
Algebraic Curves

What are curves? Generally speaking, a curve is the zero set or variety V (f) of a function f : R2 → R, i.e., the
set of points (x, y) ∈ R2 such that f(x, y) = 0. Figure 1 illustrates some famous curves.

Cissoid of Diocles: (x2 + y2)x = 2y2

Trifolium y4 − y3 + 2x2y2 + 3x2y + x4

Folium of Descartes: x3 + y3 = 3xy

Graphs of trigonometric functions

Figure 1: Some famous curves:

Even though our general description of a curve encompasses both a circle x2 + y2 = 1 and the graphs of the
trigonometric functions, our intuition says that the two are fundamentally distinct. One distinction that is apparent is
that any line in the plane intersects the circle in only finite points (we will see the proof later), whereas the line y = 0
intersects the graph of the trigonometric functions infinitely often. In this lecture, we will focus on curves of the first
kind. These curves are called algebraic curves, since the defining function is usually a bivariate polynomial, which is
an element of the ring Z[x, y].

¶1. Two choices for representation Consider a line ax + by = c in the plane. Clearly, it defines a curve. The
same curve can also be represented as the pair (x(t), y(t)), where x(t) := t and y(t) := (a/b)t − (c/b); that is, we
can directly give the points on the line in terms of a parameter t. Thus there appear to be two ways to represent the
same curve: the implicit form is to define the curve as the zero set of a bivariate polynomial; the parametric form
describes almost all, except finitely many, points on the curve in the form (x(t), y(t)), where t is a parameter. The
implicit form of the unit circle is the familiar equation x2 + y2 = 1. But what is its parametric form? We know
that all points on the unit circle can be described as (cos θ, sin θ), θ ∈ [0, 2π). So this is a valid parametrization.
However, let us be restrictive and aim for a parametric form that doesn’t use trigonometric functions. By making
the substitution t := tan θ/2, it follows that the desired parametrization is

(
1−t2
1+t2 ,

2t
1+t2

)
, where t = (−∞,∞). A
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geometric interpretation of this parametrization is to fix the point (−1, 0) on the circle and consider all the lines `(t)
through it with slope t; each `(t) intersects the circle at precisely one point, and the coordinates of that point can be
obtained by plugging the equation of `(t) = t(x + 1) into the equation of the circle to get x2 + t2(x + 1)2 = 1 and
solve for x in terms of t. Note that we cannot expect x(t), y(t) to be polynomials (Why?).

Though the parametric form has its merits, it has its drawbacks as well: all curves are not “nicely” parametrizable,
where nicely can be interpreted as a rational function of univariate polynomials. The study of parameterized curves
forms the rich field of differential geometry. In this lecture, we restrict ourselves to study curves in the implicit form,
which is the foundation of the field of algebraic geometry.

1 Affine Transforms – Equivalence of Geometry
It is natural to think of two curves as “equivalent” if one can be obtained from the other by a translation of the
coordinates, a rotation of the coordinates, or a scaling. Can we generalize this notion? What if we consider the
set of invertible linear transformations, in addition to translation? We show that certain concepts are invariant under
such transformations, called affine transformations. More precisely, an affine map φ : R2 → R2 is of the form
φ(x) = Ax + t, x ∈ R2, where A is an invertible linear map and t ∈ R2 is a translation vector. Note that the set of
affine transformations is a group under composition; the inverse of Ax + t is the map A−1x−A−1t.

We say two curves f, g are affinely equivalent if there exists an affine map and a scalar λ 6= 0 such that g =
λf(φ(x)); note that scaling by a constant cannot be obtained by an affine transformation.

1. What curves are equivalent to a line y = mx+ b? By the map x→ (x− b)/m, we get that the line is equivalent
to y = x; by mapping y → y + x, we get that the line is equivalent to y = 0. Thus all lines are affinely
equivalent to y = 0, and since affine transformations are invertible under composition, it follows that the set of
lines are affinely equivalent.

2. What curves are affinely equivalent to an ellipse (x/a)2 + (y/b)2 = 1? By the scaling x → ax and y → by, it
follows that all ellipses are affinely equivalent to the circle x2 + y2 = 1.

