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ABSTRACT

Let F (z) be an arbitrary complex polynomial. We introduce
the local root clustering problem, to compute a set of
natural ε-clusters of roots of F (z) in some box region B0 in
the complex plane. This may be viewed as an extension of
the classical root isolation problem. Our contribution is two-
fold: we provide an efficient certified subdivision algorithm
for this problem, and we provide a bit-complexity analysis
based on the local geometry of the root clusters.

Our computational model assumes that arbitrarily good
approximations of the coefficients of F are provided by means
of an oracle at the cost of reading the coefficients. Our algo-
rithmic techniques come from a companion paper [3] and are
based on the Pellet test, Graeffe and Newton iterations, and
are independent of Schönhage’s splitting circle method. Our
algorithm is relatively simple and promises to be efficient in
practice.

1. INTRODUCTION
The problem of computing the roots of a univariate poly-

nomial F has a venerable history that dates back to antiq-
uity. With the advent of modern computing, the subject
received several newfound aspects [17, 20]; in particular, the
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introduction of algorithmic rigor and complexity analysis
has been extremely fruitful. This development is usually
traced to Schönhage’s 1982 landmark paper, “Fundamental
Theorem of Algebra in Terms of Computational Complexity”
[28]. Algorithms in this tradition are usually described as
“exact and efficient”. Schönhage considers the problem of
approximate polynomial factorization, that is, the compu-
tation of approximations z̃i of the roots zi of F such that

‖F − F̃‖1 < 2−b · ‖F‖1, where F̃ (z) := lcf(F ) ·∏n
i=1(z− z̃i)

and b is a given positive integer. The sharpest result for this
problem is given by Pan [22, Theorem 2.1.1], [20, p.196].
Hereafter, we refer to the underlying algorithm in this theo-
rem as “Pan’s algorithm”. Under some mild assumption on
F (i.e., |zi| ≤ 1 and b ≥ n log n), Pan’s algorithm uses only

Õ(n log b) arithmetic operations with a precision bounded

by Õ(b), and thus Õ(nb) bit operations. This result fur-
ther implies that the complexity of approximating all zi’s

to any specified b/n bits, with b > n log n, is also Õ(nb)

[22, Corollary 2.1.2]. Here, Õ means we ignore logarithmic
factors in the displayed parameters. In a model of compu-
tation, where it is assumed that the coefficients of F are
complex numbers for which approximations are given up to
a demanded precision, the above bound is tight (up to poly-
logarithmic factors) for polynomial factorization as well as
for root approximation.

In parallel, a major focus of exact and efficient root ap-
proximation research has been to determine the complexity
of isolating all the roots of an integer polynomial F (z) of
degree n with L-bit coefficients. We call this the bench-
mark problem [27] since this case is the main theoretical
tool for comparing root isolation algorithms. Although this
paper addresses complex root isolation, we will also refer to
the related real benchmark problem which concerns real
roots for integer polynomials.

The problem of isolating the roots of a polynomial can be
reduced to approximate polynomial factorization. Schön-
hage showed that, for a square-free polynomial, it suffices
to choose a b of size Ω(n(log n+ L)) to ensure that the dis-
tance between the approximations z̃i and the actual roots
zi is small enough to directly deduce isolating regions of
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the zi’s. Together with Pan’s result on approximate poly-

nomial factorization, this yields a complexity of Õ(n2L) for
the benchmark problem. Interestingly, the latter bound was
not explicitly stated until recently ([11, Theorem 3.1]).

Mehlhorn et al. [18] extend the latter result to (not nec-
essarily square-free) polynomials F with arbitrary complex
coefficients for which the number of distinct roots is given
as an additional input. That is, Pan’s algorithm is used as
a blackbox with successively increasing precision b to isolate
the roots of F . For the benchmark problem, this yields the

bound Õ(n3 + n2L); however, the actual cost adapts to the
geometry of the roots, and for most input polynomials, the
complexity is considerably lower than the worst case bound.

We further remark that it seems likely that the bound

Õ(n2L) is also near-optimal for the benchmark problem be-
cause it is generally believed that Pan’s algorithm is near-
optimal for the problem of approximately factorizing a poly-
nomial with complex coefficients. However, rigorous argu-
ments for such claims are missing.

It had been widely assumed that near-optimal bounds
need the kind of “muscular” divide and conquer techniques
such as the splitting circle method of Schönhage (which un-
derlies Pan’s algorithm and most of the fast algorithms in the
complexity literature). These algorithms are far from prac-

tical (see below). So, also the bound Õ(n2(n+L)) achieved
by Mehlhorn et al. [18] is mainly of theoretical interest as
the algorithm uses Pan’s method as a blackbox.

This paper is interested in subdivision methods. The
classical example here is root isolation based on Sturm se-
quences. Two types of subdivision algorithms are actively
investigated currently: the Descartes Method [7, 15, 24,
28, 25, 26] and the Evaluation Method [5, 4, 29, 2, 27, 13,
21]. See [27] for a comparison of Descartes and Evaluation
(or Bolzano) methods.

The development of certain tools, such as the Mahler-
Davenport root bounds [8, 9], have been useful in deriving
tight bounds on the subdivision tree size for certain subdivi-
sion algorithms [10, 4, 29]. Moreover, most of these analyses
can be unified under the “continuous amortization” frame-
work [5, 6] which can even incorporate bit-complexity. How-
ever, these algorithms only use bisection in their subdivision,
which seems destined to lag behind the above “near optimal
bounds”by a factor of n. To overcome this, we need to com-
bine Newton iteration with bisection, an old idea that goes
back to Dekker and Brent in the 1960s. In recent years, a for-
mulation of Newton iteration due to Abbott [1] and Sagraloff
[25] has proven especially useful. This has been adapted to
achieve the recent near-optimal algorithms of Sagraloff and
Mehlhorn [25, 26] for real roots, and [3] for complex roots.

The Root Clustering Problem. In this paper, we are
interested in root clustering. The requirements of root clus-
tering represents a simultaneous strengthening of root ap-
proximation (i.e., the output discs must be disjoint) and
weakening of root isolation (i.e., the output discs can have
more than one root). Hereafter, “root finding” refers gener-
ally to any of the tasks of approximating, isolating or clus-
tering roots.

For an analytic function F : C → C and a complex disc
∆ ⊆ C, let Z(∆;F ) denote the multiset of roots of F in
∆ and #(∆;F ) counts the size of this multiset. We write
Z(∆) and #(∆) since F is usually supplied by the context.
Any non-empty set of roots of the form Z(∆) is called a
cluster. The disc ∆ is called an isolator for F if #(∆) =

#(3∆) > 0. Here, k∆ = k ·∆ denotes the centrally scaled
version of ∆ by a factor k ≥ 0. The set Z(∆) is called a
natural cluster when ∆ is an isolator. A set of n roots
could contain Θ(n3) clusters, but at most 2n − 1 of these
are natural. This follows from the fact that any two natural
clusters are either disjoint or have a containment relation-
ship. The benchmark problem is a global problem because
it concerns all roots of the polynomial F (z); we now ad-
dress local problems where we are interested in finding only
some roots of F (z). For instance, Yakoubson [30] gave a
method to test if Newton iteration from a given point will
converge to a cluster. In [31], we introduced the following lo-
cal root clustering problem: given F (z), a box B0 ⊆ C

and ε > 0, to compute a set {(∆i,mi) : i ∈ I} where the
∆i’s are pairwise disjoint isolators, each of radius ≤ ε and
mi = #(∆i) ≥ 1, such that

Z(B0) ⊆
⋃

i∈I
Z(∆i) ⊆ Z(2B0).

We call the set S = {∆i : i ∈ I} (omitting the mi’s) a solu-
tion for the local root clustering instance (F (z),B0, ε). The
roots in 2B0 \ B0 are said to be adventitious because we

are really only interested in roots in B0. Suppose S and Ŝ

are both solutions for an instance (F (z),B0, ε). If S ⊆ Ŝ,

then we call Ŝ an augmentation of S. Thus any ∆ ∈ Ŝ \ S
contains only adventitious roots.

We solved the local root clustering problem in [31] for any
analytic function F , provided an upper on #(2B0) is known,
but no complexity analysis was given. Let us see why our
formulation is reasonable. It is easy to modify our algorithm
so that the adventitious roots in the output are contained
in (1 + δ)B0 for any fixed δ > 0. We choose δ = 1 for con-
venience. Some δ > 0 is necessary because in our compu-
tational model where only approximate coefficients of F are
available, we cannot decide the implicit “Zero Problem” [33]
necessary to decide if the input has a root on the boundary
of B0, or to decide whether ∆ contains a root of multiplicity
k > 1. Thus, root clustering is the best one can hope for.

1.1 Main Result
In this paper, we describe a local root clustering algorithm

and provide an analysis of its bit-complexity. Standard com-
plexity bounds for root isolation are based on synthetic
parameters such as degree n and bitsize L of the input
polynomial. But our computational model for F (z) has no
notion of bit size. Moreover, to address “local” complexity of
roots, we must invoke geometric parameters such as root
separation [25, 26]. We will now introduce new geometric
parameters arising from cluster considerations.

Assume F (z) has m distinct complex roots z1, . . . , zm
where zj has multiplicity nj ≥ 1, the degree of F (z) is
n =

∑m
j=1 nj , and the leading coefficient of F has magnitude

≥ 1/4. Let k be the number of roots counted with multiplici-
ties in 2B0. An input instance (F (z), B0, ε) is called normal
if k ≥ 1 and ε ≤ min

{
1, w0

96n

}
with w0 the width of B0. For

any set U ⊆ C, let log(U) := max(1, log sup(|z| : z ∈ U)).
Our algorithm outputs a set of discs, each one contains a

natural cluster. We provide a bit complexity bound of the
algorithm in terms of the output.

Theorem A Let S be the solution computed by our al-
gorithm for a normal instance (F (z), B0, ε). Then there is

an augmentation Ŝ = {Di : i ∈ I} of S such that the bit
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complexity of the algorithm is

Õ
(
n2 log(B0) + n

∑
D∈Ŝ

LD

)
(1)

with

LD =Õ
(
τF + n · log(ξD) + kD · (k + log(ε−1))

+ log(
∏

zj /∈D
|ξD − zj |

−nj )
) (2)

where kD = #(D), and ξD is an arbitrary root in D. More-
over, an L∗

D-bit approximation of the coefficients of F is
required with L∗

D := maxD∈Ŝ LD.

The solution Ŝ in this theorem is called the augmented so-

lution for input (F (z),B0, ε). Each natural ε-cluster D ∈ Ŝ
is an isolator of radius ≤ ε. From (1), we deduce:

Corollary to Theorem A

The bit complexity of the algorithm is bounded by

Õ
(
n2(τF + k+m) + nk log(ε−1) +n log |GenDisc(Fε)|

−1
)
. (3)

In case F is an integer polynomial, this bound becomes

Õ
(
n2(τF + k +m) + nk log(ε−1)

)
. (4)

The bound (4) is the sum of two terms: the first is essentially
the near-optimal root bound, the second is linear in k, n and
log(ε−1). This suggests that Theorem A is quite sharp.

On strong ε-clusters. Actually, the natural ε-clusters in

the Ŝ have some intrinsic property captured by the following
definition. Two roots z, z′ of F are ε-equivalent, written
z

ε∼ z′, if there exists a disk ∆ = ∆(r,m) containing z
and z′ such that r ≤ ε

12
and #(∆) = #(114 · ∆). Clearly

∆ is an isolator; from this, we see that ε-equivalence is an
equivalence relationship. We define a strong ε-cluster to
be any such ε-equivalence class. Unlike natural clusters, any
two strong ε-clusters must be disjoint.

Theorem B
Each natural cluster D ∈ Ŝ is a union of strong ε-clusters.

This implies that our algorithm will never split any strong ε-
cluster. It might appear surprising that our“soft” techniques
can avoid accidentally splitting a strong ε-cluster.

