
Euclid’s Algorithm

In this lecture, we study the algebraic complexity of the classic Euclid’s algorithm for polynomials, and the asymp-
totically fast half-gcd approach. This lecture is based upon [1, Chap. 2].

1 Euclid’s Algorithm
Given two polynomialsP0, P1 ∈ R[x], such that deg(P0) > deg(P1). The Euclidean remainder sequenceP0, P1, . . . , Pk,
k ≥ 1, for these two poltnomials is given by the recurrence:

Pi+1 := Pi−1 −QiPi, (1)

where deg(Pi+1) < deg(Pi) and Pk divides Pk−1. The claim is that Pk = GCD(P0, P1), this follows from the
observation that

GCD(Pi−1, Pi) = GCD(Pi, Pi+1).

Define Qi := quo(Pi−1, Pi), Pi+1 := rem(Pi−1, Pi), and ni := deg(Pi). Note that deg(Qi) = ni−1 − ni. We
introduce the convenient notation of matrices to express the recursion. In this terminology, (1) can be expressed as(

Pi

Pi+1

)
=

(
0 1
1 −Qi

)(
Pi−1
Pi

)
. (2)

For succinctness, we will express the matrix on RHS as 〈Q i〉. and recursively(
Pi

Pi+1

)
= 〈Qi〉 · · · 〈Q2〉〈Q1〉

(
P0

P1

)
.

Define the 2× 2 matrix Mij , 0 ≤ i < j < k, as the matrix that transforms (Pi, Pi+1) to (Pj , Pj+1). Given a number
k, let MI(k) denote the regular matrix that takes (P0, P1) to the pair (PI(k), PI(k)+1), where I(k) is the index such
that

deg(PI(k)) ≥ k > deg(PI(k)+1).

We will often say that I(k) is the index that straddles k. We would sometimes use the explicit form MP0,P1

I(k) to
emphasize the polynomials involved; if, however, the polynomials are clear from the context then we would use the
simpler notation.

¶1. Extended Euclidean Algorithm From the extended euclidean algorithm it follows that

M0j =

(
sj tj
sj+1 tj+1

)
.

¶2. Algebraic Complexity The algebraic cost of one step in Euclid’s algorithm is O(M ′A(n)), where M ′A(n) is
the algebraic cost of multiplying two degree n polynomials; using the FFT-based algorithm, we know that M ′A(n) =
O(n log n). Why is this? Using the standard high-school algorithm, we can compute the quotient Qi in time O(n).
Thus the cost of computing Pi+1 is dominated by the cost of computing the product PiQi. Also, k ≤ n1, as the degree
sequence (n0, n1, n2, . . . , nk) is strictly decreasing. Thus the algebraic cost of the algorithm is O(M ′A(n)n); more
precisely, it is O(M ′A(n1)n1), that is independent of the degree of P0.

We next see an asymptotically fast version that takes O(M ′A(n) log n) time.

1



2 Asymptotically Fast GCD Algorithm
The improvement is based upon the following observation: suppose we want to store the euclidean remainder sequence
(P0, . . . , Pk) (say for the purpose of evaluation); then we would need roughly

k∑
i=0

ni ≤
n∑

i=1

i = n(n− 1)/2

space to store the coefficient sequence; but this is can be reduced by observing that the quotients take less space as

k∑
i=1

deg(Qi) =

k∑
i=1

(ni−1 − ni) = n0 − nk ≤ n0 = n.

Thus we should focus on computing the quotients. 1

To get the desired improvement of O(M ′A(n) log n) it is clear that we have to go from the pair (P0, P1) to a pair
(Pi, Pi+1) such that

ni ≥ n/2 ≥ ni+1

i.e., reduce the degree by half rather than by one. If this could be done, then we would clearly need log n steps to find
the gcd. With this in mind, we define the half-gcd problem (HGCD): given P0, P1 ∈ R[x] as above, compute a matrix
M := hGCD(P0, P1) such that if (

P2

P3

)
= M

(
P0

P1

)
then deg(P2) ≥ n/2 > deg(P3), i.e., the degrees of P2 and P3 straddle n/2.

Given two polynomials P0, P1, suppose we could compute hGCD(P0, P1) in time T ′(n) then we claim that we can
compute their gcd in roughly the same time.

co-GCD
INPUT: Two degree polynomials P0P1 ∈ R[x].
OUTPUT: A matrix M such that(

GCD(P0, P1)
0

)
= M

(
P0

P1

)
.

1. Compute M1 := hGCD(P0, P1).
2. Recover P2, P3 using M1:(

P2

P3

)
= M1

(
P0

P1

)
.