3. What curves are affinely equivalent to a parabola y2 = 4ax? By scaling x → ax and y → 2ay, it follows that
all parabolas are affinely equivalent to the standard parabola y2 = x.

4. We can similarly show that a general hyperbola (x/a)2 − (y/b)2 = 1 is equivalent to a standard rectangular
hyperbola x2 − y2 = 1.

Thus the notion of affine equivalence helps us reduce the number of different types of curves to look at. But
what properties of the curve remain affinely invariant? Note that the affine map in each of the cases above somehow
maintained the degree of the curve. The degree of a curve f(x, y) =

∑
i,j ai,jx

iyj is the degree of the largest
monomial appearing in the polynomial; from now on, we use d to represent the degree of f . Based upon what we
observed in the examples above, we claim the following:

LEMMA 1. The degree of a curve is affinely invariant.

Proof. Let φ(x) = ((px+ qy + a), (rx+ sy + b)), where ps− rq 6= 0, and f(x, y) =
∑

i,j ai,jx
iyj . Suppose

g = λf(φ(x)) = λ
∑
i,j

ai,j(px+ qy + a)i(rx+ sy + b)j .

Since ps − rq 6= 0, both the linear polynomials (px + qy + a) and (rx + sy + b) are non-zero, and hence deg(g) ≤
deg(f). Similarly, f = λ−1g(φ−1(x) implies that deg(g) ≥ deg(f). Thus deg(f) = deg(g). Q.E.D.

Besides affine equivalence, there’s a nice geometric interpretation of the degree. Note that any line in the plane
meets another line in at most one point, meets a circle in at most two points, meets a hyperbola in at most two points.
It appears that the degree of a curve is an upper bound on the number of intersections of a line with a curve, and indeed
it is almost the case.

LEMMA 2. A line ` intersects a degree d curve f in at most d places, unless it’s a component of the f .
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Proof. Let (x(t), y(t)) be a parametrization of `. Then the points of intersections of `with f are the real roots of the
univariate polynomial g(t) := f(x(t), y(t)) of degree ≤ d, unless g is identically zero. By an affine transformation,
we can assume that ` is the line y = 0. Let f(x, y) = yf0(x, y) + f1(x). Then g = f(x, 0) = f1(x) ≡ 0. Thus
f(x, y) = yf0(x, y), and hence the line y is a component of f . Q.E.D.

Remark: As a consequence of the lemma above, we see that curves such as the graphs of trigonometric functions
cannot be algebraic curves.

In the proof above, we have implicitly assumed that affine maps do not change the intersection pattern of a line
with a curve, and also that the intersection pattern doesn’t depend upon the choice of parameterization of line ` . We
now make this concept more precise.

Let ` be a line which is not a component of f(x, y) and p ∈ R2 be a point common to ` and f . Consider a
parametrization (1 − t)a + tb of `, where a,b ∈ `; suppose p = (1 − t0)a + t0b. Then the intersection number,
I(p, f, `), of the point p is the multiplicity of t0 as a root of the univariate polynomial f((1 − t)a + tb), called the
intersection polynomial, which is the same as the largest power of (t− t0) dividing the intersection polynomial.

From the definition it appears that I(p, f, `) depends upon the choice of the parameterization. We claim that this
is not the case. Suppose ` = (1 − u)c + ud is another paramaterization of ` and let a,b correspond to α, β, resp. in
this parametrization. Then

(1− t)a + tb = (1− t)((1− α)c + αd) + t(1− β)c + tβd

= (1− u(t))c + u(t)d

where u(t) := α − t(α − β). Thus if p corresponds to t0 in the first parametrization, then it corresponds to u(t0) in
the second. Let η(t) := f((1− t)a+ tb) and ψ(u) := f((1−u)c+ud) be the intersection polynomials w.r.t. the two
parameterizations. Then we know that η(t) = ψ(u(t)). Thus, t0 occurs with multiplicity m in η(t) iff u(t0) occurs
with the same multiplicity in ψ(u). Therefore, the multiplicity of a point p common to ` and f is independent of the
choice of parametrization of `.