1.2 What is New
Our algorithm and analysis is noteworthy for its wide ap-

plicability: (1) We do not require square-free polynomials.
This is important because we cannot compute the square-
free part of F (z) in our computational model where the co-
efficients of F (z) are only arbitrarily approximated. Most
of the recent fast subdivision algorithms for real roots [25,
26] require square-free polynomials. (2) We address the local
root problem and provide a complexity analysis based on the
local geometry of roots. Many practical applications (e.g.,
computational geometry) can exploit locality. The compan-
ion paper [3] also gives a local analysis. However, it is under
the condition that the initial box is not too large or is cen-
tered at the origin, and an additional preprocessing step is
needed for the latter case. But our result does not depend
on any assumptions on B0 nor require any preprocessing.
(3) Our complexity bound is based on cluster geometry in-
stead of individual roots. To see its benefits, recall that the
bit complexity in [3] involves a term log σ(zi)

−1 where σ(zi)

is the distance to the nearest root of F (z). If zi is a mul-
tiple root, σ(zi) = 0. If square-freeness is not assumed, we
must replace σ(zi) by the distance σ∗(zi) to the closest root
6= zi (so σ∗(zi) > 0). But in fact, our bound in (1) involves
TD := log

∏
zj /∈D |ξi − zj |−nj which depends only on the in-

verse distance from a root within a cluster D to the other
roots outside of D, which is smaller than log σ∗(zi)

−1. So
the closeness of roots within D has no consequence on TD.

Why can’t we just run the algorithm in [3] by changing
the stopping criteria so that it terminates as soon as a com-
ponent C is verified to be a natural ε-cluster? Yes, indeed
one can. But our previous method of charging the work
associated with a box B to a root φ(B) may now cause a
cluster of multiplicity k to be charged a total of Ω(k) times,

instead of Õ(1) times. Cf. Lemma 11 below where φ(B) is
directly charged to a cluster.

1.3 Practical Significance
Our algorithm is not only theoretically efficient, but has

many potential applications. Local root isolation is useful
in applications where the roots of interest lie in a known
locality, and this local complexity can be much smaller than
that of finding all roots. From this perspective, focusing on
the benchmark problem is misleading for such applications.

We believe our algorithm is practical, and plan to imple-
ment it. Many recent subdivision algorithms were imple-
mented, with promising results: Rouillier and Zimmermann
[24] engineered a very efficient Descartes method algorithm
which is widely used in the Computer Algebra community,
through Maple. The CEVAL algorithm in [27] was imple-
mented in [12, 13]. Kobel, Rouillier and Sagraloff1 imple-
mented the ANewDsc algorithm from [26]. Becker [2] gave a
Maple implementation of the REVAL algorithm for isolating
real roots of a square-free real polynomial.

In contrast, none of the divide-and-conquer algorithms
[23, 19, 14] have been implemented. Pan notes [22, p. 703]:
“Our algorithms are quite involved, and their implementa-
tion would require a non-trivial work, incorporating numer-
ous known implementation techniques and tricks.” Further
[22, p. 705] “since Schönhage (1982b) already has 72 pages
and Kirrinnis (1998) has 67 pages, this ruled out a self-
contained presentation of our root-finding algorithm”. But
our paper [3] is self-contained with over 50 pages, and ex-
plicit precision requirements for all numerical primitives.

2. PRELIMINARY
We review the basic tools from [3]. The coefficients of F

are viewed as an oracle from which we can request approx-
imations to any desired absolute precision. Approximate
complex numbers are represented by a pair of dyadic num-
bers, where the set of dyadic numbers (or BigFloats) may
be denoted Z[ 1

2
] := {n2m : n,m ∈ Z}. We formalize2 this as

follows: a complex number z ∈ C is an oracular number
if it is represented by an oracle function z̃ : N → Z[ 1

2
]

with some τ ≥ 0 such that for all L ∈ N, |z̃(L) − z| ≤ 2−L

and z̃(L) has O(τ +L) bits. The oracular number is said to

1 Private communication.
2 This is essentially the “bit-stream model”, but the term is
unfortunate because it suggests that we are getting succes-
sive bits of an infinite binary representation of a real number.
We know from Computable Analysis that this representation
of real numbers is not robust.
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be τ -regular in this case. In our computational model, the
algorithm is charged the cost to read these O(τ + L) bits.
This cost model is reasonable when z is an algebraic number

because in this case, z̃(L) can be computed in time Õ(τ+L)
on a Turing machine. Following [3, 31], we can construct a
procedure SoftCompare(zℓ, zr) that takes two non-negative
real oracular numbers zℓ and zr with zℓ+zr > 0, that returns
a value in {+1, 0,−1} such that if SoftCompare(zℓ, zr) re-
turns 0 then 2

3
zℓ < zr < 3

2
zℓ; otherwise SoftCompare(zℓ, zr)

returns sign(zℓ − zr) ∈ {+1,−1}. Note that SoftCompare

is non-deterministic since its output depends on the under-
lying oracular functions used.

Lemma 1 (see [3, Lemma 4] and [31]).
In evaluating SoftCompare(zℓ, zr):
(a) The absolute precision requested from the oracular num-
bers zℓ and zr is at most L = 2(log(max(zℓ, zr)

−1) + 4).

(b) The time complexity of the evaluation is Õ(τ +L) where
zℓ, zr are τ -regular.

The critical predicate for our algorithm is a test from Pel-
let (1881) (see [16]). Let ∆ = ∆(m, r) denote a disc with
radius r > 0 centered at m ∈ C. For k = 0, 1, . . . , n and
K ≥ 1, define the Pellet test Tk(∆,K) = Tk(∆,K;F ) as
the predicate

|Fk(m)|rk > K ·
n∑

i=0,i6=k

|Fi(m)|ri

Here Fi(m) is defined as the Taylor coefficient F (i)(m)
i!

. Call
the test Tk(∆,K) a success if the predicate holds; else a
failure. Pellet’s theorem says that for K ≥ 1, a success
implies #(∆) = k. Following [31, 3], we define the “soft ver-

sion”of Pellet test T̃k(∆) to mean that SoftCompare(zℓ, zr) >
0 where zℓ = |Fk(m)|rk and zr =

∑n
i=0,i6=k |Fi(m)|ri. We

need to derive quantitative information in case the soft Pellet
test fails. Contra-positively, what quantitative information
ensures that the soft Pellet test will succeed? Roughly, it
is that #(∆) = #(r∆) = k for a suitably large r > 1, as
captured by the following theorem:

Theorem 2.
Let k be an integer with 0 ≤ k ≤ n = deg(F ) and K ≥ 1.
Let c1 = 7kK, and λ1 = 3K(n− k) ·max {1, {4k(n− k)}}.
If #(∆) = #(c1λ1∆) = k, then

Tk(c1∆,K, F ) holds.

The factor c1λ1 is O(n4) in this theorem, an improve-
ment from O(n5) in [3]. A proof is given in Appendix
A. In application, we choose K = 3

2
and thus c1 · λ1 ≤

(7Kn) · (12Kn3) = 189n4. The preceding theorem implies
that if #(∆) = #(189n4∆) then Tk(

21
2
n∆, 3

2
, F ) holds. This

translates into the main form for our application:

Corollary

If k = #( 1
11
n∆) = #(18n3∆) then Tk(∆, 3

2
;F ) holds.

In other words, under the hypothesis of this Corollary,

T̃k(∆) succeeds. We need one final extension: instead of

applying T̃k(∆) directly on F , we apply T̃k(∆(0, 1)) to the
Nth Graeffe iterations of F∆(z) :=F (m + rz). Here, ∆ =
∆(m, r) and N = ⌈log(1 + log n)⌉ + 4 = O(log log n). The

result is called the Graeffe-Pellet test, denoted T̃G
k (∆) =

T̃G
k (∆;F ). As in [3] we combine T̃G

k (∆) for all k = 0, 1, . . . , n
to obtain

T̃G
∗ (∆)

which returns the unique k ∈ {0, . . . , n} such that T̃G
k (∆)

succeeds, or else returns −1. We say that the test T̃G
∗ (∆)

succeeds iff TG
∗ (∆,K) ≥ 0.

The key property of T̃G
i (∆) is [3, Lemma 6]:

Lemma 3 (Soft Graeffe-Pellet Test).

Let ρ1 = 2
√

2
3
≃ 0.943 and ρ2 = 4

3
.

(a) If T̃G
k (∆) succeeds then #(∆) = k.

(b) If T̃G
∗ (∆) fails then #(ρ2∆) > #(ρ1∆).

The bit complexity of the combined test T̃G
∗ (∆) is asymp-

totically the same as any individual test [3, Lemma 7]:

Lemma 4. Let

L(∆, F ) := 2 · (4 + log(‖F∆‖−1
∞ )).

(a) To evaluate T̃G
k (∆), it is sufficient to have an M-bit ap-

proximation of each coefficient of F where M = Õ(n log(m,r)+
τF + L(∆, F )).

(b) The total bit-complexity of computing T̃G
∗ (∆) is Õ(nM).

2.1 Box Subdivision
Let A,B ⊆ C. Their separation is Sep(A,B) := inf{|a−

b| : a ∈ A, b ∈ B}, and rad(A), the radius of A, is the
smallest radius of a disc containing A. Also, ∂A denotes the
boundary of A.

We use the terminology of subdivision trees (quadtrees)
[3]. All boxes are closed subsets of C with square shape
and axes-aligned. Let B(m,w′) denote the axes-aligned box
centered at m of width w(B) :=w′. As for discs, if k ≥ 0 and
B = B(m,w′), then kB denotes the box B(m,kw′). The
smallest covering disc of B(m,w′) is ∆(m, 1√

2
w′). If B =

B(m,w′) then we define ∆(B) as the disc ∆(m, 3
4
w′). Thus

∆(m, 1√
2
w′) is properly contained in ∆(B). Any collection

S of boxes is called a (box) subdivision if the interior of
any two boxes in S are disjoint. The union

⋃S of these
boxes is called the support of S. Two boxes B,B′ are
adjacent if B ∪ B′ is a connected set, equivalently, B ∩
B′ 6= ∅. A subdivision S is said to be connected if its
support is connected. A component C is the support of
some connected subdivision S , i.e., C =

⋃S .
The split operation on a box B creates a subdivision

Split(B) = {B1, . . . , B4} of B comprising four congruent
subboxes. Each Bi is a child of B, denoted B → Bi. There-
fore, starting from any box B0, we may split B0 and recur-
sively split zero or more of its children. After a finite number
of such splits, we obtain a subdivision tree rooted at B0,
denoted Tsubdiv(B0).

The exclusion test for a boxB(m,w′) is T̃G
0 (∆(m, 3w′

4
)) =

T̃G
0 (∆(B)). We say that B(m,w′) is excluded if this test

succeeds, and included if it fails. The key fact we use is a

consequence of Lemma 3 for the test T̃G
0 (∆):

Corollary 5. Consider any box B = B(m,w′).

(a) If B is excluded, then #(∆(m, 3w′

4
)) = 0, so #(B) = 0.

(b) If B is included, then #(∆(m,w′)) > 0, so #(2B) > 0.

2.2 Component Tree
In traditional subdivision algorithms, we focus on the com-

plexity analysis on the subdivision tree Tsubdiv(B0). But for
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our algorithm, it is more natural to work with a tree whose
nodes are higher level entities called components above.

Typical of subdivision algorithms, our algorithm consists
of several while loops, but for now, we only consider the
main loop. This loop is controlled by the active queue
Q1. At the start of each loop iteration, there is a set of
included boxes. The maximally connected sets in the union
of these boxes constitute our (current) components. And
the boxes in the subdivision of a component C are called
the constituent boxes of C. While Q1 is non-empty, we
remove a component C from Q1 for processing. There are 3
dispositions for C: We try to put C to the output queue
Qout. Failing this, we try a Newton Step. If successful, it
produces a single new component C′ ⊂ C which is placed
in Q1. If Newton Step fails, we apply a Bisection Step.
In this step, we split each constituent box of C, and apply
the exclusion test to each of its four children. The set of
included children are again organized into maximally con-
nected sets C1, . . . , Ct (t ≥ 1). Each subcomponent Ci is
either placed in Q1 or Qdis, depending on whether Ci inter-
sects the initial box B0. The components in Qdis are viewed
as discarded because we do not process them further (but
our analysis need to ensure that other components are suf-
ficiently separated from them in the main loop). We will
use the notation C → C′ or C → Ci to indicate the parent-
child relationship. The component tree is defined by this
parent-child relationship, and denoted Tcomp. In [3], the root
of the component tree is B0; we take 5

4
B0 as the root to ad-

dress boundary issues. So we write Tcomp = Tcomp(
5
4
B0) to

indicate that 5
4
B0 is the root. The leaves of Tcomp are either

discarded (adventitious) or output.
For efficiency, the set of boxes in the subdivision of a com-

ponent C must maintain links to adjacent boxes within the
subdivision; such links are easy to maintain because all the
boxes in a component have the same width.

