
Arithmetic – Multiplication, DFT, FFT

In this lecture, we study the bit-complexity of various fundamental arithmetic operations for integers and polyno-
mials. This lecture is based upon [2, Chap. 1] .

¶1. Representation. The computational model that we will use throught is the Random Access Machine (RAM)
with one difference. A RAM consists of unbounded memory cells where each cell can store an arbitrary integer. Since
we are interested in bit-complexity, we will restrict the second condition, namely the cells can contain integers of
absolute value smaller than some constant β. The standard instruction set remains unchanged. An integer a will be
represented in base β as

a = s(an−1β
n−1 + an−2β

n−2 + · · ·+ a0)

where s ∈ {+1,−1} and ai ∈ {0, . . . , β − 1}. The number of bits n needed to represent a in base β is bounded
by logβ |a|. If β = 1 then we get the unary representation of a. However, for our purposes we will always assume
β > 1; in particular, a power of 2. Then n is the bit-length of a, denoted by len(a) = O(log |a|); we do not emphasize
upon β, since len(a) differs by a constant for all β > 1. We will often write the bit-representation of a as the n-
tuple a := (an−1, . . . , a0). A degree n polynomial over a ring R, where R can be C,R,Z in our setting, is given as
f(x) =

∑n
i=0 aix

i, where ai ∈ R, and an 6= 0. Define ‖f‖∞ := max {|a0|, |a1|, . . . , |an|}, as the infinity-norm of
f . The set of all univariate polynomials over R is denoted as R[x]. The coefficient representation will be succinctly
written as C-rep.

We study computational complexity of the four basic operations on integers and polynomials: addition, subtraction,
multiplication and division with remainder. The classical algorithms for adding and subtracting two integers a, b
have optimal complexity, namely max {len(a), len(b)}. Similarly, the bit-complexity of adding or subtracting two
integer polynomials a(x), b(x) with degree m and n resp is O(min {m,n}max {‖a‖∞, ‖b‖∞}). These algorithms
are optimal and therefore we only focus on multiplication and division with remainder. In this lecture we deal with the
first of these two operations.

1 A question of Representation
Our input is two n-bit numbers a = (an−1, . . . , a0), b = (bn−1, . . . , b0). We want to compute their product c := a×b.
Let M(n) denote the bit-complexity of multiplying two n-bit numbers. We know that for the classical algorithm for
multiplying two n-bit numbers takes M(n) = Θ(n2). Here we will describe the subsequent improvements.

An integer (an−1, . . . , a0) represented in base β has a natural correspondence with the polynomial a(x) :=∑n−1
i=0 aix

i, since a = a(β). Thus to multiply a and b we can compute c(x) := a(x) × b(x), and then evaluate
c(x) at β to get the desired product c. Thus all the algorithms for computing integer products turn out to be algo-
rithms for polynomial multiplication, which is what we focus on. Moreover, we focus on algebraic complexity for the
moment.

The classical algorithm for multiplying two degree n integer polynomials takes Θ(n2) algebraic operations. But
is this complexity intrinsic to polynomial multiplication or is it an artefact of our representation? Can we think of a
representation where multiplication can be done more efficiently? Yes! In fact, we can do it constant time. From the
FTA we know that any polynomial a(x) ∈ C[x] can be expressed as a(x) = an

∏n
i=1(x−αi), where αi’s are the roots

of a(x). Given two polynomials with their list of roots, the roots of the product is just the concatenation of the two
lists. But what about evaluation and addition? Well, evaluation can be done in linear time, but for addition we don’t
see a straightforward algorithm. However, computing the roots of a polynomial is a challenging task in the first place.
We need a representation where multiplication can be done efficiently, i.e. better than quadratic time. From FTA we
know that if two degree n polynomials are equal at n + 1 points then they are in fact identical. Thus an alternative
representation for a(x) is the set of n + 1 pairs {(x0, a(x0)), . . . , (xn, a(xn))}, where xi ∈ C are n + 1 distinct

1

complex numbers. Call this representation as E-rep. Addition of two polynomials is clearly linear. Multiplication is
also linear with the caveat that we need 2n+ 1 pairs in our tuple. The drawback of E-rep, ironically, is evaluation. To
evaluate a polynomial in E-rep we need to convert it to C-rep. This conversion step is called the interpolation step,
and one can either use Lagrange’s or Newton’s interpolation to get the polynomial. For instance, using Lagrangian
interpolation we know that given (xi, yi), i = 0, . . . , n, xi’s distinct the polynomial a(x) such that a(xi) = yi is given
as

a(x) =

n∑
i=0

yi
∏
j 6=i

(x− xj)
(xi − xj)

.