We further claim that I(p, f, `) is invariant under affine maps. Let φ : R2 → R2 be an affine map. The map φ
takes p → φ(p), and the line ` = (1 − t)a + tb to `′ := (1 − t)φ(a) + tφ(b). However, the curve f is transformed
to f ′ := f(φ−1), because p is on f iff φ(p) is on f ′, which means the domain of f must be transformed by φ−1 (and
not φ). Thus the intersection polynomial of `′ and f ′ is

f ′((1− t)φ(a) + tφ(b)) = f ◦ φ−1((1− t)φ(a) + tφ(b)) = f((1− t)a + tb)

which is the same as f intersecting with `. Thus I(p, f, `) = I(φ(p), f ′, `′).

¶2. Singular Points: Consider the origin, the curve y2 = x3, and any line (t, λt) through the origin. The intersection
polynomial is t2(λ− t), and thus any line through origin intersects the curve at least twice at the origin; the line y = 0
intersects three times. Such points are of considerable interest in our study. The multiplicity of a point p on the curve
f is the smallest value of I(p, f, `) over all lines ` through p. Since p is on f , I(p, f, `) ≥ 1. However, there are
points, such as the origin in our example y2 = x3, for which the multiplicity m is ≥ 2, such points are called singular
points; intuitively, the curve has m branches at p (though this is not always the case). Our definition, however, is not
constructive in nature. Another way to define singular points is as follows: a point p = (a, b) is a singular point if the
smallest non-vanishing monomial in the shifted polynomial f(x+ a, y+ b) has degree at least two. Let’s see why this
is equivalent to our earlier definition. Let f(x+ a, y + b) = Fm + Fm+1 + · · ·+ Fd, where each Fi, i ≥ m ≥ 2, is a
homogeneous polynomial of degree i, and Fm 6≡ 0. Any line through (a, b) can be expressed in the parametric form
(a+ αt, b+ βt), for different choices of (α, β) ∈ R2. Thus the intersection polynomial is

f(a+ αt, b+ βt) = Fm(αt, βt) + Fm+1(αt, βt) + · · · = tm(Fm(α, β) + tFm+1(α, β) + · · · ).

Thus I(p, f, `) ≥ 2 for all lines ` through p. This definition gives us more insight into singular points, however,
computationally it is still not good since it involves doing Taylor shifts in both variables. An easier approach is to look
at Taylor expansion of f at (a, b):

f(x+ a, y + b) = f(a, b) + fx(a, b)x+ fy(a, b)y +
∑
k≥2

1

k!

k∑
i=0

(
k

i

)
∂kf

∂xi∂yk−i
xiyk−i. (1)
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Substitute x = αt, y = βt. For t2 to divide the resulting intersection polynomial, we want the first three terms to
vanish. Thus (a, b) is a singular point of f iff

f(a, b) = fx(a, b) = fy(a, b) = 0. (2)

In fact, (a, b) has multiplicitym iff all the partial derivatives of f of order< m vanish at (a, b). Points with multiplicity
one are called simple points, multiplicity two are called double points, and so on. Our intuition that a point with
multiplicity m has m branches is, however, always not correct. The Maltese cross is a quartic f = xy(x2 − y2) −
(x2 + y2). The partial derivatives are fx = 3x2y− y3 − 2x and fy = x3 − 3xy2 − 2y. Clearly, origin is a singularity
with multiplicity two, but are there two branches of f at origin? If we see the plot of f then we observe that origin is
in fact an isolated singularity; see Figure 2.

(a) (b)

Figure 2: The Maltese cross: (a) The plot in R2; (b) The surface in 3-d, with the contour lines corresponding to the
variety highlighted.

¶3. Tangents: Given a point p = (a, b) on a curve f , a tangent to f at p, roughly speaking, is a first order or linear
approximation to f at p. More precisely, a tangent to f a point p of multiplicitym is a line ` such that I(p, f, `) > m.
How do tangents look like at simple points, double points etc.? Consider a simple point first. From the Taylor
expansion at p (see (1)) it follows that the parametrized line (a + αt, b + βt) is a tangent iff fx(p)α + fy(p)β = 0.
Thus the equation of tangent at a simple point (a, b) is given as

(x− a)fx(p) + (y − b)fy(p) = 0.