3. COMPONENT PROPERTIES
Before providing details about the algorithm, we discuss

some critical data associated with each component C. Such
data is subscripted by C. We also describe some qualitative
properties so that the algorithm can be intuitively under-
stood. Figure 1 may be an aid in the following description.

C2

B0

2B0

(5/4)B0

C1

C3

Figure 1: Three components C1, C2, C3: blue dots
indicate roots of F , pink boxes are constituent boxes,
and the non-pink parts of each BC is colored cyan.
Only C3 is confined.

(C1) All the constituent boxes of a component share a com-
mon width, denoted by wC .

(C2) Our algorithm never discards any box B if B contains
a root in B0; it follows that all the roots in B0 are
contained in

⋃
C C where C ranges over components in

Q0∪Q1∪Qout (at any moment during our algorithm).

(C3) Recall that a zero ζ of F (z) in 2B0 \ B0 is called ad-
ventitious. A component C is adventitious if C ∩B0

is empty (placed in Qdis). We say a component C
is confined if C ∩ ∂( 5

4
B0) is empty; otherwise it is

non-confined. Figure 2 shows these different kinds of
components. Note that after the preprocessing step,
all components are confined.

(C4) If C,C′ are distinct active components, then their sep-
aration Sep(C,C′) is at least max {wC , wC′}. If C is an
adventitious component, then Sep(C,B0) ≥ wC . If C
is a confined component, then Sep(C, ∂( 5

4
B0)) ≥ wC .

(C5) Let C+ be the extended component defined as the
set

⋃
B∈SC

2B. If C and C′ are distinct components,

then C+ and C′+ are disjoint. Moreover, if C is con-
fined, then #(C) = #(C+) (see Appendix B).

(C6) Define the component box BC to be any smallest
square containing C subject to BC ⊆ (5/4)B0. Define
WC as the width of BC and the disc ∆C :=∆(BC).
Define RC as the radius of ∆C ; note that RC = 3

4
WC .

(C7) Each component is associated with a “Newton speed”
denoted by NC with NC ≥ 4. A key idea in the Abbot-
Sagraloff technique for Newton-Bisection is to auto-
matically update NC : if Newton fails, the children of
C have speed max

{
4,
√
NC

}
else they have speed N2

C .

(C8) Let kC :=#(∆C), the number of roots ofZ(∆C), counted
with multiplicity. Note that kC is not always available,
but it is needed for the Newton step. We try to
determine kC before the Newton Step in the main loop.

(C9) A component C is compact if WC ≤ 3wC . Such com-
ponents have many nice properties, and we will require
output components to be compact.

In recap, each component C is associated with the data:

wC ,WC ,MC , BC ,∆C , RC , kC , NC .

C4

C2

C1

B0

(5/4)B0

C3

Figure 2: Four types of components: C1 is not con-
fined, the rest are confined; C1 and C2 are adventi-
tious; C3 may contain adventitious roots; C4 has no
adventitious roots.

5



4. THE CLUSTERING ALGORITHM
As outlined above, our clustering algorithm is a process

for constructing and maintaining components, globally con-
trolled by queues containing components. Each component
C represents a non-empty set of roots. In addition to the
queues Q1, Qout, Qdis above, we also need a preprocessing
queue Q0. Furthermore, Q1 is a priority queue such that
the operation C ← Q1.pop() returns the component with
the largest width WC .

We first provide a high level description of the two main
subroutines.

The Newton Step Newton(C) is directly taken from [3].
This procedure takes several arguments, Newton(C,NC , kC ,
xC). The intent is to perform an order kC Newton step:

x′
C ← xC − kC

F (xC)

F ′(xC)
.

We then check whether Z(C) is actually contained in the
small disc ∆′ :=∆(x′

C , r
′) where

r′ := max {ε,wC/(8NC )} . (5)

This amounts to checking whether T̃G
kC

(∆′) succeeds. If it
does, Newton test succeeds, and we return a new component
C′ that contains ∆′ ∩ C with speed NC′ := (NC)

2 and con-
stituent width wC′ := wC

2NC
. The new component C′ consist

of at most 4 boxes and WC′ ≤ 2wC′ . In the original paper
[3], r′ was simply set to wC

8NC
; but (5) ensures that r′ ≥ ε.

This avoids the overshot of Newton Step and simplifies our

complexity analysis. If T̃G
kC

(∆′) fails, then Newton test fails,
and it returns an empty set. In the following context, we
simply denote this routine as “Newton(C)”.

The Bisection Step Bisect(C) returns a set of compo-
nents. Since it is different from that in [3], we list the mod-
ified bisection algorithm in Figure 3.

We list the clustering algorithm in Figure 4.
Remarks on Root Clustering Algorithm:

1. In the preprocessing stage, for each component C, wC ≥
w(B0)
48n

(see Appendix B). Thus depth of C in Tcomp is O(log n).
2. In the main stage, each component C is confined. More-
over, the separation of ∂((5/4)B0) from ∂(2B0) is 3

8
w(B0).

It follows that 2BC ⊆ 2B0 (using the fact that WC ≤
w(B0)/2 from preprocessing).
3. The steps in this algorithm should appear well-motivated
(after [3]). The only non-obvious step is the test “WC ≤
3wC” (colored in red). This part is only needed for the anal-
ysis; the correctness of the algorithm is not impacted if we
simply replace this test by the Boolean constant true (i.e.,
allowing the output components to have WC > 3wC ).
4. We ensure that WC ≥ ε before we attempt to do the Ne-
wton Step. This is not essential, but simplifies the analysis.

Based on the stated properties, we prove the correctness
of our algorithm (see Appendix B).

Theorem 6 (Correctness). The Root Clustering Algorithm
halts and outputs a collection {(∆C , kC) : C ∈ Qout} of pair-
wise disjoint ε-isolators such that Z(B0) ⊆

⋃
C∈Qout

Z(∆C) ⊆
Z(2B0).

5. BOUND ON NUMBER OF BOXES
In this section, we bound the number of boxes produced

by our algorithm. All the proofs for this section are found
in Appendix B.

Bisect(C)
OUTPUT: a set of components containing all

the non-adventitious roots in C
(but possibly some adventitious ones)

Initialize a Union-Find data structure U
for boxes.

For each constituent box B of C
For each child B′ of B

If (T̃G
0 (∆(B′)) fails)

U.add(B′)
For each box B′′ ∈ U adjacent to B′

U.union(B′, B′′)
Initialize Q to be empty.

specialF lag ← true

If (U has only one connected component)

specialF lag ← false

For each connected component C′ of U
If (C′ intersects B0) // C′ 6= adventitious

If (specialF lag) NC′ = 4
Else NC′ = max

{
4,
√
NC

}

Q.add(C′)
Else Qdis.add(C

′)
Return Q

Figure 3: Bisection Step

The goal is to bound the number of all the constituent
boxes of the components in Tcomp. But, in anticipation of
the following complexity analysis, we want to consider an

augmented component tree T̂comp instead of Tcomp.

Let T̂comp be the extension of Tcomp in which, for each con-
fined adventitious components in Tcomp, we (conceptually)
continue to run our algorithm until they finally produce out-

put components, i.e., leaves of T̂comp. As before, these leaves
have at most 9 constituent boxes.

Since C′ → C denote the parent-child relation, a path in
Tcomp may be written

P = (C1 → C2 → · · · → Cs). (6)

We write wi, Ri, Ni, etc, instead of wCi , RCi , NCi , etc.
A component C is special if C is the root or a leaf of

T̂comp, or if #(C) < #(C′) with C′ the parent of C in T̂comp;
otherwise it is non-special. This is a slight variant of [3].

We call P a non-special path led by C1, if each Ci

(i = 2, . . . , s) is non-special, i.e., #(Ci) = #(Ci−1). The

special component tree T ∗
comp is obtained from T̂comp by

eliminating any non-special components while preserving the
descendent/ancestor relationship among special nodes.

Define smax to be the maximum length of a non-special

path in T̂comp.

Lemma 7.

smax = O
(
log n+ log log

w(B0)

ε

)
.

Charging function φ0(B). For each component C, de-
fine the root radius of C to be rC := rad(Z(C)), that is the
radius of the smallest disc enclosing all the roots in C. We
are ready to define a charging function φ0 for each box B

in the components of T̂comp: Let CB ∈ T̂comp be the com-
ponent of which B is a constituent box. Let ξB be any root

6



Root Clustering Algorithm

Input: Polynomial F (z), box B0 ⊆ C and ε > 0
Output: Components in Qout representing

natural ε-clusters of F (z) in 2B0.

⊲ Initialization

Qout ← Q1 ← Qdis ← ∅.
Q0 ← {(5/4)B0} // initial component

⊲ Preprocessing

While Q0 is non-empty

C ← Q0.pop()
If (C is confined and WC ≤ w(B0)/2)

Q1.add(C)
Else Q0.add(Bisect(C))

⊲ Main Loop

While Q1 is non-empty

C ← Q1.pop() // C has the largest WC in Q1

If (4∆C ∩ C′ = ∅ for all C′ ∈ Q1 ∪Qdis)

kC ← T̃G
∗ (∆C)

If (kC > 0) // Note: kC 6= 0.
If (WC ≥ ε)

C′ ← Newton(C)
If (C′ 6= ∅)

Q1.add(C
′); Continue

Else if (WC ≤ 3wC) // C is compact

Qout.add(C); Continue

Q1.add(Bisect(C))
Return Qout

Figure 4: Clustering Algorithm

in 2B. There are two cases: (i) If CB is a confined compo-

nent, there is a unique maximum path in T̂comp from CB to

a confined leaf EB in T̂comp containing ξB . Define φ0(B) to
be the first special component C along this path such that

rC < 3wB . (7)

where wB is the width of B. (ii) If CB is not confined, it
means that C is a component in the preprocessing stage. In
this case, define φ0(B) to be the largest natural ε-cluster
containing ξB. Notice that φ0(B) is a special component in
(i) but a cluster in (ii).

Lemma 8. The map φ0 is well-defined.

Using this map, we can now bound the number of boxes.

Lemma 9. The total number of boxes in all the components

in T̂comp is

O(t · smax) = O(#(2B0) · smax)

with t = |{φ0(B) : B is any box in T̂comp}|.

This improves the bound in [3] by a factor of log n.

6. BIT COMPLEXITY
Our goal is to prove the bit-complexity theorem stated in

the Introduction. All proofs are found in Appendix C.
The road map is as follows: we will charge the work of

each box B (resp., component C) to some natural ε-cluster
denoted φ(X) (resp., φ(C)). We show that each cluster φ(X)

(X is a box or a component) is charged Õ(1) times. Sum-
ming up over these clusters, we obtain our bound.

We may assume log(B0) = O(τF ) since Cauchy’s root
bound implies that any root zi satisfies |zi| ≤ 1+4 ·2τ , thus
we can replace B0 by B0 ∩ B(0, 2 + 8 · 2τ ).

Cost of T̃G-tests and Charging function φ(X): Our

algorithm performs 3 kinds of T̃G-tests:

T̃G
∗ (∆C), T̃G

kC
(∆′), T̃G

0 (∆(B)) (8)

respectively appearing in the main loop, the Newton Step
and the Bisection Step. We define the cost of processing
component C to be the costs in doing the first 2 tests in
(8), and the cost of processing a box B to be the cost of
doing the last test. Note that the first 2 tests do not ap-
ply to the non-confined components (which appear in the
preprocessing stage only), so there is no corresponding cost.