The interpolation step takes O(n2) operations. To summarize: C-rep takes O(n) time for addition and evaluation, but
O(n2) for multiplication; E-rep takes O(n) time for addition and multiplication, but O(n2) for evaluation. If only we
could convert between the two reps in better than quadratic time we could utilize their advantages fully. What we have
not yet utilized is our freedome to choose the evaluation points.

¶2. Converting between E-rep and C-rep. The evaluation of a degree n polynomial f =
∑n
i=0 aix

i at the points
x0, . . . , xn can be expressed using matrices as

[f(x0), f(x1), . . . , f(xn)]t = V (x0, . . . , xn)[a0, . . . , an]t

where V is the Vandermonde matrix, i.e., the ith row is xji , j = 0, . . . , n − 1. Assuming we have precomputed V ,
this conversion takes quadratic time as we have to compute a matrix-vector product. Can we do better? We can do the
following divide-and-conquer approach: express

f(x) := fe(x
2) + xfo(x

2)

where fe is the collection of even terms of f and fo the odd terms; e.g., if f(x) = x5 + x4 − x3 + x2 + x + 1 =
x(x4 − x2 + 1) + x4 + x2 + 1 then fo = x2 − x+ 1 and fe = x2 + x+ 1. The degrees of fe and fo are at most n/2.
Does it help to reduce our evaluation complexity? To compute f at xi, we have to compute fe and fo at x2i ; but there
are still n + 1 distinct values x2i and computing the two polynomials takes O(n) operations for each value. So we
haven’t gained any thing. If, however, there were only n/2 distinct values x2i then we could recurse the computation
on degree n/2 polynomials fe and fo at these n/2 points, which would yield us the recursion:

T (n) = 2T (n/2) +O(n)

where T (n) is the time to evaluate f at n+1 distinct values x0, . . . , xn. Where can we find n+1 numbers, x0, . . . , xn,
such that squaring them gives us only n/2 distinct values?

¶3. Roots of Unity. The roots of the equation xn = 1 are called the nth roots of unity. Let ω := exp(2πi/n). Then
the n roots are given as ωk, k = 0, . . . , n − 1; ω is called a primitive nth root of unity since ωk 6= 1 for 0 < k < n;
in fact, if ωk = ωj , for 0 ≤ k < j < n the ωj−k = 1, which implies n|j − k, a contradiction. Do the roots of unity
have the desired property? Yes, since ω2k, 0 ≤ k < n/2, are the same as ωk, n/2 ≤ k < n. Not only that the squares
of ωk, k = 0, . . . , n− 1, are also n/2th roots of unity.

Let’s rewrite the map V ·a, as A := DFTn(a), where DFTn := V (ω), the Vandermonde matrix corresponding to
the (n− 1)th primitive root of unity ω. We will call the vector A as the discrete fourier transform of a. The inverse
discrete fourier transform of A is the vector a := DFT−1n (A). We now have the following claim:

THEOREM 1. The DFT and inverse DFT can be computed in O(n log n) arithmetic operations in C.

Proof. The following algorithm computes the DFT of a vector in Cn.

Fast Fourier Transform Algorithm
INPUT: An vector a ∈ Cn, and ω an nth root of unity.
OUTPUT: DFTn · a.
1. Let ae(x), ao(x) be the polynomials corresponding to the polynomial

∑n−1
i=0 aix

i.
2. Evaluate ae(x2) and ao(x2) at x = ωk, k = 0, . . . , n− 1.
3. Compute ωkao(ω2k), k = 0, . . . , n− 1.
4. Return the vector with the kth entry as ae(ω2k) + ωkao(ω

2k), k = 0, . . . , n− 1.