Another way to interpret this is that the tangent is orthogonal to the gradient vector ∇f := (fx, fy) at a simple point.
Let’s consider the case when p has multiplicity m ≥ 2. We know that the expansion of f(x+ a, y + b) is of the form

Fm + Fm+1 + · · ·

where Fi is a homogeneous polynomial in x, y of degree i. For a line (a + αt, b + βt) to have a multiplicity of
intersection greater than m at (a, b) we want that Fm(α, β) = 0. Since Fm is a degree m homogeneous polynomial,
we know that it can be factored into linear forms

Fm(x, y) =

m∏
i=1

(aix+ biy).
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where ai, bi ∈ C. Thus Fm(α, β) = 0 iff α/β = −bi/ai for some i. The equations of the m tangents at (a, b) are thus
given as

(x− a)ai + (y − b)bi = 0.

Note, however, only the tangents with ai, bi ∈ R are in the plane R2. Also, each tangent occurs with a multiplicity,
namely the multiplicity of (ai, bi) in the factorization of Fm. Points with all m tangents distinct are called ordinary
points. Let us look at the tangents to the trifolium y4 − y3 + 2x2y2 + 3x2y + x4 at origin. The lower order terms are
3x2y− y3 = y(3x2 − y2) = y(

√
3x+ y)(

√
3x− y). Thus we have three distinct tangents at origin; see Figure 3. For

the Maltese cross, the tangents at origin have imaginary coefficients, (x ± iy), and hence we do not see any branch
of f at the origin in the real plane. This example highlights the fact that we should not always expect branches of the
curve to meet at a singularity; this unintuitive phenomenon occurs because we’re looking at the variety in R2.

Figure 3: The Trifolium and its three tangents at the origin.

2 Topology of Curves
Our overall aim in these lectures is the following: given an algebraic curve in implicit form f(x, y) = 0, determine
a “good approximation” of how the curve looks in the plane R2. What does it mean to have a good approximation?
What does it mean to have an approximation to V (f)? We first describe what we mean by an approximation, and then
what we mean by a good approximation.

Our aim can be described in general as follows: given a set X ⊆ R2 we want to compute a set Y ⊆ R2 such that
the two are related by some “nice” function γ : X → Y . Our intuitive notion of ε-approximation is the following: for
every point x ∈ X there is a point y ∈ Y such that ‖x− y‖ ≤ ε. But is this sufficient? Not really, because there may
be points in Y that are not ε-close to any point in X . Thus we also desire that every point in Y is ε-close to some point
in X . But this notion is precisely captured by the notion of Haussdorf distance between two sets:

dH(X,Y ) := max

{
sup
x∈X

inf
y∈Y
‖x− y‖, sup

y∈Y
inf
x∈X
‖x− y‖

}
. (3)

Our notion of ε-approximation then means that dH(X,Y ) ≤ ε. It may appear that this notion is sufficient for a good
approximation. But ε-close does not guarantee that the shapes of the two sets is the same; see Figure ??. We next
describe what properties should the mapping γ : X → Y possess. The proper concept to address these questions is
the notion of topology, since topology is the study of properties of objects under transformations independent of the
underlying metric.
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2.1 Which notion of Topology?
Before we proceed, we need some basic notions from Topology. An open set S ⊆ R2 is a set such that for all points
p ∈ S, there is an ε > 0 small enough such that the disc centered at p with radius ε is contained in S. Given a set
X ⊆ R2, a subset Z ⊆ X is said to be open w.r.t. X , if there exists an open set S ⊆ R2 such that Z = S ∩ X .
For example, if X = [0, 1) then [0, 1/2) is open, (0, 1/2) is open, but (0, 1/2] is not open. A map γ : X → Y is
continuous if for every set B ⊂ Y open w.r.t. Y there is a set A ⊂ X open w.r.t. X such that γ(A) = B.1

Coming back to our Homeomorphism
Isotopic

2.2 Locating Critical Points
To detect the correct topology of f we roughly do the following: Imagine a vertical line sweeping the input box from
left to right. This line intersects the curve at some points. As we sweep continuously, these points trace the arcs of our
curve. Most of the time during the sweep, arcs continue in the direction of the sweep without meeting, except in two
cases:

1. the sweep-line becomes a vertical asymptote to the curve (in which case two arcs join); and

2. the sweep-line crosses a singularity, in which case the arcs change their vertical ordering.