We next “charge” the above costs to natural ε-clusters.
More precisely, if X is a confined component or any box
produced in the algorithm, we will charge its cost to a nat-
ural ε-cluster denoted φ(X): (a) For a special component
C, let φ(C) be the natural ε-cluster Z(C′) where C′ is the
confined leaf of T ∗

comp below C which minimizes the length
of path from C to C′ in T ∗

comp. (b) For a non-special com-
ponent C, we define φ(C) to be equal to φ(C′) where C′

is the first special component below C. (c) For a box B,
we had previously defined φ0(B) (see Section 5). There are
two possibilities: If φ0(B) is defined as a special component,
then φ(φ0(B)) was already defined in (a) above, so we let
φ(B) :=φ(φ0(B)). Otherwise, φ0(B) is defined as a natural
ε-cluster, and we let φ(B) = φ0(B).

Lemma 10. The map φ is well-defined.

Define Ŝ to be the range of φ, so it is a set of natural ε-

clusters. The clusters in Ŝ are of two types: those defined

by the confined leaves of T̂comp, and those largest ε-clusters
of the form φ(B) with B in non-confined components.

Lemma 11. Each natural ε-cluster in Ŝ is charged O(smax log n)

times, i.e., Õ(1) times.

We are almost ready to prove the theorems announced in
Section 1.1. Theorem A is easier to prove if we assume that
the initial box B0 is nice in the following sense:

maxz∈2B0 log(z) = O(minz∈2B0 log(z)). (9)

Then the following lemma bounds the cost of processing
X where X is a box or a component.

Lemma 12. If the initial box is nice, the cost of processing
X (where X is a box or a component) is bounded by

Õ (n · LD)

bit operations with D = φ(X) and with LD defined in (2).
Moreover, an LD-bit approximation of F is required.

Using this lemma, we could prove Theorem A of Section
1.1 under the assumption that B0 is nice. The appendix
will prove Theorem A holds even if B0 is not nice; the proof
of Theorems B is also found in the appendix. In [3], the
complexity bound for global root isolation is reduced to the
case where B0 is centered at the origin. This requires a
global pre-processing step. It is unclear that we can adapt
that pre-processing to our local complexity analysis.
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7. CONCLUSION
This paper initiates the investigation of the local com-

plexity of root clustering. It modifies the basic analysis and
techniques of [3] to achieve this. Moreover, it solves a prob-
lem left open in [3], which is to show that our complexity
bounds can be achieved without adding a preprocessing step
to search for “nice boxes” containing roots.

We mention some open problems. Our Theorem A ex-
presses the complexity in terms of local geometric parame-
ters; how tight is this? Another challenge is to extend our
complexity analysis to analytic root clustering [31].
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2004 Update with typo corrections and an appendix.

[29] V. Sharma and C. Yap. Near optimal tree size bounds
on a simple real root isolation algorithm. In 37th
ISSAC, pp. 319 – 326, 2012.

[30] J.-C. Yakoubsohn. Finding a cluster of zeros of
univariate polynomials. Journal of Complexity,
16(3):603–638, 2000.

[31] C. Yap, M. Sagraloff, and V. Sharma. Analytic root
clustering: A complete algorithm using soft zero tests.
In Computability in Europe (CiE2013), LNCS
vol. 7921, pages 434–444, Heidelberg, 2013. Springer.

[32] C. K. Yap. Fundamental Problems of Algorithmic
Algebra. Oxford University Press, 2000.

[33] C. K. Yap. In praise of numerical computation. In
Efficient Algorithms, volume 5760 of Lect. Notes in
C.S., pp. 308–407. Springer-Verlag, 2009.

APPENDIX
We have omitted the three appendices which may be found
in our full paper: Appendix A contain proofs for Section 2.
Similarly, Appendix B and C are for Sections 5 and 6.
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APPENDIX

A. ROOT BOUNDS
To prove Theorem 3, we follow [3] by proving three lem-

mas. We then use these bounds to convert the bound in our
Theorem A into a bound in terms of algebraic parameters
as in (3) in Section 1.1.

A.1 LEMMA A1
In the following, we will define G(z) and H(z) relative to

any ∆ as follows:

F (z) = G(z)H(z) (10)

where G(z) =
∏

i=1(z − zi) such that ZF (∆) = Zero(G) =
{z1, . . . , zk} and Zero(H) = {zk+1, . . . , zn}. Note that the
leading coefficients of F (z) and H(z) are the same. By in-
duction on i, we may verify that

F (i)(z) =

i∑

j=0

(
i

j

)
G(i−j)(z)H(j)(z)

and

F (i)(z)

i!
=

∑

J∈( [n]
n−i)

∏

j∈J

(z − zj).

Lemma A1 Let ∆ = ∆(m,r) and λ = λ0 := 4k(n− k).
If #(∆) = #(λ ·∆) = k ≥ 0 then for all z ∈ ∆

∣∣∣F
(k)(z)

k!H(z)

∣∣∣ > 0.

For z = m, the lower bound can be improved to half.
Proof. Using the notation (10), we see that

F (k)(z)

k!H(z)
=

∑

J∈( [n]
n−k)

∏
j∈J(z − zj)∏n

i=k+1(z − zi)

First suppose λ0 = 0, i.e., k = 0 or k = n. If k = n, then
H(z) is the constant polynomial a0 where a0 is the leading

coefficient of F (z), and clearly, F (k)(z)
k!H(z)

= 1. If k = 0, then

F (z) = H(z) and again F (k)(z)
k!H(z)

= 1. In either case the

lemma is verified.
Hence we next assume λ0 > 0. We partition any J ∈(
[n]
n−k

)
into J ′ := J ∩ [k] and J ′′ := J \ [k]. Then j′ := |J ′|

ranges from 0 to min(k, n−k). Also, j′ = 0 iff J = {k + 1, . . . , n}.

F (k)(z)

k!H(z)
=

∑

J∈
(

[n]
n−k

)

∏
j∈J (z − zj)∏n

i=k+1(z − zi)

=

min(k,n−k)∑

j′=0

∑

J′∈
(
[k]

j′

)

∑

J′′∈
(

[n]\[k]

n−k−j′

)

∏
i′∈J′(z − zi′ )

∏
i′′∈J′′(z − zi′′ )∏n

i=k+1(z − zi)

= 1 +

min(k,n−k)∑

j=1

∑

J′∈
(
[k]
j

)

∑

J′′∈
(

[n]\[k]
n−k−j

)

∏
i′∈J′(z − zi′ )

∏
i′′∈J′′(z − zi′′ )∏n

i=k+1(z − zi)

We next show that the absolute value of the summation
on the RHS is at most 20

21
which completes the proof. Since

z, zi′ ∈ ∆, and zi′′ 6∈ 4k(n−k)∆ it follows that |z−zi′ | ≤ 2r

and |z − zi′′ | ≥ 3k(n− k)r. From these inequalities, we get

min(k,n−k)∑

j=1

∑

J′∈
(
[k]
j

)

∑

J′′∈
(

[n]\[k]
n−k−j

)

∏
i′∈J′ |z − zi′ |

∏
i′′∈J′′ |z − zi′′ |∏n

i=k+1 |z − zi|

≤

min(k,n−k)∑

j=1

(k
j

)( n− k

n− k − j

)( 2r

3k(n− k)r

)j

≤

min(k,n−k)∑

j=1

kj

j!

(n− k

j

)( 2

3k(n− k)

)j

<
k∑

j=1

1

j!

(2

3

)j

= e2/3 − 1 <
20

21
.

For z = m, the term is upper bounded by e1/4 − 1 < 1
2
.

Q.E.D.

Since for all z ∈ ∆, F (k)(z) 6= 0, we get the following:

Corollary A1 Let λ = λ0 := 4k(n − k). If #(∆) =

#(λ∆) = k ≥ 0 then F (k) has no zeros in ∆.

A.2 Lemma A2

Lemma A2 Let ∆ = ∆(m,r), λ = 4k(n−k) and c1 = 7kK.
If #(∆) = #(λ∆) = k then

∑

i<k

|F (i)(m)|
|F (k)(m)|

k!

i!
(c1r)

i−k <
1

2K
.

Proof. The result is trivial if k = 0. We may assume that
k ≥ 1. With the notation of (10), we may write

|G(i)(m)|
i!

≤
∑

J∈( [k]
k−i)

∏

j∈J

|m− zj | ≤
(
k

i

)
rk−i,

since zj ∈ ∆. Similarly, we obtain

∣∣∣∣
H(i)(m)

i!H(m)

∣∣∣∣ ≤
∑

J∈([n]\[k]
i )

∏

j∈J

1

|m− zj |
≤
(
n− k

i

)
1

(λr)i
.

From these two results, we derive that

∣∣∣G
(i−j)(m)H(j)(m)

(i− j)!j!H(m)

∣∣∣ ≤
(

k

i− j

)
rk−(i−j) ·

(
n− k

j

)
1

(λr)j

=

(
k

i− j

)(
n− k

j

)
· r

k−i

λj
.

(
i

j

)∣∣∣G
(i−j)(m)H(j)(m)

i!H(m)

∣∣∣ ≤
(

k

i− j

)(
n− k

j

)
rk−i

λj
.

Thus we get
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k−1∑

i=0

|F (i)(m)|

|F (k)(m)|

k!

i!
(c1r)

i−k

≤

k−1∑

i=0

i∑

j=0

(i
j

)
|G(i−j)(m)H(j)(m)|

|F (k)(m)|

k!

i!
(c1r)

i−k

≤

k−1∑

i=0

i∑

j=0

|H(m)|

|F (k)(m)|

( k

i− j

)(n− k

j

)k!ci−k
1

λj

≤ 2

k−1∑

i=0

i∑

j=0

( k

k − i+ j

)
·
(n− k

j

) ci−k
1

λj
(by Lemma A1 for z = m)

≤ 2

k−1∑

i=0

i∑

j=0

(kj)(kk−i)

(k − i+ j)!
·
(n− k)j

j!

ci−k
1

(4k(n − k))j

= 2

k−1∑

i=0

kk−ici−k
1

(k − i)!

i∑

j=0

1

j!4j

< 2

k−1∑

i=0

kk−ici−k
1

(k − i)!
e1/4

< 2e1/4
k∑

j=1

(k/c1)j

j!

< 2e1/4(e1/7K − 1)

< 2e1/4
1

7K − 1

≤ 2e1/4
1

6K
<

1

2K
.

Q.E.D.

A.3 Lemma A3

Lemma A3 Let λ1 = 3K(n − k) · max {1, 4k(n− k)} =
3K(n− 1) ·max {1, λ0}.
If #(∆) = #(λ1 ·∆) = k ≥ 0 then

n∑

i=k+1

∣∣∣∣
F (i)(m)ri−kk!

F (k)(m)i!

∣∣∣∣ <
1

2K
.

where ∆ = ∆(m, r).

Proof. First, assume λ0 = 4k(n − k) > 0 (i.e., 0 < k <

n). Let Zero(F (k)) =
{
z
(k)
1 , . . . , z

(k)
n−k

}
be the roots of F (k).

Since

#(3K(n− k)∆) = #(3K(n− k) · λ0∆),

Corollary A1 implies that F (k) has no roots in 3K(n−k) ·∆.

Thus, |m− z
(k)
j | ≥ 3K(n− k)r and

∣∣∣∣
F (k+i)(m)

F (k)(m)

∣∣∣∣ ≤ i!
∑

J∈([n−k]
i )

∏

j∈J

1

|m − z
(k)
j |

≤ i!
(
n−k
i

)

(3K(n− k)r)i

≤ (n− k)i

(3K(n− k)r)i

≤ 1

(3Kr)i
.

It follows that

n∑

j=k+1

∣∣∣∣
F (j)(m)rj−kk!

F (k)(m)j!

∣∣∣∣

≤
n−k∑

i=1

∣∣∣∣
F (k+i)(m)

F (k)(m)

∣∣∣∣
ri

i!

(
since

k!

(k + i)!
≤ 1

i!

)

≤
n−k∑

i=1

1

(3Kr)i
ri

i!

