Homework 3

Assigned: 13th April; Due Date: 27th April

Discussion is encouraged, but please acknowledge it and write your answers independently. Also, cite any sources

that you have referred to.
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Let A, B € R[z]. Show that deg(GCD(A, B)) > k iff all the principal subresultant coefficients from 0, ...,k —1
are zero.
Let ag, ..., ax be a sequence of k£ + 1 real numbers such that
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Consider the £ — 1 numbers
bj :=ar —2cosfar_1 +ar—2, j =2,...,k.

Show that if § € (77, 27] then at least one of b;’s is negative.

Hint: Prove by contradiction. What if all b;’s are positive?
Given f € Z[z,y], show that deg(GCD(f, f,)) > 0iff deg(GCD(f, fz)) > 0.
Show that f € Z[z, ], with degree d, is homogeneous iff f(Ax, \y) = A\?f(z, ), for a non-zero constant \.

Given two polynomials f,g € Z[z,y|, with deg(f) = m and deg(g) = n and non-zero constant terms, de-
fine the homogeneous polynomials F(z,y, z) := 2™ f(x/z,y/2) and G(z,vy, z) := z"g(x/z,y/z). Show that
res,(F, Q) is a homogeneous polynomial of degree mn.

Given a point p € R? the central reflexion of a point (z,y) € R? w.r.t. p is the point (2, y’) such that p is the
midpoint of the line segment joining (x,y) and (z’,y’). A point p is called center of a curve f, if for all points
(x,y) € R?, f(z,y) = M\f(a',y), where (2, 7’) is the central reflexion of (x,y) w.r.t. p and A # 0.

(a) What is a center for a line in the plane?

(b) Show that the concept of a center is affinely invariant.

(c) Give a characterization for origin to be a center of a curve f.

Argue that if a curve f has a vertical asymptote at 2 = « then « is a root of lead, (f).