This algorithm is essentially the Bentley-Ottmann sweep algorithm for planar line segments. One essential ingredient
is to find the two types of points: namely, where the curve has vertical asymptote, and its singularities.

Let us start with how to find critical points, that is, points (α, β) ∈ R2 such that f(α, β) = fy(α, β) = 0. Another
way to think about this is that we want to find a common root to the two univariate polynomials f(α, y) and fy(α, y).
We know from the theory of resultants that the two polynomials have a common root if res(f(α, y), fy(α, y)) = 0.
We could have performed this test, but the problem is that we do not know α. What if we compute resy(f, fy) ∈ Z[x],
i.e., the resultant of f and fy treating them as polynomials in y with coefficients in Z[x], and substitute x = α? Is
resy(f, fy)(α) = 0? It is almost true that α is a root of the univariate polynomial resy(f, fy) modulo some caveats.

¶4. Resultants of Bivariate Polynomials Let f, g ∈ Z[x, y] be such that degy(f) = m and degy(g) = n. Treat
f, g as polynomials in y with coefficients in Z[x]. The gcd of f, g is defined as

GCD(f, g) = GCD(cont(f), cont(g))GCD(prim(f), prim(g)). (4)

Note that the content is in Z[x]2. From the univariate setting, we know that the resultant of two univariate polynomials
is zero iff they have a non-trivial gcd. Can we say something similar for bivariate polynomials? For instance, can
we say resy(f, g) ≡ zero iff deg(GCD(f, g)) > 0? Consider the two polynomials f = (x3 + y3) ∗ (x − 1) and
g = (x+y+1)∗(x−1). Clearly, they have a non-trivial gcd, but their resultant w.r.t. y is ...... Since we are treating f, g
as polynomials in y with coefficients in Z[x], what we can say is that resy(f, g) ≡ zero iff degy(GCD(f, g)) > 0. The
argument is essentially the same as in the univariate case: degy(GCD(f, g)) ≥ k iff there exists two polynomials P,Q,
degy(P ) ≤ n − k and degy(Q) ≤ m − k such that fP + gQ = 0. Thus, resy(f, g) ≡ 0 iff degy(GCD(f, g)) > 0.
3 Thus to get a non-trivial resultant, we should assume that f, g are relatively prime, i.e., their gcd is an absolute
constant.

Given two relatively prime polynomials f, g and an α ∈ C, we want to know when is

resy(f, g)(α) = res(f(α), g(α)). (5)

Note the difference between the two sides: on the LHS, we first compute the resultant as a polynomial and then
substitute x = α; on the RHS, we first compute the polynomials f(α, y) and g(α, y) and then compute their resultant.
E.g., suppose f = (x+ 1)y + 2x2 and g = (x+ 1)2y + 3x. Then resy(f, g) = 3x(x+ 1)− 2x2(x+ 1)2. Suppose
in (5) α = 1. Then LHS is −2, whereas RHS is res(2y + 2, 4y + 3) = −2. So it appears that (5) is true. What if we
substitute α = −1 in (5)? Then LHS is clearly zero, whereas RHS is a constant. What went wrong? Note that α = −1

1All these definitions hold in any euclidean space Rn. The definition of continuity generalizes the standard ε-δ definition for functions over R.
2It is easy to see that each real root α of the content corresponds to a vertical component x− α of the curve
3The argument, in fact, works for polynomials f, g ∈ D[y] for some UFD D. In our case, D = Z[x].
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is a root of both the leading coefficients w.r.t. y. Thus the two resultants are different because f(α), g(α) do not have
the same degree in y as f, g. What we can show is that (5) almost holds, as long as α is not a root of both leady(f)
and leady(g). The following theorem gives a more precise statement.