≤
n−k∑

i=1

( 1

3K

)i 1
i!

< e1/3K − 1 <
1

3K − 1
<

1

2K
.

It remains to consider the case k = 0 or k = n. The lemma
is trivial for k = n. When k = 0, we have λ1 = 3Kn and

the roots z
(k)
j are the roots of F . Then |m − z

(k)
j | ≥ 3Knr

follows from our assumption that #(λ1∆) = #(∆) = 0. The
preceding derivation remains valid. Q.E.D.

Corollary A3 Let c1 ≥ 1. If #(∆) = #(c1λ1 ·∆) = k ≥ 0
then

n∑

i=k+1

∣∣∣∣
F (i)(m)(c1r)

i−kk!

F (k)(m)i!

∣∣∣∣ <
1

2K
.

where ∆ = ∆(m, r).

Proof. Let ∆1 = c1∆. Then #(∆1) = #(λ1∆1) = k, and
the previous lemma yields our conclusion (replacing r by
c1r). Q.E.D.

A.4 Theorem 2

Theorem 2 Let k be an integer with 0 ≤ k ≤ n = deg(F )
and K ≥ 1.
Let c1 = 7kK, and λ1 = 3K(n− k) ·max1 {4k(n− k)}.
If

#(∆) = #(c1λ1∆) = k,

then

Tk(c1∆,K, F ) holds.

Proof.
By definition, Tk(c1∆,K, F ) holds iff

∑

i6=k

|F (i)(m)(c1r)
i−kk!

|F (k)(m)| <
1

K

But the LHS is equal to A+B where

A :
∑

i>k

|F (i)(m)(c1r)
i−kk!

|F (k)(m)|

B :
∑

i<k

|F (i)(m)(c1r)
i−kk!

|F (k)(m)|

By Corollary A3, A is at most 1
2K

and by Lemma A2, B is

at most 1
2K

. This proves our theorem. Q.E.D.
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Let K = 3
2
. Then c1 · λ1 ≤ (7Kn) · (12Kn3) = 189n4 .

This proves that #(∆) = #(c1λ1∆) = k. We conclude from
the preceding theorem that Tk(7Kn∆, K, F ) holds. Thus:

Corollary of Theorem 2

(1) If #(∆) = #(189n4∆) then Tk(
21
2
n∆, 3

2
, F ) holds.

(2) If #( 1
11n

∆) = #(18n3∆) then Tk(∆, 3
2
, F ) holds.

Proof. Part(2) is obtained from Part(1) by scaling the discs
in Part(1) by 2

11n
. Q.E.D.

A.5 Bound on TD in the Theorem A
We will need the following result to derive the bound.

Lemma A4 Let g(x) be a complex polynomial of degree n
with distinct roots α1, . . . , αm where αi has multiplicity ni.
Thus n =

∑m
i=1 ni. Let I ⊆ [m] and ν = min {ni : i ∈ I}.

Then
∏

i∈I

|gni(αi)| ≥ |GenDisc(g)|
(
‖g‖m∞nn+1Mea(g)n+1−ν)−1

,

where

GenDisc(g) := lcf(g)m
∏

1≤i<j≤m

(αi − αj)
ni+nj

and gni(αi) := g(ni)(αi)/ni!.

Proof. From the observation that

gni(αi) = lcf(g)
∏

1≤j≤m, j 6=i

(αi − αj)
nj ,

we obtain the following relation:

m∏

i=1

gni(αi) = lcf(g)m
∏

1≤i<j≤m

(αi − αj)
ni+nj = GenDisc(g).

From this it follows that

∏

i∈I

|gni(αi)| = |GenDisc(g)|




∏

i∈[m]\I
|gni(αi)|




−1

. (11)

We next derive an upper bound on |gni(αi)|. Let g(x) =∑n
j=0 bjx

j . By standard arguments we know that

gni(αi) =
n∑

j=ni

(
j

ni

)
bjα

j−ni
i .

Taking the absolute value and applying triangular inequal-
ity, we get

|gni(αi)| ≤ ‖g‖∞
n∑

j=ni

(
j

ni

)
max {1, |αi|}j−ni .

Applying Cauchy-Schwarz inequality to the RHS we obtain

|gni(αi)| ≤ ‖g‖∞
(

n∑

j=ni

(
j

ni

)2) 1
2
(

n∑

j=ni

max {1, |αi|}2(j−ni)

) 1
2

.

The second term in brackets on the RHS is smaller than
max {1, |αi|}n−ni+1, and the first is bounded by

∑n
j=ni

(
j
ni

)
=(

n+ni+1
n

)
≤ nni+1. Thus we obtain

|gni(αi)| ≤ ‖g‖∞nni+1 max {1, |αi|}n−ni+1 .

Taking the product over all i ∈ [m] \ I , we get that
∏

i∈[k]\I
|gni(αi)| ≤ ‖g‖m∞nn+1Mea(g)n+1−mini∈I ni .

Substituting this upper bound in (11) yields us the desired
bound. Q.E.D.

Let I ⊆ [m]. We next derive an upper bound on
∑

D∈Ŝ TD,
where

TD = log
∏

zj 6∈D

|ξi − zj |−nj ,

here ξi is a representative root in the natural ε-cluster D.
In this section, we use the convenient shorthand ξD to de-
note the representative for cluster D, and kD the number of
roots in D. Moreover, we choose the representative ξD as
a root that has the smallest absolute value among all roots
in D. Let D denote a set of disjoint natural ε-clusters of F
such that the union of these clusters contains all the roots
of F . Define Fε as the polynomial obtained by replacing
each natural ε-cluster D of F by its representative ξD with
multiplicity kD, i.e.,

Fε(z) := lcf(F )
∏

D∈D
(z − ξD)kD

More importantly, the choice of the representative ensures
that the Mahler measure does not increase, i.e., Mea(Fε) ≤
Mea(F). Since ξD is a root of multiplicity kD, it can be
verified that

F
(kD)
ε (ξD)

kD!
= lcf(F )

∏

D′∈D,D′ 6=D

(ξD − ξD′)kD′ .

We first relate the product
∏

z 6∈D |ξD − zj |nj appearing in
Ti with the term on the RHS above. The two are not the
same, since we have replaced all natural ε-clusters with their
representative, and hence for another cluster D′ the distance
|ξD − zj |, for zj ∈ D′, is not the same as |ξD − ξD′ |. Never-
theless, for an isolator ∆′ of D′, we have

2 min
w∈∆′

|ξD −w| ≥ max
w∈∆′

|ξD − w|

and hence

|ξD − zj | ≥ |ξD − ξD′ |
2

.

From this inequality, we obtain that

∏

zj 6∈D

|ξD − zj |nj ≥ 2−n

∣∣∣F (kD)
ε (ξD)

∣∣∣
kD!

.

So to derive an upper bound on
∑

D∈Ŝ TD, it suffices to de-

rive a lower bound on
∏

D∈Ŝ |F
(k)
ε (ξD)|/k!. Applying the

bound in Lemma A4 above to Fε, along with the observa-
tions that ‖Fε‖∞ ≤ 2nMea(Fε), and Mea(Fε) ≤ Mea(F),
we get the following result:

Theorem A5
∑

D∈Ŝ

TD = Õ(log |GenDisc(Fε)|−1 + nm+ n logMea(F)).

Note, however, that

|GenDisc(Fε)| > |GenDisc(F )|
ε
∑

D∈Ŝ
k2
D

.
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If we assume that ε < 1, i.e., |GenDisc(Fε)| is larger than
|GenDisc(F )|, then the term (

∑
D∈Ŝ k2

D) log ε < 0 and so

we can replace |GenDisc(Fε)|−1 by |GenDisc(F )|−1 in The-
orem A5 to obtain a larger bound. Moreover, if F is an inte-
ger polynomial, not necessarily square-free, from [18, p. 52]
we know that log |GenDisc(F )|−1 = O(nτF +n log n) Hence
we obtain the following bound (using Landau’s inequality
Mea(F ) ≤ ‖F‖2 ≤ n2τF ):

Corollary A6 Let {Di; i ∈ I ⊆ [m]} be any set of disjoint
nature ε-clusters of an integer polynomial F with m distinct
roots. Then

∑

i∈I

TDi = Õ(nτF + nm).

B. BOUND ON NUMBER OF BOXES
Our main goal in this section is to bound the total number

of boxes produced by the algorithm. But before this, let us
show the correctness of our algorithm:

Theorem 6 (Correctness)
The Root Clustering Algorithm halts and outputs a collec-
tion {(∆C , kC) : C ∈ Qout} of pairwise disjoint ε-isolators
such that Z(B0) ⊆

⋃
C∈Qout

Z(∆C) ⊆ Z(2B0).

Proof. First we prove halting. By way of contradiction,
assume Tcomp has an infinite path 5

4
B0 = C0 → C1 → C2 →

· · · . After O(log n) steps, the Ci’s are in the main loop and
satisfies #(Ci) = #(C+

i ) ≥ 1. Thus the Ci converges to
a point ξ which is a root of F (z). For i large enough, Ci

satisfies WCi ≤ 3wCi and wCi < ε. Moreover, if Ci is small
enough, 4∆Ci will not intersect other components. Under
all these conditions, the algorithm would have output such
a Ci. This is a contradiction.

Upon halting, we have a set of output components. We
need to prove that they represent a set of pairwise disjoint
natural ε-clusters. Here, it is important to use the fact that
Q1 is a priority queue that returns components C in non-
increasing width WC . Suppose inductively, each component
in the Qout is represents a natural ε-cluster, and they are
pairwise disjoint. Consider the next component C that we
output: we know that 4∆C does not intersect any compo-
nents in Q1∪Qdis. But we also know that C ∩4∆C′ = ∅ for
any C′ in Qout. We claim that this implies that 3∆C ∩ C′

must be empty. To see this, observe thatWC ≤WC′ because
of the priority queue nature of Q1. Draw the disc 4∆C′ , and
notice that the center of ∆C cannot intersect 3∆C′ . There-
fore, 3∆C cannot intersect ∆′

C . This proves that C can be
added to Qout and preserve the inductive hypothesis.

It is easily verified that the roots represented by the con-
fined components belong to 15

8
B0 ⊂ 2B0. But we must

argue that we cover all the roots in B0. How can boxes be
discarded? They might be discarded in the Bisection Step
because they succeed the exclusion test, or because they be-
long to an adventitious component. Or we might replace
an entire component by a subcomponent in a Newton Step,
but in this case, the subcomponent is verified to hold all the
original roots. Thus, no roots in B0 are lost. Q.E.D.

In Section 3, properties (C4) and (C8) refers to the fol-
lowing fact about confined components:

Lemma B1. If C is confined, then #(C) = #(C+).

Proof. SinceC is confined, the separation of C from ∂((5/4)B0)
is at least wC . Suppose z is a root in C+ \ C. That
means that z ∈ B+ for some constituent box B in C. Thus
Sep(C, z) ≤ wC/2. This proves that z is in (5/4)B0. Since
z ∈ (5/4)B0, there is a box B containing z that is in some
component C′ in Q0 ∪ Q1 ∪ Qdis. But Sep(C,C′) ≥ wC .
This is a contradiction. Q.E.D.

Note that necessary condition that C is an output com-
ponent is that WC ≤ 3wC . We may say C is compact if
this condition holds. We make various use of the following
facts:

Lemma B2.
Let C be a component.
(a) If C is confined with k = #(C), then C has at most 9k
constituent boxes. Moreover, WC ≤ 3k · wC .
(b) If Z(C) is strictly contained in a box of width wC, then
C is compact: WC ≤ 3wC .
(c) If there is a non-special path (C1 → · · · → C) where C1

is special, then wC ≤ 4wC1
NC

.

Proof. Parts (a) and (b) are easy to verify. Part (c) is
essentially from [3] with a slight difference: we do not need
to C1 to be equal to the root 5

4
B0. That is because our

algorithm resets the Newton speed of the special component
C1 to 4. Q.E.D.

The next lemma addresses the question of lower bounds
on the width wC of boxes in components. If C is a leaf, then
wC < ε, but how much smaller than ε can it be? Moreover,
we want to lower bound wC as a function of ε.

