
Real Root Isolation for Non-linear Functions

The approaches that we have seen so far, strongly rely on the fact that the input is a polynomial, i.e., has some
algebraic structure. However, occasionally we may want to isolate the real roots of a continuos function f : R → R,
which is given to us as a black box that we can query at a value x ∈ R and get f(x) in return. How do we isolate the
real roots of f in this model? From the continuity of f , we know that if for a < b, f(a)f(b) ≤ 0 then [a, b] has odd
number of roots of f . Moreover, if we knew that f was monotone in the interval [a, b] then there must be a unique
root of f in [a, b]. Thus, if we can check whether f is monotone in an interval I then by looking at the signs at the
endpoints of I , we can determine whether or not f has a root in I . One way to check whether f is monotone on I , is to
check if I has no critical points of f , i.e., 0 6∈ f ′(I), where f ′(I) := {f ′(x)|x ∈ I}; similarly, define f(I). Thus what
we want, in general, is an estimate on f(I), since getting the exact range may be costly. For this purpose we relax
our representation of f to an interval extension of f : f takes as input an interval I and returns an interval such that
f(I) ⊆ f(I). We additionally assume that if a sequence of intervals I0 ⊃ I1 ⊃ I2 ⊃ · · · converges to a point α,
then the sequence of intervals f(I0) ⊃ f(I1) ⊃ f(I2) converges to f(α). Once we have such a function, the
algorithm is straightforward.

INPUT: f and an input interval I0.
OUTPUT: Isolating intervals for roots of f in I0.
1. Initialize a queue Q := I0.
2. While Q is not empty do

Remove an interval I from Q.
If 0 6∈ f(I) discard I .
Else If 0 6∈ f ′(I) then

If f changes sign at endpoints of I then output I else discard I .
Else

Subdivide I and put the two halves onto Q.

Let C0 ≡ 0 6∈ f(I) and C1 ≡ 0 6∈ f ′(I). Why does the algorithm terminate? Let’s assume that f is square-
free, i.e. the roots of f and f ′ are distinct. If the algorithm does not terminate, then there is an infinite sequence of
intervals I0 ⊂ I1 ⊂ I2 · · · such that 0 ∈ f(Ik) and 0 ∈ f ′(Ik), k = 0, 1, 2, . . . ,. Since the intervals are converging
to a point α, the assumption on the box-functions imply that f(α) = f ′(α) = 0, giving us a contradiction. The
algorithm above works for analytic functions, in general, but from now on we study the complexity of the algorithm
for the case of polynomials. We begin with how to compute the box-function.

1 Box Functions for Polynomials
Let f(x) =

∑n
j=0 ajx

j , aj ∈ R. Given an interval I , a natural way to compute f(I) is to compute
∑n
j=0 ajI

j , but
that does Ij mean, what does ajIJ mean? The correct way to interpret these terms is to do interval arithmetic, or
the arithmetic of overestimation. Given two intervals [a, b], [c, d] ⊂ R, define the following basic ring operations over
intervals as follows:

1. Addition: [a, b] + [c, d] = [a+ c, b+ d].

2. Subtraction: [a, b]− [c, d] = [a− d, b− c].

3. Multiplication: [a, b]× [c, d] = [min {ac, ad, bc, bd} ,max {ac, ad, bc, bd}]. Powering [a, b]2 in our setting is to
be interpreted in the sense of multiplication above and not as [min

{
0, a2, b2

}
,max

{
a2, b2

}
].
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4. Negation: −[a, b] = [−b,−a].

5. With any a ∈ R, we associate the interval [a, a].

Interval arithmetic is commutative, and associative for both addition and multiplication. However, distributivity only
holds in the following weak sense: I(J +K) ⊂ IJ + IK, with equality holding when either I ∈ R, or J,K have the
same sign.