THEOREM 3. Let f, g ∈ Z[x, y] be such that degy(f) = m and degy(g) = n.

1. resy(f, g) ≡ 0 iff degy(GCD(f, g)) > 0.

2. If f, g are relatively prime then for any α ∈ C which is not a root of both leady(f) and leady(g)

resy(f, g)(α) = C · res(f(α), g(α)) (6)

for some non-zero constant C.

Proof. For the proof, we have to show that when α is a root of one of the leading coefficients, say leady(g), then
(6) holds for an appropriate choice of C, namely C = leady(f)(α)n−k. Q.E.D.

As a corollary we have the following:

COROLLARY 4. Suppose f, g are relatively prime and α ∈ C is not a root of both leady(f) and leady(g). Then α
is a root of resy(f, g) iff there exists β ∈ C such that f(α, β) = g(α, β) = 0.

A curve f is said to be weakly generic if its leading coefficient w.r.t. y is a constant.A pair of curves f, g are
weakly generic if both the polynomials are weakly generic. Thus the corollary above states that for a pair of curves
f, g in weakly generic position the roots of the resultant correspond to the x-coordinates of some common root (α, β)
of f, g. Now that we have the x-coordinate α of the common root, how do we get hold of the y-coordinate?

Suppose A,B ∈ Z[t] and we know that they have exactly one common root β, how can we find this root? Since
there is only one common root, the gcd must look like a(t − β)k, for k ≥ 1 and some a ∈ Z. Thus we know that
the coefficient of tk−1 is −kaβ. Therefore, if we can get hold of the leading coefficient of the gcd, the second leading
coefficient, and its degree then we can express β as a rational function of these quantities. But in the univariate setting,
it is trivial to compute the gcd. Another, seemingly more complicated, approach is to use the following property of
subresultant sequence sresi(A,B):

sres0(A,B) = sres1(A,B) = · · · = sresk−1(A,B) = 0 iff deg(GCD(A,B)) = k.

Moreover, sresk(A,B) = GCD(A,B). Thus in our case

β =
coeffk−1(sresk(A,B))

−k · lead(sresk(A,B))
. (7)

The relevance of using the subsresultants becomes relevant in our setting, because for us A := f(α, y) and B :=
g(α, y), for a real algebraic number α. Given the nature of α it is hard to do symbolic computation to compute the
gcd. However, if a relation similar to (6) holds for subresultants then we can compute subresultants for f, g w.r.t. y,
which gives us polynomials in Z[x] and substitute x = α. It is not hard to see that if f, g are weakly generic then the
following generalization of (6) holds:

sresi(f, g, y)(α) = C · sresi(f(α), g(α)) (8)

for some non-zero constant C. Thus given the x-coordinate α of a common root of f, g, from (7) it follows that the
y-coordinate β can be described as

β =
coeffk−1(sresk(f, g, y)(α))

−k · lead(sresk(f, g, y)(α))
. (9)

(9) describes the corresponding y-coordinate as a rational function of α. However, (9) holds if A and B have only β
as common root, or in terms of f, g there is only one common root (α, β) with x-coordinate α. We will call a pair of
curves f, g in generic position (or generic) if they are weakly generic and distinct common roots of f, g have different
x-coordinates. A curve f is said to be generic if the pair f, fy is in generic position. We are now in a position to find
the common roots of two curves in generic position.
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2.3 Handling a Generic Curve
We now return to our setting when the pair of curves is f, fy . For resy(f, fy) to be well-defined we want that f, fy
are relatively prime, which is the same as saying f is square-free (i.e., f does not factor as g2h, for some g ∈ Z[x, y]);
note the square-free part of a non-square-free polynomial f is the same as the square-free part of prim(f), since the
content is common to both f and fy . As a consequence, the x-coordinates of critical points of f are real roots of
resy(f, fy) (see Corollary 4); Moreover, assume f is in generic position, i.e., it does not have vertical asymptotes,
vertical components, and no two critical points have the same x-coordinate. As a consequence, we can express the
y-coordinate of a common root in terms of its x-coordinate using (9). The following algorithm gives the geometric
details for computing the correct topology of a curve in generic position.