Lemma B3. Denote k = #(2B0).
(a) If C is a component in the pre-processing stage, then

wC ≥ w(B0)
48k

.
(b) Suppose C1 → · · · → C2 is a non-special path with
WC1 < ε. Then it holds

wC1

wC2

< 57k.

(c) Let C be a confined leaf in T̂comp then

wC >
ε

2

( 1

114k

)k
.

Proof. (a) By way of contradiction, assume wC < w(B0)
48k

.

Then the parent component C′ satisfies wC′ < w(B0)
24k

since
C is obtained from C′ in a Bisection Step. Then WC′ ≤
3kwC′ < w(B0)

8
. Thus C′ ∩ B0 is empty or C′ is confined.

In either case, we would not bisect C′ in the pre-processing
stage, contradicting the existence of C.

(b) In this proof and in the proof of part (c) of this Lemma,
we write wi, Ri, Ni, etc, instead of wCi , RCi , NCi , etc. By
way of contradiction, assume that w1

w2
≥ 57k. Since W1 ≤ ε,

from the algorithm, we know that each step in the path
C1 → · · · → C2 is a Bisection step. Thus there exists a
component C′ such that 3k · w2 < wC′ ≤ 6k · w2. The

following argument shows that C′ is a leaf of T̂comp. By
Lemma B2(a), we have W2 ≤ 3kw2, thus W2 < wC′ . Thus
the roots in C′ are contained in a square of width less than
wC′ . By Lemma B2(b), we conclude that C′ is compact.
To show that C′ is a leaf, it remains to show that 4∆C′ has
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no intersection with other components. We have 4RC′ =
4 · 3

4
WC′ ≤ 9wC′ . Meanwhile, since C′ is compact, it is easy

to see that the distance from the center of ∆C′ to C′ is at
most 1

2
wC′ . Thus the separation between C′ and any point

in 4∆C′ is less than 9wC′ + 1
2
wC′ = 19

2
wC′ ≤ 19

2
· 6k · w2 ≤

19
2
· 6k · w1

57k
= w1. By Property (C3) in Section 3, we know

that C′ is separated from other components by at least w1,
thus 4∆C′ has no intersection with other components. We

can conclude that C′ is a leaf of T̂comp. Contradiction.
(c) Let C0 be the first component above C such that w0 <

ε. From the algorithm, we have w0 ≥ ε
2
. Consider the path

P = C0 → · · · → C. There exists a consecutive sequence of
special components below C0, denoted as {C1, . . . , Ct} with
Ct = C. Split P into a concatenation P = P0;P1; · · · ;Pt−1

of t subpaths where subpath Pi = (Ci → · · ·Ci+1) for i ∈
{0, . . . , t − 1}. Let C′

i be the parent of Ci in T̂comp for i ∈
{1, . . . , t}. Consider the subpath of Pi where we drop the
last special configuration: (Ci → · · · → C′

i+1). By part (b)
of this lemma, we have

wCi

wC′
i+1

< 57k

for i ∈ {0, . . . , t − 1}. The step C′
i+1 → Ci+1 is evidently a

Bisection step and so

wi

wi+1
< 114k.

Hence w0
wt

< (114k)k. It follows wC > ε
2
( 1
114k

)k. Q.E.D.

The next lemma is an adaptation of [3, Lemma 8], giving
a sufficient condition for the success of the Newton step.

Lemma B4. Let C be a confined component with WC ≥ ε.
Then Newton(C) succeeds provided that

(i) #(∆C) = #((220 · n2 ·NC) ·∆C).

(ii) rad(Z(C)) ≤ (220 · n)−1 · RC
NC

.

We now consider an arbitrary non-special path as in (6).

In [3, Lemma 10], it was shown that s = O
(
log n+log(log(w(B0))·

log(σF (2B)−1))
)
. We provide an improved bound which is

based on local data, namely, the ratio w1/ws only.

Lemma B5. The length of the non-special path (6) satisfies

s = O(log log
w1

ws
+ log n).

Proof. From Lemma B3(a), we can see that the length
of path in the preprocessing stage is bounded by O(log n).
From Lemma B3(b), the length of non-special path is bounded
by O(log n) if the width of components is smaller than ε.
Hence it remains to bound the length of non-special path in
the main loop such that any component C in the path sat-
isfies WC ≥ ε. Lemma B2 gives us the sufficient conditions
to perform Newton step in this path.

As in [3], the basic idea is to divide the path P = (C1 →
· · · → Cs) (using the notation of (6)) into 2 subpaths P1 =
(C1 → · · · → Ci1) and P2 = (Ci1 → · · · → Cs) such that
the performance of the Newton steps in P2 can be controlled
by Lemma B2. This lemma has two requirements ((i) and
(ii)): we show that the components in P2 automatically sat-
isfies requirement (i). Thus if component Ci in P2 satisfies
requirement (ii), we know that Ci → Ci+1 is a Newton step.

This allows us to bound the length of P2 using the Abbot-
Sagraloff Lemma [3, Lemma 9].

We write wi, Ri, Ni, etc, instead of wCi , RCi , NCi , etc.
Define i1 as to be the first index satisfying Ni1 · wi1 <

2−24 · n−3 · w1. If no such index exists, take i1 as s.
First we show that the length of P1 is O(log n). Note that

Ni · wi decreases by a factor of at least 2 in each step [3].
There are two cases: if step Ci → Ci+1 is a Bisection step,
wi+2 = wi/2 and Ni does not increase; if it is a Newton
step, then wi+1 = wi

2Ni
and Ni+1 = N2

i , so Ni+1 · wi+1 =

N2
i · wi

2Ni
= 1

2
· Ni · wi. It follows that at most log(224 · n3)

steps are performed to reach an i′ such that Ni′ · wi′ ≤
2−24 ·n−3 ·N1 ·w1. This proves i

′ ≤ 1+log(224 ·n3). Since C1

is a special component, our algorithm reset N1 = 4 (cf. proof
of Lemma B2). So it takes 2 further steps from i′ to satisfy
the condition of i1. Thus i1 ≤ 3 + log(224 · n3) = O(log n).
Note that this bound holds automatically if i1 = s.

We now show that requirement (i) of Lemma B2 is satis-
fied in P2: from the definition of i1, for any i ≥ i1, 2

20 · n2 ·
Ni ·ri ≤ 220 ·n2 ·Ni · 34 ·9n ·wi < w1, and the separation of C1

from any other component is at least w1, so (220 ·n2 ·Ni) ·∆i

contains only the roots in Z(C1), fulfilling requirement (i).
Next consider the path P2. Each step either takes a bi-

section step or a Newton step. However, it is guaranteed to
take the Newton step if requirement (ii) holds (note that it
may take a Newton step even if requirement (ii) fails). Let
#(∆s) = k. If component Ci satisfies

Ri

Ni
≥ 220 · n ·Rs, (12)

the requirement (ii) is satisfied. But Rs < 3
4
· 9n · ws <

24 · n · ws and Ri ≥ wi so if

wi

Ni
≥ (220 · n) · (24 · n) · ws = 224 · n2 · ws (13)

holds, it would imply (12). On the other hand, (13) is pre-
cisely the requirement that allows us to invoke [3, Lemma
9]. Applying that lemma bounds the length of P2 by
A := (log logNi1 + 2 log log(wi1 · (224 · n2)−1 · 1

wCs
) + 2) +

(2 log n + 24). Since Ni1 ≤
wi1
ws

, we conclude that A =

O(log log
wi1
ws

+ log n). This concludes our proof. Q.E.D.

We will need what we call the small ε assumption,
namely, ε ≤ min {1, w(B0)/(96n)}. If this assumption fails,
we can simply replace ε by ε = min {1, w(B0)/(96n)} to
get a valid bound from our analysis. This assumption is to
ensure that no ε-cluster is split in the preprocessing stage.

Define smax to be the maximum length of a non-special

path in T̂comp.

Lemma 7

smax = O
(
log n+ log log

w(B0)

ε

)
.

Proof. This is a direct result from the previous lemma. Q.E.D.

We say that a component C has small root radius if
rC < 3wC ; otherwise it has big root radius. It is easy to
see that if C has small root radius, then it has at most 64
constituent boxes. We next prove a lemma that is useful for
later proof.
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Lemma B6. Let C1 be the parent of C2 in T ∗
comp, then

rC1 ≤ 3
√
2n · wC2

Proof. Suppose C′
2 is the parent of C2 in the component

tree T̂comp. Then all the roots in C1 remain in C′
2, meaning

that rC′
2
= rC1 . It is easy to see that the step C′

2 → C2

is a Bisection Step, thus wC′
2
= 2wC2 . By Lemma B2(a),

we have WC′
2
≤ 3n · wC′

2
= 6n · wC2 . It follows rC′

2
≤

1
2
·
√
2WC′

2
≤ 3
√
2n · wC2 . Hence rC1 = rC′

2
≤ 3
√
2n · wC2 .
Q.E.D.

Lemma 8 The map φ0 is well-defined.

Proof. Consider the component CB of which B is a con-
stituent box. There are two cases in our definition of φ0:

(i) If CB is a confined component, it is easy to see that we
can find a root ξB ∈ 2B, and fix a unique maximum path

in T̂comp from CB to a confined leaf EB in T̂comp containing
ξB . It suffices to prove that we can always find a special
component C in this path such that rC < 3wB . This is
true because rEB < 3wEB ; to see this, note that EB is

a confined leaf of T̂comp. Thus WEB ≤ 3wEB (this is the
condition for output in the main loop of the Root Clustering

Algorithm). It follows rEB ≤
√

2
2
· 3wEB < 3wEB . Hence

rEB < 3wEB < 3wB . we can always find a first special
component along the path from CB to EB such that (7) is
satisfied.

(ii) If CB is a non confined component, we can also find
a root ξB in 2B, and we can always charge B to the largest
natural ε-cluster containing ξB. Q.E.D.

Lemma B7.
(a) For any box B produced in the preprocessing stage, if
φ0(B) is a natural ε-cluster, then we have wB ≥ 2·rad(φ0(B)).
(b) For any B 6= 5

4
B0 produced in the algorithm, φ0(B) ⊆

2B0.

Proof. (a)

wB ≥ w(B0)
48n

(by Lemma B3(a))
≥ 2 · ε (by small ε assumption)
≥ 2 · rad(φ0(B)) (by definition of ε-cluster)

(b) If φ0(B) is a special component, it is easy to see that
φ0(B) ⊆ 2B0.

We now discuss the case where φ0(B) is a natural ε-
cluster. To show that φ0(B) ⊆ 2B0, note that since B is
a proper subbox of 5

4
B0, it follows that 2B ⊆ 15

8
B0. Thus

there is a gap of w(B0)
16

between the boundaries of 2B0 and
15
8
B0. Since φ0(B) is a ε-cluster, thus rad(φ0(B)) < ε ≤

w(B0)
96n

, and φ0(B)∩2B is non-empty, we conclude that φ0(B)
is properly contained in 2B0. Q.E.D.

Lemma 9 The total number of boxes in all the components

in T̂comp is

O(t · smax) = O(#(2B0) · smax)

with t = |{φ0(B) : B is any box in T̂comp}|.

Proof. By the discussion above, we charge each box B to
φ0(B) which can be a special component or a cluster.

First consider the case where φ0(B) is special component.
Note that 1

3
rφ0(B) < wB . We claim that the number of boxes

congruent with B that are charged to φ0(B) is at most 64:
to see this, note that 2B ∩ Z(φ0(B)). If ∆ is the minimum
disc containing Z(φ0(B)), then 2B must intersect ∆. By
some simple calculations, we see that at most 64 aligned
boxes congruent to B can be charged to φ0(B).

We now analyze the number of different sizes of the boxes
that are charged to the same special component C.