Now it is clear what we mean by
∑n
j=0 ajI

j . Let’s call this form as the standard form. But as is the case in
polynomial evaluation, we always prefer the Horner’s evaluation over the standard evaluation. The Horner Form
of interval extension does the Horner evaluation, but with intervals instead of x. It is interesting to note that when
evaluating functions over intervals, the choice of expression makes a difference. For example, x2 − x, for x = [0, 2],
gives us using the standard form [0, 4]−[0, 2] = [−2, 4] and using Horner’s form [0, 2]([0, 2]−[1, 1]) = [0, 2][−1, 1] =
[−2, 2], which is slightly better estimate on the range. Another form is called the mean-value form is based upon the
mean value theorem:

f(I) ⊆ f ′(I)(I −m) + f(m)

where m is the midpoint of I , and the interval extension of f ′ uses the Horner form. However, we will use a different
form which uses the slope function of f w.r.t. an interval I: for all x ∈ I , we know that there exists a function g(x)
such that 1

g(x) =
f(x)− f(m)

(x−m)
.

It is not hard to show that in fact

g(x) =

n∑
j=1

f (j)(m)

j!
(x−m)j−1.

The centered form or slope form is given as

f(I) := f(m) + g(I)(I −m) (1)

where the interval extension of g uses the Horner form. We can derive an upper bound on the width of the interval
returned by centered form, by using the observation that the Horner form is never worse than the standard form we
know that

f(I) ⊆ f(m) +

n∑
j=0

f (j)(m)

j!
(I −m)j .

There is a simpler way to write the expression above, using the fact that (I −m) = w(I)/2[−1, 1], and a[−1, 1]j =
a[−1, 1] = |a| [−1, 1]:

f(I) = f(m) +

n∑
j=0

∣∣∣∣f (j)(m)

j!

∣∣∣∣ (w(I)2

)j
[−1, 1]

= f(m) + [−1, 1]
n∑
j=0

∣∣∣∣f (j)(m)

j!

∣∣∣∣ (w(I)2

)j
.

(2)

Therefore, the algorithm terminates when either

|f(m)| ≥
n∑
j=0

∣∣∣∣f (j)(m)

j!

∣∣∣∣ (w(I)2

)j
(3)

or

|f ′(m)| ≥
n∑
j=0

∣∣∣∣f (j+1)(m)

j!

∣∣∣∣ (w(I)2

)j
. (4)

We now derive suitable converse for these conditions to hold.
1Note that this looks similar to the mean-value theorem. The difference is that g contains all the lower order terms as well, whereas the

mean-value theorem only contains the term corresponding to the first order, namely the derivative.
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2 The Integral Bound
A converse has to roughly state that if the w(I) is small enough then either C0 or C1 holds. Our hope is that for
intervals not containing a root of f , C0 will hold and for intervals containing a root there is a sufficiently small
neighbourhood where f is monotone and so C1 will hold. Suppose there is a function G : R→ R≥0 such that if

w(I)G(x) ≤ 1 (5)

for some x ∈ I then either C0 or C1 holds. Call such a function a stopping function. Thus a stopping function looks
locally and can determine if C0 or C1 holds. The crucial observation is that the size of the subdivision tree T can be
bounded in terms of G(x):

|T | ≤ 2max

{
1, 2

∫
I0

G(x)dx

}
. (6)

To see this, again consider a leaf I of T and let J be the interval associated with its parent. Since C0 and C1 fail to
hold at J , it follows from (5) that for all x ∈ J , w(J)G(x) = 2w(I)G(x) ≥ 1. This implies that

2

∫
I

G(x)dx ≥ 2w(I)min
x∈I

G(x) ≥ 1.

Since the leaves I1, I2, . . . , Ik form a partitioning of I0, it follows that

2

∫
I0

G(x)dx =

k∑
j=1

2

∫
Ij

G(x)dx ≥ k.