INPUT: A square-free polynomial f ∈ Z[x, y] in generic position, and a box I × J ⊆ R2.
OUTPUT: A piecewise linear graph that is isotopic to f in I × J .
1. Compute the subresultant sequence sresi(f, fy, y), i = 0, . . . ,degy(f).

/ For the most part, only the leading coefficients are needed
2. Isolate the real roots α1, . . . , αn of sres0,y(f, fy) in I; α0 := I0, αn+1 := I1
3. For each root αi do:

Isolate the real roots of f(αi, y) in J and order them vertically in a stack Si.
Compute βi as given by (9).

4. Let γi ∈ (αi, αi+1), i = 0, . . . , n be n rational points.
5. For each γi do:

Isolate the real roots of f(γi, y) in J and order them vertically in a stack Ti.
6. Now we connect the roots in two consecutive stacks: Si, Ti / Ti does not contain critical points .

Let p := (α, β) be the critical point in Si.
Connect the branches, if any, above p with one branch each from top of Ti.
Connect the branches, if any, below p with one branch each from bottom of Ti.
Connect the remaining branches, if any, of Ti to p.

7. Connect the stacks Sn+1, Tn as above.

Remark: Note that in step 2 we are isolating real roots of a polynomial with algebraic number as coefficients. This
requires modifying our exact algorithms for real root isolation to handle input coefficients given as bitstreams, i.e.,
black boxes that can be queried for any desired absolute approximation to the coefficients.

The procedure is illustrated in Figure 4.

Figure 4: Computing the topology of an algebraic curve using projection

2.4 Handling a Non-Generic Curve
A requirement for the procedure described above is that the curve should be in generic position, that is no two critical
points have the same x-coordinate, and the leading coefficient w.r.t. y do not have real roots; in fact, we will ensure
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that the latter condition is replaced with the stronger constraint that the leading coefficient is a constant. The idea is
to project the curve along a different line. Which lines can we choose? Consider the lines connecting any pair of
critical points. Our aim is to find a line ` that does not coincide with any of these lines and make that our y-axis. Since
our polynomial is square-free, there are only finitely many critical points, and hence most choices of ` will suffice.
In fact, let ` := y = sx, for a random choice of integer s. What affine map φ will take ` to the y-axis? Clearly
φ := (x, y)→ (y − sx, y) takes ` to the y-axis. However, this map does not preserve the x-axis; it flips it around the
origin and scales it by s. To avoid these unwanted outcomes, let us consider the line with slope 1/s, i.e., ` := x− sy.
Then our map φ(x, y) = (x − sy, y) and, clearly, x-axis remains unchanged. We should also transform the variety,
V (f), accordingly. Thus, instead of looking at V (f), we should look at the variety of f ◦ φ−1 = f((x + sy, y)).
The transformation Shs : f(x, y)→ f(x+ sy, y) is called a shear transformation. For example, let us consider the
curve f = x4 + y4 − 2x2y2 + 3x2y − y3. Suppose s = 1 then the affinely transformed polynomial is Sh1(f) =.
Note the degree of y in the sheared polynomial has decreased from 4 to 3, and the graph of the sheared polynomial
shows a vertical asymptote at x = 1, which was not there initially. Though vertical asymptotes are not a severe issue,
they do cause some annoyance in the sense that the resulting leading coefficient is not guaranteed to be a constant. To
understand the issue better, let us shear by an unknown factor s. The resulting polynomial Shs(f) = . Note that the
leading coefficient of Shs(f) in y is a univariate polynomial in s. Moreover, the polynomial vanishes at s = 1. We
had seen earlier that this implies that both the sheared polynomial and its partial derivative w.r.t. y share a vertical
asymptote. To avoid this problem, our choice of s should not be a root of this univariate polynomial. This argument
holds in general, because for an arbitrary curve f of degree d, we know f = F0 + F1 + · · · + Fd where Fi is a
homogeneous polynomial of degree i. Suppose Fd =

∑d
i=0 aix

iyd−i. Then the corresponding leading term of the
sheared polynomial is Shs(Fd) =

∑d
i=0 ai(x+sy)iyd−i. The leading term in y is the polynomial

∑d
i=0 ais

d−i ∈ Z[s].
Thus our choice of s has to further avoid these d degenerate choices. The argument above, in general, works in the
case of two curves f, g and not just f, fy . To summarize, we have shown the following.