Denote the parent of C in the special component tree
T ∗
comp as C′. Let B be a box such that φ0(B) = C and

suppose B is the constituent boxes of the component CB,
evidently, wB = wCB . From the definition of φ0, B satisfies
one of the two following conditions: (i) CB is an component
in the path C′ → · · · → C and wB > 1

3
rC ; (ii) CB is a com-

ponent above C′ and 1
3
rC′ ≥ wB > 1

3
rC . It is easy to see

that there number of components CB satisfying condition
(i) is bounded by smax from Lemma 7. It remains to count
the number of components CB that satisfy condition(ii). By
Lemma B6, we have rC′ ≤ 3

√
2n ·wC . Since B is charged to

C but not C′, we have wB ≤ 1
3
· rC′ ≤

√
2n ·wC . The box B

is constitute an ancestor of C, thus wC ≤ wB . Therefore, we
have wC ≤ wB ≤

√
2n · wC , and note that wB decreases by

a factor of at least 2 at each step, so wB may take log(
√
2n)

different values. Hence, the number of boxes charged to each
special component is bounded by 64smax.

Now consider the case where a box is charged to a natural
ε-cluster, this case only happens in preprocessing step where
the number of steps is bounded by O(log n). On the other
hand, by Lemma B7(a), we have 2rad(φ0(B)) ≤ wB if φ0(B)
is a ε-cluster. Thus the number of boxes of the same size
charged to a natural ε-cluster by φ0 is at most 9. Therefore,
the number of boxes charged to a natural ε-cluster by φ0 is
bounded by O(log n).

Thus we can conclude that the total number of boxes is
bounded by O(t · smax) with t = |{φ0(B) : B is any box in

T̂comp}|. Q.E.D.

This improves the bound in [3] by a factor of log n.

C. BIT COMPLEXITY
We need to account for the cost of T̃G tests on all the

concerned boxes and components.

Lemma 10 The map φ is well-defined.

Proof. For a special component C, to define φ(C) we first
consider C′, defined as the confined leaf such that path (C →
· · · → C′) is the shortest in T ∗

comp. This path has length
at most log n since there exists a path of length at most
log n in which we choose the special node with the least
#(Ci) at each branching (this was the path chosen in [3]).
Hence, φ(C) is well-defined. The map φ for a non-special
component and a box are defined based on that for a special
component, it is easy to check that they are well-defined.

It remains to prove that in the case where φ0(B) is a
natural ε-cluster, the map φ is well-defined. This follows
from Lemma 8. Q.E.D.

We use the notation Õ(1) to refer to a quantity that
is O((log(nτ log(ε−1)))i) for some constant i. To indicate
the complexity parameters explicitly, we could have written
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“Õn,τ,log(ε−1)(1)”.

Lemma 11 Each natural ε-cluster in Ŝ is charged O(smax log n)

= Õ(1) times.

Proof. First consider the number of components mapped
to a same natural ε-cluster. From the definition of φ(C)
for a special component, it is easy to see that the number
of special components mapped to a same natural ε-cluster
is at most log n. Thus the number of non-special compo-
nents mapped to a same natural ε-cluster is bounded by
O(smax log n). Hence the number of components mapped to
a same natural ε-cluster is bounded by O(smax log n).

Then we consider the number of boxes mapped to a same
natural ε-cluster. By Lemma 9, the number of boxes charged
to a same special component by φ0 is bounded by O(smax),
and the number of special components mapped to a same
natural ε-cluster is bounded by O(log n), thus the number
of boxes mapped to a same natural ε-cluster is bounded by

O(smax log n) = Õ(1). Also by Lemma 9, the number of
boxes charged to a same natural ε-cluster by φ0 is bounded

by O(log n)Õ(1).
In summary, each natural ε-cluster is mappedO(smax log n) =

Õ(1) times. Q.E.D.

Lemma C1. Let ∆ = ∆(m,R) and ∆̂ :=K∆ for some K ≥
1. Let D be any subset of Z(∆̂) and ζ ∈ D. If µ̂ = #(∆̂)
and kD = #(D) then

max
z∈∆

|F (z)| > RkD · n−µ̂ ·K−µ̂+kD · 2−3n+1 ·
∏

zj /∈D

|ζ − zj |
nj .

where zj ranges over all the roots of F outside D and #(zj) =
nj .

Proof. Let {z1, z2, . . . , zr} be the set of all the distinct
roots of F . Wlog, assume that ζ appearing in the lemma is
z1. There exists a point p ∈ ∆(m, R

2
) such that the distance

from p to any root of F is at least R
2n

, this is because the

union of all discs ∆(zi,
R
2n

) covers an area of at most n ·
π( R

2n
)2 = πR2

4n
< π(R

2
)2. Then for a root zi ∈ ∆̂, it holds

|p−zi|
|z1−zi| ≥

R/(2n)
2KR

= 1
4nK

, and for a root zj /∈ ∆̂, it holds
|p−zj |
|z1−zj | ≥

|p−zj|
|p−zj |+|p−z1| =

1

1+
|p−z1|
|p−zj|

≥ 1

1+ 2KR
KR−R/2

= 1
5
. Note

that |F (p)| = lcf(F ) ·∏r
i=1 |p− zi|ni , it follows

|F (p)|∏
zj /∈D |z1 − zj |

nj

= lcf(F )
∏

zi∈D

|p− zi|
ni

∏

zj∈∆̂,zj /∈D

∣∣∣∣
p − zj

z1 − zj

∣∣∣∣
nj ∏

zk /∈∆̂

∣∣∣∣
p− zk

z1 − zk

∣∣∣∣
nk

≥
1

4
·

(
R

2n

)kD

·

(
1

4nK

)µ̂−kD

·

(
1

5

)n−µ̂

> RkD · n−µ̂ ·K−µ̂+kD · 2−3n−1,

which proves the Lemma. Q.E.D.

Lemma C2. For any box B, φ(B) is contained in 14B.

Proof. Consider φ0(B). If φ0(B) is a cluster, then 2B
intersects φ0(B), and 2rad(φ0(B)) ≤ wB (Lemma B7(a)).
Thus φ0(B) ⊆ 4B.

Next suppose φ0(B) is a special component. Then wB >
1
3
rC where rC = rad(Z(C)). Since 2B∩Z(C) is non-empty,

we conclude that Z(C) ⊆ 14B. Q.E.D.

Now we derive a bound for the cost of processing each
component and box.

Lemma C3. Denote k = #(2B0).
(a) Let B be a box produced in the algorithm. The cost of
processing B is bounded by

Õ
(
n · [τF + n log(B) + kD · (log(ε−1) + k) + TD]

)
(14)

with D = φ(B), kD = #(D) and

TD := log
∏

zj /∈D

|ξD − zj |−nj . (15)

where ξD is an arbitrary root contained in D.
(b) Let C be a component produced in the main-loop, and let
C0 be the last special component above C, then the cost of
processing a component C is bounded by

Õ
(
n·[τF + n log(C) + n log(wC0)

+ kD · (log(ε−1) + k) + TD]
) (16)

where D is an arbitrary cluster contained in C, kD = #(D)
and TD is as defined in (15).

Proof. (a) According to [3, Lemma 7]: the cost for carrying

out a T̃G(∆) test (associated with a box B or component
C) is bounded by

Õ
(
n · [τF + n · log(m,r) + L(∆, F )]

)
. (17)

Thus for each call of T̃G(∆) test, we need to bound log(m, r)
and L(∆, F ).

For T̃G
0 (∆(B)), we need to perform T̃G

0 test for each sub-
box Bi into which B is divided. We have ∆Bi = ∆(m, r),
it is easy to see that log(m, r) ≤ log(B). So it remains to
bound the term L(∆, F ) in (17). By definition, L(∆, F ) =
2 ·(4+log(||F∆||−1

∞ )) And for any z ∈ ∆, it holds |F (z)| ≤ n ·
||F∆||∞. Hence, we need to prove that log((maxz∈∆Bi

|F (z)|)−1)

can be bounded by (14).
We apply Lemma C1 to obtain the bound of log((maxz∈∆Bi

|F (z)|)−1). Since φ(B) ⊆ Z(14B ∩ 2B0) (Lemma C2), it

suffices to take ∆̂ = 42 ·∆Bi since 42∆Bi contains 14 ·∆B

which (by Lemma C2) contains φ(B). Hence with K′ =
42, Lemma C1 yields that maxz∈∆B |F (z)| > ( 3

4
· wB

2
)kD ·

n−#(∆̂) · (K′)−#(∆̂)+kD · 2−3n−1∏
zj /∈D |ξD − zj |nj where

D = φ(B), kD = #(D), and ξD is an arbitrary root con-
tained in D. From Lemma B3(c), we have wB > ε

2
( 1
114k

)k.

It is easy to check that log((maxz∈∆B |F (z)|)−1) is bounded
by (14).

(b) To bound the cost of processing a component C, we

need to bound the cost of performing T̃G(∆C) and T̃G(∆′).
It is easy to see that in both cases where ∆(m,r) = ∆C

and ∆(m,r) = ∆′, we have log(m, r) = O(log(C)). With
the same arguments in the proof of (a), it remains to prove
that both logmaxz∈∆C|F (z)|−1 and logmaxz∈∆′|F (z)|−1 are
bounded by (16).

First consider the T̃G
∗ (∆C) test, by applying Lemma C1

with K = 1, we have maxz∈∆ |F (z)| > RkD
C ·n−kC · 2−3n−1 ·

15



∏
zj /∈D |ξD − zj |nj with D an arbitrary cluster in C, kD =

#(D) and ξD an arbitrary root in D. We know that RC ≥
4
3
wC . With the same arguments as in part (a), we can con-

clude that the cost of T̃G
∗ (∆C) test is bounded by (16).

Now consider T̃G
kC

(∆′) test with ∆′ = ∆(m′, wC
8NC

) and

m′ as defined in the algorithm of Newton test. Here we take

∆̂ = 2 · 3n · 8NC · ∆′ = 48nNC · ∆′ since 48nNC∆′ will
contain C and thus contain all the roots in C. By apply-
ing Lemma C1 with K = 48nNC , we have max∆′ |F (z)| >
( wC
8NC

)kD · n−#(∆̂) ·K−#(∆̂)+kD · 2−3n−1 ·∏zj /∈D |ξD − zj |nj

withD an arbitrary cluster in C, kD = #(D) and ξD an arbi-
trary root inD. First consider the lower bound for ( wC

8NC
)kD .

By lemma B0(b), we have NC ≤ 4wC0
wC

, thus wC
8NC

≥ w2
C

32wC0
.

It follows log((( wC
8NC

)kD )−1) = kD(2 log(w−1
C ) + log(wC0) +

5). As is proved, kD(2 log(wC) + log(wC0) + 5) is bounded
by (16).

The bound for the other terms except K#(∆̂)−kD are sim-
ilar to the case discussed above. Hence it remains to bound
K#(∆̂)−kD . Denote the radius of ∆̂ as R̂, then R̂ = 18nwC

from the definition of ∆̂. Note that K = 48nNC ≤ 48n ·
wC0
wC

= 48n ·18n · wC0

R̂
and log

(
(48n · 18n · wC0)

#(∆̂)−kD

)
=

O(n log n+n log(wC0)), thus it suffices to bound R̂−#(∆̂)+kD .
For any root ξD of F in any ε-cluster D ⊆ C which contains
kD roots counted with multiplicities, we have

∏
zi /∈D

|ξD − zi|
ni =

∏

zj∈∆̂,zj /∈D

|ξD − zj |
nj

∏

zk /∈∆̂

|ξD − zk|
nk

≤ (2R̂)#(∆̂)−kD ·
Mea(F (ξD + z))

| lcf(F )|

≤ (2(R̂)#(∆̂)−kD · 2τF 2n+3 max1(ξD)n

≤ 2τF+2n+3 ·max1(ξD)n · R̂#(∆̂)−kD

So log(R̂−#(∆̂)+ξD ) is bounded by (16). Hence the cost for

processing component C, that is the two kind of T̃G tests
discussed above can be bounded by (16). Q.E.D.

When the initial box is nice, Lemma C3 can be simplified
as Lemma 12.

Lemma 12 Assume the initial box B0 satisfies condition
(9). Let k = #(2B0). Then the cost of processing X (where
X is a box or a component) is bounded by

Õ (n · LD)

bits operation with D = φ(X) and

LD =Õ
(
τF + n · log(ξD) + kD · (k + log(ε−1))

+ log(
∏

zj /∈D
|ξD − zj |−nj )

)

where kD = #(D), and ξD is an arbitrary root in D. More-
over, an LD-bit approximation of F is required.

