing over the −ve x-axis, the argument increases by π; if
it continues further from −ve y-axis to +ve y-axis crossing over the +ve x-axis, then the argument increases by π;
if, however, we go in the other direction, i.e., from −ve y-axis to +ve y-axis crossing over the −ve x-axis, then the
argument decreases by π; we also decrease by π when going from +ve y-axis to −ve y-axis crossing over the +ve
x-axis. A more succinct way of expressing this observation is to define

N−+ := # { continuos arcs of A(z) that go from a −ve quadrant to +ve quadrant and cross x-axis} ,

and similarly

N−+ := # { continuos arcs of A(z) that go from a +ve quadrant to −ve quadrant and cross x-axis} .

Then
∆B argA(z) = π(N+

− −N−+ ). (7)

4



See Figure ?? for an illustration of the concepts above. We will say type-1 arcs for those arcs that contribute to the
count N+

− , and type-2 arcs for those that contribute to N−+ . To compute N+
− and N−+ , we first study the curve A(z) as

z traverses around one edge of B.
Consider an edge ab ⊂ C of B. Any point z on this edge can be expressed as z = a+ (b− a)t, where t ∈ [0, 1].

Thus
A(z) = A(a+ (b− a)t) = AR(t) + iAI(t)

where AR/I(t) are polynomials with real coefficients. We further assume that AR and AI are relatively prime, which
implies that they don’t have any common real roots. Define the rational function

ρ(t) :=
AI(t)

AR(t)
. (8)

Note that, argA(t) = arctan ρ(t), thus we have to study the rational function ρ(t). Let N [ab]+− denote the number of
type-1 arcs the curve A(z) has as z goes from a to b; similarly define N [ab]−+; thus N+

− is roughly the sum of these
counts for the four edges of B. Note that the starting and ending point of these arcs correspond to two consecutive
roots of AR(t) in [0, 1]. So let

t0 := 0 ≤ t1 < t2 < · · · < tk ≤ 1

be the k roots ofAR in [0, 1]. Let t+i denote a point just greater than ti and t−i a point just smaller than ti; corresponding
to these points in the nieghboirhood of ti, we have the value of the function ρ(t±i ) appropriately defined by a one-sided
limit. We will express N [ab]+− in terms of the signs of ρ(t±i ). Note that an arc of type-1 occurs when ρ(t+i ) < 0 and
ρ(t−i+1) > 0. Similarly, an arc of type-2 occurs when ρ(t+i ) > 0 and ρ(t−i+1) > 0. Since we are interested in the
difference N [ab]+− −N [ab]−+, a neat way to count arcs of either type is the following term(

sign(ρ(t−i+1))− sign(ρ(t+i ))

2

)

that takes 1 for arcs of type-1 and −1 for type-2 arcs; it vanishes if both the signs are the same. Thus

k−1∑
i=1

(
sign(ρ(t−i+1))− sign(ρ(t+i ))

2

)

gives us the excess of type-1 arcs over type-2 arcs. The problem is at the starting and ending points. Since we are
counting arcs along individual edges, it may be that the curve A(z) as z goes from the edge ab to edge cd com-
bine to give us an arc of one of the two types. To do this accounting correctly, we further add sign(ρ(t−1 ))/2 and
sign(ρ(t+k ))/2, and thus we obtain that the excess of type-1 arcs over type-2 arcs along an edge ab of B is

N [ab]+− −N [ab]−+ =
sign(ρ(t−1 ))

2
+

k−1∑
i=1

(
sign(ρ(t−i+1))− sign(ρ(t+i ))

2

)
+

sign(ρ(t+k ))

2

=

k∑
i=1

(
sign(ρ(t−i+1))− sign(ρ(t+i ))

2

)
.

(9)

To denote the dependence on the edges of B, let ρj be the rational function obtained by expanding A(z) along the jth
edge, and let kj the number of poles of γab in [0, 1] (observe that ti’s are the poles of γ(t)). Then from (6) and (7) it
follows that

N+
− −N−+ =

4∑
j=1

kj∑
i=1

(
sign(ρj(t

−
i+1,j))− sign(ρj(t

+
i,j))

2

)
(10)

where ti,j denotes the poles of γj . Our aim, therefore, is to compute

k∑
i=1

(
sign(ρ(t−i+1))− sign(ρ(t+i ))

2

)
.
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This sum is called the Cauchy index of ρ over the interval [0, 1], denoted as I10ρ(t). It should be interpreted as follows:
the fraction is positive for those poles ti for which the sign across ti changes from positive to negative, as t increases
from 0 to 1; similarly, it is negative for those poles ti for which the sign across ti changes from negative to positive,
as t increases from 0 to 1; thus the sum is how much in excess the first type of poles are over the second type of poles.
The surprising thing is that the Cauchy index of ρ can be computed from a generalization of sturm sequences for the
relatively prime polynomials AR(t) and AI(t).1 More precisely, we will show in the next section that

I10ρ(t) = VarAI ,AR
[0, 1]. (11)

This equation along with (10) implies the following result.