LEMMA 5. Let V (f) and V (g) be two curves without common components. Then, there exists an s ∈ Z such that
V (Shs(f)) and V (Shs(g)) do not have vertically asymptotic arcs, and all common roots of the sheared curves have
different x-coordinates.

Whereas the above lemma is correct, it still misses our aim to make f generic. What we have guaranteed is that
the x-coordinates of different singularities are different. But what is the guarantee that the x-coordinates of the non-
singular critical points are different? In other words, Why can’t there be a vertical tangent to the sheared curve that
touches it at two different points? Example??? So just looking at pairs of singularities is not sufficient.

View the sheared polynomial F (S, x, y) := ShS(f) = f(x+Sy, y) as a polynomial in S, x, y. DefineD(S, x) :=
resy(F, Fy); note that D(S, x) is an algebraic curve. For a given value of S = s∗, the roots of the univariate poly-
nomial D(s∗, x) correspond to the x-coordinates of the critical points of the sheared curve F (s∗, x, y). By definition,
the multiplicity of some of these roots is greater than one. A choice s∗ is bad for us if the multiplicity of distinct
roots of D(s∗, x) is more than the multiplicity of distinct roots of D(s, x), where s is in a small neighbourhood of
s∗. A stronger way to capture this increase of multiplicity is that the deg(GCD(D,Dx)) increases at s∗; it is strong,
because the degree of gcd may increase but that increment may be because of addition of a new distinct root. From the
theory of subresultants, we know that this is equivalent to the vanishing of the smallest non-zero principal subresultant
coefficient of D,Dx at s∗. Thus we have the following theorem.

THEOREM 6. Let f be a square-free polynomial. Define F (S, x, y) := ShS(f) = f(x + Sy, y), D(S, x) :=
resy(F, Fy) and

∆(S) := min
k
{psck(D,Dx, x) 6≡ 0} .

If the curve F is not in generic position, then s is a root of either leady(F ) or ∆(S).

¶5. Bound on bad shear values? The theorem above gives us an upper bound on the number of bad choices of
shear values. The degree of leady(F ) is at most d, so it can have at most d real roots. What is the degree of ∆(S)?
The degree of D(S, x) is at most d2. Thus the degree of any subresultant coefficient of D(S, x), Dx(S, x), when
viewed as a polynomial in x, is at most n4. Thus the total number of bad choices of shear values is bounded by n4 +n.
This suggests that picking a number from 1, . . . , 2(n4 + n) has probability half of being a successful shear, and so the
expected number of trials is 2.
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¶6. How to know whether s is a good shear factor? Though we know that most choices of s will satisfy the
constraints in Theorem 6, in practice, we need to check whether the sheared polynomial is generic or not, i.e., whether
a given s was a valid choice. One way to test this is to compute the x-coordinates αi’s of the critical points, and check
whether sresk(f, fy)(αi), which is a polynomial in x, has one real root. This can be done by constructing a Sturm
sequence for sresk(f, fy) and doing a Sturm query for this sequence.

¶7. From the sheared curve to the original curve As long as we want an output that is topologically correct, we
can work with the sheared curves. Occasionally, especially when plotting curves, it is good to have the output w.r.t.
a specified coordinate system (e.g., the standard coordinate system), since it helps in visualizing the curves. In this
case, we have to switch back our coordinate system to undo the shearing. The challenge is to get hold of non-singular
critical points w.r.t. the original coordinate system, from the sheared curve. A shear always maps a non-singular
critical point to a regular point.
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