Since T is a binary tree the number of internal nodes cannot exceed k, giving us (6).
Now we have to find an appropriate stopping function. Basically, the stopping function has to capture the intuition

that if there is an x ∈ I such that w(I) is smaller than c|x− α|, for some constant, then C0 holds, where α represents
any root of f ; a similar constraint, would be implied if α is replaced by α′, a critical point of f . Thus a first choice
for stopping function is the inverse of the distance from x to a root nearest to x. But instead of focussing on a nearest
root, we will take the following amortized sum:

S(x) :=

n∑
i=1

1

|x− αi|
. (7)

Why is this function interesting? Why does it yield a stopping function? If 2w(I)S(x) ≤ 1 then

n∑
i=1

2

|x− αi|
≤ 1

w(I)

which implies that for all αi, 2w(I) ≤ |x − αi|, i.e. the nearest root to x is at least 2w(I) distance away. Since
|m− x| ≤ w(I)/2 this implies that

|αi −m| ≥ |αi − x| − |x−m| = |αi − x| −
w

2
≥ 3

4
|αi − x|.

Taking the inverse and summing it for i = 1, . . . ,m, we obtain that

S(m) ≤ 4

3
S(x).

Since 2wS(x) ≤ 1, it follows that

wS(m) ≤ 2

3
. (8)

But what is the relation between S(x) and the terms appearing in the RHS of (3)? Clearly, S(x) is an upper bound on
|f ′(x)/f(x)|. Furthermore, we also have the following inequality∣∣∣∣f (j)(x)f(x)

∣∣∣∣ ≤ S(x)j .
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This is not hard to see since∣∣∣∣f (j)(x)f(x)

∣∣∣∣ =
∣∣∣∣∣∣

∑
1≤i1<i2<···<ij≤n

1

(x− αi1)(x− αi2) . . . (x− αij )

∣∣∣∣∣∣ ≤ (S(x))
j
.

Thus for any x ∈ R
n∑
j=1

∣∣∣∣f (j)(x)j!f(x)

∣∣∣∣ (w/2)j ≤ n∑
j=1

(S(x)w/2)j

j!
.

In particular, for x = m we obtain from (8) that

n∑
j=1

∣∣∣∣f (j)(m)

j!f(m)

∣∣∣∣ (w/2)j ≤ n∑
j=1

1

3jj!
≤ e1/3 − 1 ≤ 1.

To summarize we have shown that if there exists x ∈ I such that 2S(x)w(I) ≤ 1 then C0 holds. Define S′(x) as in
(7) but w.r.t. the roots of f ′; then we can similarly show that if 2S′(x)w(I) ≤ 1 then C1 holds. Therefore,

G(x) := 2min {S(x), S′(x)}

is a stopping function.

2.1 Size of Subdivision Tree
The beauty of the integral bound, (6), is that instead of looking at the partitions corresponding to the intervals at the
leaves, which is what we did in our earlier analyses of Sturm’s method and the Descartes method, we have expressed
the bound w.r.t. I0, therefore, for analysing the bound we can now break I0 into a partition covenient to us.

In this section, we we will show:

LEMMA B ∫
I0

G(x)dx = O(n(L+ r + log d)) (9)

where r is the number of real roots in I0.

Towards proving Lemma B, we first bound the integral on G(x) by the sum of two integrals on S(x) and S′(x),
respectively. Suppose {I1, I ′1} is a partition of I0 into two sets. Clearly, we have the inequality∫

I0

G(x)dx ≤
∫
I1

S(x)dx+

∫
I′1

S′(x)dx. (10)

This inequality is trivial if any of the integrals on the right hand side is infinite. Finiteness of the integrals on the right
hand side is equivalent to ensuring that I1∩V and I ′I∩V ′ are both empty sets. We will ensure this and some additional
properties in forming the partition {I1, I ′1}.

Assume I0 ∩ V = {α1, . . . , αr} and

a < α1 < α2 < · · · < αr < b

where I0 = [a, b]. We may also define α0 := a and αr+1 := b.
For each root α ∈ I0, we define the interval Iα as the intersection of real axis with the disc centered at α and

radius equal to half the distance from α to the nearest critical point; note that two such intervals do not overlap, since
by Rolle’s theorem we have a critical point between any two roots in I0. Finally, we define the sets I1 and I ′1:

I ′1 :=
⋃

α∈I0∩V
Iα

and I1 is just the closure of I0 \ I ′1. It is easy to see that I ′1 ∩ V ′ = ∅, I1 ∩ V = ∅ and thus the right hand side of
(10) is finite.