2

Let T (n) be the time to compute DFTn(a). Since ω2k, k = 0, . . . , n − 1, are n/2th roots computing ae(ω2k) and
ao(ω

2k) is the same as DFTn(ae) and DFTn(ao) resp. Then, by our earlier observations, we have the recursion
T (n) = 2T (n/2) +O(n), where the O(n) operations are required in setp 3 and 4 of the algorithm.

For the inverse DFT we observe that DFTnDFTn−1 = DFTn−1DFTn = nI . This follows from the cancellation
property of the roots of unity: for any s ∈ Z

n−1∑
k=0

ωks =

{
0 if s mod n 6= 0

n if s mod n = 0.
(1)

Q.E.D.

The overall algorithm for multiplying two degree n polynomials is the following:

INPUT: Two degree n polynomials a(x), b(x) ∈ C[x].
OUTPUT: The degree 2n polynomial a(x) · b(x).
1. Compute A := DFT2n(a) and B := DFT2n(b).
2. Let C be the pointwise multiplication of A with B.
3. Return DFT−12n (C).

Thus polynomial multiplication is reduced to two DFTs and one inverse DFT, and hence can be done in O(n log n)
arithmetic operations in C.

2 Modular DFT and FFT
What about multiplying integer polynomials? One approach, which Strassen took, was to use complex roots of unity,
as above, but with enough accuracy; this yielded a time bound that satisfied the recursion T (n) = O(nT (log n));
in particula, this implies T (n) = O(n log n(log log n)1+ε). Schönhage and Strassen later improve the bound to
O(n log n log log n). The improvement is mostly theoretical, however, it is their introduction of modular DFT to
avoid approximate arithmetic was a breakthrough.

Recall that we wanted the following two properties from the nth roots of unity:

(1) Squaring the nth roots of unity give us the n/2th roots of unity and

(2) Cancellation property as in (1).

If an arbitrary ring R has such nth roots of unity, then we can define the DFT operation and carry out the FFT
algorithm. Since Z does not have roots of unity, except for 1, we need to work with a discrete ring that has roots of
unity. The key idea of Schönhage-Strassen was that the ring ZM , where M := 2L + 1, has the desired roots of unity,
and FFT can be implemented for this ring; L will be an integer multiple of some power of two. From the choice of M
it immediately follows that 22L ≡ 1 mod M . Let n := 2k+1, be such that n divides 2L. Further define ω := 22L/n.
Then we have the folowing result.

LEMMA 2. The number ω is a primitive nth root of unity in ZM , i.e., ωj , j = 0, . . . , n − 1, are all solutions of the
equation xn ≡ 1 mod M .

Proof. We have to show that ωj 6≡ 1 mod M , for j < 2K. There are two cases to consider:

1. If j ≤ K then ωj = 2jL/K ≤ 2L < M . Therefore, ωj 6≡ 1 mod M .

2. If j > K then ...

Q.E.D.

We will now demonstrate the two properties needed for teh FFT algorithm. The “squaring-halving” property is
easily seen, since the square of the first-half roots ωj , 0 ≤ j < n/2, is equal to the square of the second-half roots, ωj ,
n/2 ≤ j < 2K; also, ω2 is a n/2th root of unity. Thus we only demonstrate the cancellation property.

3

n−1∑
j=0

ωjs =

{
0 if s mod n 6= 0

n if s mod n = 0.
(2)

The second case is straightforward, since if s = nt, then ωjs = ω2Ljt ≡ 1 mod M . Otherwise, let s ≡ 2pq mod n,
where q is odd. Define r := n/2p; since 2pq < n, this is well defined. We now break the sum into 2p parts each
containing r terms.

n−1∑
j=0

ωjs =

r−1∑
j=0

ωjs +

2r−1∑
j=r

ωjs + · · ·+
n−1∑
j=n−r

ωjs.

Pulling out the smallest term from each of the sums on the RHS we get

n−1∑
j=0

ωjs =

r−1∑
j=0

ωjs + ωrs
r−1∑
j=0

ωjs + · · ·+ ωrs(2
p−1)

r−1∑
j=0

ωjs.

Since ωrs ≡ ω2pqr = ωnr ≡ 1 we further obtain
n−1∑
j=0

ωjs ≡ 2p
r−1∑
j=0

ωjs.