THEOREM 5. Suppose A(z) has no boundaries on the boundary of a box B. Then the number of zeros of A(z) in the
interior of B is exactly

1

2

4∑
j=1

I10

(
A

(j)
I

A
(j)
R

)

where A(i)
I , A

(i)
R are the polynomials corresponding to the jth edge of B.

We defer the proof (11) to the next section, and instead describe an algorithm to isolate the complex roots of A(z).
Given the theorem above the algorithm is pretty straightforward.

INPUT: A polynomial A(z) ∈ C[z].
OUTPUT: Isolating boxes for all the distinct roots of A(z).
1. Compute a box B0 containing all the roots of A; use Cauchy’s bound.
2. Initialize a queue Q← B0.
3. While Q is not empty do

Remove a box B from Q.
Compute the real AR(t) and the imaginary part AI(t) corresponding to each edge of B:
Compute the Cauchy index I10ρ(t) for each of the four edges
Add the Cauchy indices to get an estimate on the number of roots in B.
If the estimate is one then output B; if zero then discard.
If estimate > 1 then subdivided B into four boxes of equal size and push these boxes onto Q.

¶1. The Size of the Subdivision Tree The analysis for the size of the subdivision tree T is similar to what we had
earlier. Let T ′ be the tree obtained by pruning all the leaves of T . Then we know that for a box B associated with a
leaf of T ′, there must be two roots αB , βB ∈ B. Thus 2w(B) ≥ |αB − βB |; note the two, because the roots may be
diagonally placed in B. Let N(α) denote a root of A closest to α. Then we have the lower bound

2w(B) ≥ |αB −N(αB)|.

Proceeding as was done earlier, we have that

|T ′| ≤ n logw(B0)− n logB
∏
|αB −N(αB)|.

For deriving a lower bound on the product, we can again use the discriminant based approach, to obtain that∏
|αB −N(αB)| ≥M(A)2(1−n)2(n

2)
√

disc(A).

Thus we obtain taht
|T ′| ≤ Õ(n(L+ n)).

A crucial difference between the algorithms for complex root isolation and the real root isolation is that the former
needs to compute four new sturm sequences for every box, unlike the latter where we used just one sturm sequence.
In practice, this is very costly to do.

1One of the main contributions of Sturm was to show that the Cauchy index can be computed from Sturm sequences for the case of rational
functions.
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2.1 Computing Cauchy Index
We want to show that the Cauchy index of a rational function ρ := A/B, where A,B ∈ R[x] are two relatively prime
polynomials, w.r.t. an interval [a, b] satisfies

Ibaρ(t) = −VarA,B [a, b]. (12)

The proof of this relation is very similar to the proof of the Sturm theorem Theorem 3. Let a ≤ γ1 ≤ γ2 ≤ · · · ≤
γk ≤ b, be the roots of B(x). By definition of Cauchy index we know that

Ibaρ =

k∑
i=1

(
sign(ρ(γ−i ))− sign(ρ(γ+i ))

2

)
.

The roots γ of B can be characterized into three types: type-1 are those for which the fraction on the RHS is positive,
type-2 are those for which the fraction is negative, and type-3 are those for which it is zero. We have to show that
−VarA,B [a, b] counts these types correctly, namely for type-1 roots VarA,B drops by one, for type-2 roots the sign
VarA,B increases by one, and for type-3 root VarA,B does not change.

Consider the sturm sequence (A,B,A2, . . . , Ak) for (A,B). We have the following three cases correspoding to
the three types of roots of B:

1. For a type-1 pole the sign of A,B is the same to the left of γ and becomes the same to the right of γ. Thus
VarA,B increases by one across γ.

2. For a type-2 pole the sign of A,B is different to the left of γ and becomes the same to the right of γ. Thus
VarA,B decreases by one across γ.

3. For a type-3 pole the sign of A,B is the same to the left of γ and remains the same to the right of γ. Thus
VarA,B does not change across γ; note the signs of A and B might flip, but they flip in the same way.
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