4



¶1. Bounds on two basic integrals We will reduce our integrals to one of the two forms here:

LEMMA 1. Let α ∈ C and J = [r, s] ⊆ I0. Assume α /∈ J .
(Re) If α is real, then ∫

J

dx

|α− x|
= ln

∣∣∣∣α− sα− r

∣∣∣∣δ(J>α) ≤ L+ 1− lnmin {|α− r|, |α− s|} (11)

where δ(P ) ∈ {+1,−1} is the Kronecker symbol: for any predicate P , δ(P ) = +1 if P holds, and δ(P ) = −1
otherwise.
(Im) If α is not real, α = Re(α) + iIm(α), then∫

J

dx

|α− x|
= ln

(
(s− Re(α)) + |α− s|
(r − Re(α)) + |α− r|

)
≤ ln 4

∣∣∣∣ (α− s)(α− r)Im(α)2

∣∣∣∣
≤ 2(2 + L− ln |Im(α)|).

(12)

Proof. (Re) From basic calculus we verify that (see [1, p. 162])∫ s

r

dx

|α− x|
= ln

∣∣∣∣α− sα− r

∣∣∣∣δ(J>α) .
If J > α then

∫ s
r
dx/|α − x| = ln(s − α) − ln(r − α). If J < α, we reverse the roles of r and s. But lnmax{|α −

s|, |α− r|} ≤ 1 + L, which gives us the desired upper bound in (11).
(Im) Writing α = Re(α) + iIm(α) = R+ iI , we have [1, p. 162]:∫ s

r

dx

|α− x|
= arcsinh

(
s−R
|I|

)
− arcsinh

(
r −R
|I|

)
.

Since arcsinh(x) = ln(x+
√
1 + x2) we conclude that∫ s

r

dx/|α− x| = ln

(
(s−R) + |α− s|
(r −R) + |α− r|

)
where |α− s| =

√
(R− s)2 + I2. The numerator ln((s−R) + |s− α|) ≤ ln(2|α− s|), and the denominator

(r −R) + |α− r| = |I|2

|α− r| − (r −R)
≥ |I|2

2|α− r|
.

Thus

ln

(
(s−R) + |α− s|
(r −R) + |α− r|

)
≤ ln 4

∣∣∣∣ (α− s)(α− r)I2

∣∣∣∣ .
Since |α− s|, |α− r| ≤ 2L+1, we obtain

ln

(
(s−R) + |α− s|
(r −R) + |α− r|

)
≤ 2((2 + L)− ln |I|)

as claimed in (12). Q.E.D.

¶2. Bounding the integral over I1 We bound the first integral on the RHS of (10) as follows:∫
I1

S(x)dx = O(n(L+ log n)). (13)
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To show this, we express the integral as a sum over all roots α in V :∫
I1

S(x)dx =
∑
α∈V

∫
I1

dx

|x− α|
. (14)

The summand corresponding to a particular α can be bounded using one of the two cases in Lemma 1:
(Re) Suppose α ∈ R. Let Iα = [α−, α+] be the interval associated with α. Thus (α−α−) = (α+−α) = |α−α∗|/2
whereα∗ is a critical point nearest toα. Writing I0 = [a, b], we can bound the summand with the help of Lemma 1(Re):∫

I1

dx

|x− α|
≤

∫
I0\Iα

dx

|x− α|

=

∫ α−

a

dx

α− x
+

∫ b

α+

dx

x− α
≤ (L+ 1− ln |α− α−|) + (L+ 1− ln |α− α+|)
= 2(L+ 1)− 2 ln |α− α−|

= 2(L+ 1)− 2 ln
|α− α∗|

2
.