Also note that ωrs/2 ≡ ωKq ≡ (−1)q ≡ −1, as q is odd. Thus

n−1∑
j=0

ωjs =

r/2−1∑
j=0

(ωjs + ωs(j+r/2)) ≡
r/2−1∑
j=0

(ωjs − ωsj) = 0.

The cancellation property implies that DFT−1 = V (ω)−1 = V (ω−1)/n; note that n is invertible in ZM since M is
odd and so n is relatively prime to M .

We now have all the ingredients to implement FFT in ZM . The algorithm is as before. The input is a vector
a ∈ ZnM , or a degree n − 1 polynomial in ZM [x], and the output is DFTn(a); similarly for the inverse. We have the
following result equivalent to Theorem 1.

THEOREM 3. The modular DFT and modular inverse DFT can be computed in O(nL log n) bit-operations.

The recursion is T (n) = 2T (n/2) +O(nL). The O(nL) cost comes from doing O(n) additions modulo M ; each
addition involves working with numbers of bit-length L.

Now that we have our modular DFT, let’s see how to implement Fast Integer Multiplication. Here we present a
simplification of Schönhage-Strassen algorithm.

3 Fast Integer Multiplication
Goal to compute product of two N -bit binary numbers a, b. We will reduce the problem recursively into a problem of
multiplying numbers of bit-length

√
N . Suppose N = 2k (if not pad it the numbers with zeros) and define

n := 2bk/2c and ` := N/b.

Thus n` = N , both n and ` are Θ(
√
N), and n divides ` (since n ≤ `).

We express a as a binary number containing n blocks of ` bits each, i.e.,

a =

n−1∑
i=0

Ai2
`i,

where 0 ≤ Ai < 2`. Similarly, express b :=
∑n−1
i=0 Bi2

`i. The product ab can be expressed similarly in terms of a
2n− 1 dimensional vector c = (C0, . . . , C2n−2), where

ab =

2n−2∑
i=0

Ci2
`i (3)

4

such that

Ci :=

i∑
j=0

AjBi−j . (4)

How large can Ci’s be? The summation index is bounded by n and the Aj , Bj < 2`. Thus Ci < n22` < 23`. Thus
we choose our modulus M := 23` + 1, and define L := 3`. Our primitive root of unity ω = 26`/n, which is an nth
primitive root in M .

To compute the product ab we proceed just as in the multiplication algorithm given earlier, except after doing
the modular inverse DFT we evaluate the resulting polynomial at 2`, i.e. compute the sum

∑2n−1
i=0 Ci2

`i. The bit-
complexity of the modular DFT and inverse DFT is O(nL log n). The componentwise product of the vectors ob-
tained by DFT2n(a) and DFT2n(b) recursively has bit-complexity 2nM(L). What is the cost of computing the sum∑2n−1
i=0 Ci2

`i? Notice that since Ci < 23`, it contains at most three blocks Ci0, Ci1, Ci2 each of bit-length `. Consider
the sum C0 + 2`C1 + 22`C2. In this sum at most three blocks can overlap, namely C02, C11, C22, and thus the cost
of performing this addition depends only on the bit-length of C0 + 2`C1 + 22`C2, which is O(L). Thus computing∑2n−1
i=0 Ci2

`i has O(nL) bit-complexity, which is dominated by the cost of doing a DFT. We thus have the following
recursion:

M(N) ≤ 2nM(L) +O(nL log n) = 2nM(3`) +O(n` log n).

Recall that n ≤
√
N , ` ≤ ε

√
N , and n` = N = 2k, thus

M(N) ≤ 2
√
NM(3

√
N) +O(N logN).

Let t(k) := M(2k)/2k. Then dividing the equation above by N we obtain

t(k) = 6t(k/2) +O(k).

This can be solved to obtain t(k) = klg 6. Substituting back, we obtain M(N) = O(N(logN)lg 6).

`

L = 3`

C0

2`C1

22`C2

2(2n−1)`C2n−1

Figure 1: Computing
∑2n−1
i=0 Ci2

`i. Atmost three blocks overlap.

References
[1] C. K. Yap. Fundamental Problems of Algorithmic Algebra. Oxford University Press, 2000.

5

	A question of Representation
	Modular DFT and FFT
	Fast Integer Multiplication