3. If P3 = 0 then return M1 else
Do one Euclid-step to get P3, P4 using (2). Let 〈Q〉 be the matrix involved.

4. If P4 = 0 then return 〈Q〉M else
Recursively compute M2 := GCD(P3, P4).
Return M2〈Q〉M1.

¶3. Complexity: Let G(n) be the complexity to compute the co-GCD, and hGCD(n) the complexity to compute
hGCD. Then we have the following recursion:

G(n) = hGCD(n) +O(M ′A(n)) +G(n/2).

Assuming that hGCD(n) = Ω(M ′A(n)), and hGCD(αn) ≤ αhGCD(n), for α > 0, it follows that

G(n) = O(hGCD(n)).

1We have only shown that the quotient sequence takes less space, but it is not clear that the bit-size of the coefficients is smaller or comparable
to the bit-size of the coefficients in the remainde sequence. We defer this question till later.

2



2.1 Polynomial Half-GCD
Let A,B ∈ R[x] be two polynomials s.t. deg(A) > deg(B). Let

A0 := Aquoxk and A1 := Amodxk;

similarly, define B0 and B1; basically, we have A = xkA0 + A1. The idea behind the half-gcd algorithm is that it is
possible to compute a substantial number of the quotients from the quotient sequence for A0 and B0. The follwing
lemma makes it precise:

LEMMA 1. For two polynomials, A,B, n = deg(A) > deg(B), and for any k ∈ {0, 1, . . . , n}, define A0, B0 as
above. Then

MA,B
I((n+k)/2) = MA0,B0

I((n−k)/2).

That is, the quotient sequence (A,B) agrees with the quotient sequence of (A0, B0) until the point where the degree
in the remainder sequence of the latter pair falls below deg(A0)/2.

Proof. The proof is illustrated in Figure 1. Basically, in Pi+1 we loose ni−1−ni coefficients common to Pi−1 and
Pi; in Figure 1, this is shown by the red line segments at level i, , corresponding to the quotient Qi, which is equal to
the blue line segment at level i+ 1. Since we are loosing equal number of terms from the front and the end, we do not
have any common coefficients when deg(Pi) < k + deg(A0)/2 = (n+ k)/2.

Q.E.D.

n = n0

kA0

B0n1

n2

n3

n4

n5

n6

P0 := A

P1 := B

P2

P3

P4

P5

P6

deg(A0)
2

P7n7

0

Q1

Q2

Q3

Q4

Q5

Q6

Figure 1: Illustration of the remainder sequences of (A,B) and (A0, B0); the coefficients common to both sequences
are shown in bold black-line segments.

LEMMA 2. Let R := AmodB and R0 := A0 modB0. If deg(A) − deg(B) ≤ deg(B) − k, or equivalently
deg(A0) < 2 deg(B0), then

AquoB = A0 quoB0

and R and xkR0 agree in all coefficients of degree ≥ k + deg(A)− deg(B).

Proof. The condition implies that the quotient AquoB, which has degree deg(A)−deg(B), is dependent only on
the first deg(B) − k coefficients of B, i.e., only on B0. Since deg(B) − k ≥ deg(A) − deg(B), the coefficients in
the remainder corresponding to the excess coefficients, namely deg(B) − k − (deg(A) − deg(B)), in B0 contribute
to the remainder; the degrees of the coefficients are from deg(B)− 1 down to deg(B)− (2 deg(B)− k− deg(A)) =
deg(A)− (deg(B)− k); these coefficients in the remainder are thus not affected by B1 and A1. Q.E.D.

We can now describe the half-gcd algorithm in detail:

3



Half-GCD Algorithm: HGCD(A,B)
INPUT: A,B ∈ R[x], n := deg(A) > deg(B).
OUTPUT: The matrix MA,B

I(n/2).
1. m← deg(A)/2.

If deg(B) < m then return I2.
2. R← hGCD(A0, B0).(

A′

B′

)
← R

(
A
B

)
.

3. If deg(B′) < m then return R.

4.
(
C
D

)
← 〈Q〉

(
A′

B′

)
.

5. k ← 2m− deg(C).
/ We want deg(C0)/2 ≥ deg(C)−m,
/ i.e., deg(C)− k ≥ 2(deg(C)−m) or k ≤ 2m− deg(C).

6. S ← hGCD(C0, D0).
7. Return S〈Q〉R.

We have the following bound on its complexity:

hGCD(2m) = 2hGCD(m) +O(M ′A(2m)),

which gives us the result hGCD(m) = O(M ′A(m) logm).
The correctness of the algorithm follows from Lemma 1 and a simple inductive argument; the variables used in the

algorithm are illustrated in Figure 2.

n = 2m
m

n1

A

B

A′

0

B′ = C

D

m
2

B0

A0

kC0

D0

C ′

D′

Figure 2: A run of the half-gcd algorithm.

References
[1] C. K. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University Press, 2000.

4


	Euclid's Algorithm
	Asymptotically Fast GCD Algorithm
	Polynomial Half-GCD