Summing over all real roots α ∈ V , yields 2d(L + 1) − 2 ln
∏
α∈V |α − α∗|/2, which is equal to O(n(L + log n))

from Mahler-Davenport.
(Im) Suppose α /∈ R. Then Lemma 1(Im) says∫

I1

dx

|x− α|
≤
∫
I0

dx

|x− α|
≤ 2(2 + L− ln |Im(α)|).

Again, summing over all non-real α ∈ V and using the Mahler-Davenport bound we get that (14) is bounded by
O(n(L+ log n)).

Cases (Re) and (Im) imply the desired bound in (13).

¶3. Bounding the integral over I ′1 It remains to bound the second integral on the RHS of (10) as follows:∫
I′1

S′(x)dx = O(nr). (15)

This integral is written as a double summation, summing over all critical points α′ ∈ V ′, and summing over all
α ∈ V ∩ I0: ∫

I′1

S′(x)dx =
∑
α′∈V ′

∫
I′1

1

|x− α′|
dx

=
∑
α′∈V ′

∑
α∈V ∩I0

∫
Iα

1

|x− α′|
dx.

(16)

Fix a particular root α and critical point α′. Write Iα = [α−, α+], and let α∗ be a critical point nearest to α; since α
is equidistant from α+ and α−, we express this distance as |α− α±|. There are again two cases to consider.
(Re’) Suppose α′ is real. Then Lemma 1(Re) yields∫

Iα

1

|x− α′|
dx = ln

∣∣∣∣α′ − α+

α′ − α−

∣∣∣∣δ(Iα>α
′)

. (17)

By the triangular inequality

|α′ − α±| ≥ |α′ − α| − |α− α±| = |α′ − α| − |α− α
∗|

2
. (18)
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Since α∗ is a critical point nearest to α it further follows that

|α′ − α±| ≥ |α′ − α| − |α− α
′|

2
= |α′ − α|/2. (19)

Similarly, we can show |α′ − α±| ≤ 2|α′ − α|. Thus

|α′ − α|
2

≤ |α′ − α±| < 2|α′ − α|. (20)

Note that these inequalities are independent of the fact that α′ ∈ R. Applying these inequalities to the RHS of (17) we
obtain that the integral on the LHS is at most ln 4.
(Im’) Suppose α′ 6∈ R. Here, we recognize three subcases (i) Iα < Re(α′), (ii) Iα > Re(α′), and (iii) Re(α′) ∈ Iα.
For the first two subcases, we know from [1] that∫

Iα

dx

|x− α′|
≤ ln 2

∣∣∣∣α′ − α+

α′ − α−

∣∣∣∣δ(Iα>Re(α))

.

Furthermore, the bounds from (20) imply that the integral above is bounded by ln 8. In the third subcase, Lemma 1(Im)
yields ∫

Iα

dx

|x− α′|
≤ ln 4

∣∣∣∣ (α′ − α+)(α′ − α−)
Im(α′)2

∣∣∣∣ .
Applying the upper bound from (20), we further get∫

Iα

dx

|x− α′|
< ln 16

|α′ − α|2

|Im(α′)|2
.

From the triangle inequality it follows that |Im(α′)| ≥ |α′ − α| − |α − Re(α′)|. Since Re(α′) ∈ Iα, we further
have |Im(α′)| ≥ |α′ − α| − |α − α±|, which we know from (18) and (19) is greater than |α′ − α|/2. Thus we have
|Im(α′)| ≥ |α′ − α|/2.

Therefore the integral
∫
Iα
dx/|x− α′| in subcase (iii), hence in all subcases, is at most ln 64.

Thus cases (Re’) and (Im’) imply that each integral in the RHS of (16) is at most ln 64. If r is the number of real
roots in I0 then we have ∫

I′1

S′(x)dx < (n− 1)r ln 64.

This proves (15).

References
[1] M. Burr and F. Krahmer. SqFreeEVAL: An (almost) optimal real-root isolation algorithm. J. Symbolic Computa-

tion, 47(2):153–166, 2012.

7


	Box Functions for Polynomials
	The Integral Bound
	Size of Subdivision Tree