Proof. Note that if the initial box satisfies (9), then it
holds that log(B) = O(log(ξ)) and log(C) = O(log(ξ)) for
any box B and component C and any root ξ ∈ 2B0. And
we know that φ(C) ⊂ C.

Thus this Lemma is a direct result form Lemma C3. Q.E.D.

Before we prove the Theorem A in Section 1.1, we want to
address a trivial case excluded by the statement in that the-
orem. In Theorem A, we assumed that the number of roots
k in 2B0 is at least 1. If k = 0, then the algorithm makes

only one test, T̃G
0 ( 5

4
B0). We want to bound the complexity

of this test. Denoting the center of B0 as M0, the distance

from M0 to any root is at least w(B0)
2

. Thus |F (M0)| >
| lcf(F )|·(w(B0)

2
)n. Thus by [3, Lemma 7], the cost of this T̃G

k

test is bounded by Õ
(
nτF + n2 log(B0) + n log(w(B0)

−1)
)
.

Now we return to the Theorem A in the introduction:

Theorem A Let S be the solution computed by our al-
gorithm for a normal instance (F (z), B0, ε). Then there is

an augmentation Ŝ = {Di : i ∈ I} of S such that the bit
complexity of the algorithm is

Õ
(
n
∑

D∈Ŝ
LD

)

with

LD =Õ
(
τF + n · log(ξD) + kD · (log(k + ε−1))

+ log(
∏

zj /∈D
|ξD − zj |−nj )

)

where kD = #(D), and ξD is an arbitrary root in D. More-
over, an L∗

D-bit approximation of the coefficients of F is
required with L∗

D := maxD∈Ŝ LD.

The set Ŝ in this theorem is precisely the range of our charge
function φ, as defined in the text. Since the complete proof
of Theorem A is quite long, it is useful to first prove a pre-
liminary form of Theorem A:

Lemma C4. If B0 satisfies (9), then the Theorem A holds.

Proof. Recall that the number of components and that
of boxes mapped to any natural ε-cluster is bounded by
log n · smax. Thus from Lemma 12, the cost of processing
all the components and boxes mapped to a natural cluster

D ∈ Ŝ is bounded by Õ(log n · smax · nLD). But log n · smax

is negligible in the sense of being Õ(1). Thus the total cost

of all the T̃G tests in the algorithm can be bounded by

Õ
(
n
∑

D∈Ŝ
LD

)

with LD defined in (2) and Ŝ is the range of φ. And it is

easy to see that Õ
(
n
∑

D∈Ŝ LD

)
is bounded by (1).

There is another issue concerning total cost (as in [3, The-
orem 7]): There is a non-constant complexity operation in
the main loop: in each iteration, we check if 4∆C ∩ C′ is
empty. This cost is O(n) since C′ has at most 9n boxes.
This O(n) is already bounded by the cost of the iteration,
and so may be ignored. Q.E.D.

Theorem A gives a bit complexity bound in terms of Ŝ.

We now investigate the natural ε-clusters in Ŝ. From the

definition of Ŝ, we could write

Ŝ = S ∪ S′ (18)

where S is the set of natural ε-clusters defined by the con-

fined leaves of T̂comp, and S′ is the set of all the natural
ε-cluster φ(B) with B being any constituent box of any
non-confined component in the preprocessing stage. Now
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we want to show an intrinsic property of the output com-

ponents and also of the set Ŝ, using the concept of strong
ε-clusters as is defined in the introduction.

We first show two useful lemmas: Lemma C5 is about root
separation in components, and Lemma C6 says that strong
ε-clusters are actually natural clusters.

Lemma C5. If C is any confined component, and its multiset
of roots Z(C) is partitioned into two subsets G,H. Then
there exists zg ∈ G and zh ∈ H such that |zg − zh| ≤ (2 +√
2)wC.

Proof. We can define the SG := {B ∈ SC : 2B ∩G 6= ∅}
and SH := {B ∈ SC : 2B ∩H 6= ∅}. Note that SG ∪ SH =
SC . Since the union of the supports of SG and SH is con-
nected, there must a box Bg ∈ SG and Bh ∈ SH such that
Bg ∩ Bh is non-empty. This means that the centers of Bg

and Bh are at most
√
2wC apart. From Corollary 5, there

is root zg (resp., zh) at distance ≤ wC from the centers of
Bg (resp., Bh). Hence |zg − zh| ≤ (2 +

√
2)wC . Q.E.D.

Lemma C6. Each strong ε-cluster is a natural ε-cluster.

Proof. In the definition of ε-equivalence, if z
ε∼ z′ then

there is a witness isolator ∆ containing z and z′. If z′
ε∼ z′′

we have another witness ∆′ containing z′ and z′′. It follows
from basic properties of isolators that if ∆ and ∆′ intersect,
then there is inclusion relation between Z(∆) and Z(∆′).

Thus ∆ or ∆′ is a witness for z
ε∼ z′′. Proceeding in this way,

we eventually get a witness isolator for the entire equivalence
class. Q.E.D.

Theorem B
Each natural ε-cluster in Ŝ is a union of strong ε-clusters.

Proof. First we make an observation: For any strong ε-
cluster D′ and confined component C′, ifD′∩Z(C′) 6= ∅ and
wC′ > 2 · rad(D′), then D′ ⊂ Z(C′). To see this: suppose,
z1 ∈ D′ ∩ Z(C′) and z2 ∈ Z(D) belongs to a component
other than C′. By Property (C3), |z1 − z2| ≥ wC′ > 2r,
contradicting the fact that any 2 roots in D′ are separated
by distance at most 2r.

Let D ∈ Ŝ. There are two cases: D is either in S or in S′

where Ŝ = S ∪ S′ as defined in (18).
First, assume that D ∈ S′. This case is relatively easy.

Suppose E is a strong ε-cluster and D ∩ E 6= ∅. From
Lemma C6, E is also a natural cluster; thus either D ⊂ E
or E ⊂ D. By the definition of φ0(B), D is a largest natural
ε-cluster, meaning that there is no natural ε-cluster strictly
containing D. Hence it follows E ⊂ D, which is what we
wanted to prove.

In the remainder of this proof, we show that each natu-
ral ε-cluster in D is S is a union of strong ε-cluster. The
observation above and Lemma B7(a) imply that for each
component C′ in the preprocessing stage, C′ is a union of
strong ε-clusters. Thus, when the mains loop starts, for each
component C in Q1, Z(C) is a union of strong ε-clusters.

Suppose D is a strong ε-cluster and C is a confined leaf

of T̂comp. It is sufficient to prove that if D ∩ Z(C) 6= ∅,
then D ⊆ Z(C). Let r = rad(D). Suppose z1 ∈ D ∩ Z(C).

There is an unique maximal path in T̂comp such that all the
components in this path contain z1.

Consider the first component C1 in the path above such
that C1 contains the root z1 and wC1 ≤ 4r. If C1 does

not exist, it means that the leaf Ct in this path satisfies
wCt ≥ 4r, and by the observation above, it follows that
D ⊆ Z(Ct). Henceforth assume C1 exists; we will prove

that it is actually a leaf of T̂comp.

Consider C′
1, the parent of C1 in T̂comp. Note that wC′

1
≥

4r, and by the observation above, D ⊆ Z(C′
1). We show

that wC1 > 2r. To show this, we discuss two cases. If the
step C′

1 → C1 is a Newton Step, then all the roots in C1 are

contained in a disc of radius r′ =
wC′

1
8NC′

1

. Note that r′ ≥ r

since the Newton disc contains all the roots in C′
1 and hence

contains D. Newton step gives us wC1 =
wC′

1
2NC′

1

= 4r′ ≥ 4r.

If C′
1 → C1 is a Bisection Step, then wC1 = wC′

1
/2 > 2r. To

summarize, we now know that 2r < wC1 ≤ 4r. Again, from
our above observation, we conclude that D ⊆ Z(C1).

First a notation: let ∆D be the smallest disc containing
D. We now prove that Z(C1) ⊆ D. By way of contradic-
tion, suppose there is a root z ∈ Z(C1) \ D. Since D is a
strong ε-cluster, #(∆D) = #(114∆D). It follows that for
any z′ ∈ D, we must have have |z − z′| > 113r. On the
other hand, by Lemma C5, there exists z and z′ fulfilling
the above assumptions with the property that |z − z′| ≤
(2 +

√
2)wC1 ≤ (2 +

√
2)4r < 113r. Thus we arrived at a

contradiction.
From the above discussion, we conclude that Z(C1) = D

and 2r < wC1 ≤ 4r, it is easy to see that WC1 ≤ 3wC1 .
Hence we can conclude that WC1 ≤ 12r < 12 · ε

12
≤ ε.

Therefore, to show that C1 is a leaf, it remains to prove
that 4∆C1 ∩ C2 = ∅ for all C2 in Q1 ∪Qdis.

Since 2r < wC1 ≤ 4r, by some simple calculations, we
can obtain that C1 ⊂ 8∆D thus ∆C1 is contained in 9∆D,
it follows 4∆C1 ⊂ 36∆D. It suffices to prove that 36∆D ∩
C2 = ∅ for all C2. Note that for any root z1 ∈ C1 and
any component C2, we have Sep(z1, C2) ≥ wC2 by property
(C3). Assume that Sep(z1, C2) = |z1 − p| for some p ∈ C2.
We claim that there exists a root z2 ∈ C2 such that |z2 −
p| ≤ 3

√
2

2
wC2 . [To see this, suppose that p is contained in a

constituent box B2 of C2, note that 2B2 must contain a root,

assume that z2 ∈ 2B2, it follows |z2 − p| ≤ 3
√

2
2

wC2 .] Hence

|z1−p|+ |z2−p| ≤ Sep(z1, C2)+
3
√

2
2
·Sep(z1, C2). Note that

#(∆D) = #(114∆D), thus |z1 − z2| ≤ 113r . By triangular

inequality, we have |z1−z2| ≤ |z1−p|+ |z2−p| < (1+ 3
√

2
2

) ·
Sep(z1, C2). Hence Sep(z1, C2) ≥ 1

1+3
√

2/2
|z1 − z2| > 36r,

implying 36∆D ∩ C2 = ∅.
This proves that our algorithm will output C1, i.e., C1 is

a confined leaf of T̂comp.

In summary, each natural ε-cluster in Ŝ is a union of
strong ε-cluster. Q.E.D.

Now we can provide a bit complexity bound which is in-
trinsic and is in terms of the strong ε-cluster contained in
2B0. A direct result from Theorems A and B is:

Corollary C7. The bit complexity of the algorithm can

be bound by (1) where Ŝ is replaced by the set of strong ε-
clusters contained in 2B0.

This lemma gives an intrinsic bound. Nevertheless, this
bound is not as sharp as Theorem A. The next Lemma pro-
vides a bound in terms of standard “synthetic” complexity
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parameters, as announced in Section 1.1.

Corollary to Theorem A

The bit complexity of the algorithm is bounded by

Õ
(
n2(τF + k +m) + nk log(ε−1) + n log |GenDisc(Fε)|−1

)
.

In case F is an integer polynomial, this bound becomes

Õ
(
n2(τF + k +m) + nk log(ε−1)

)
.

Proof. Theorem A gives the bit complexity of the algorithm.
We want to bound (1) with classic parameters.

From our assumption in Section 6, log(B0) = O(τF ). We
can also see that

∑
D∈Ŝ LD ≤ nτF + k(k + log(ε−1)) +∑

D∈Ŝ TD +
∑k

i=1 log(zi).

By Theorem A5,
∑

D∈Ŝ TD = Õ(log |GenDisc(Fε)|−1 +

nm + n logMea(F)). And
∑

D∈Ŝ log(ξD) ≤ ∑k
i=1 log(zi) ≤

logMea(F) + k = O(τ + k + log n) (using Landau’s inequal-
ity). From the equations above, we can deduce the first part
of this lemma.

The second part comes from Corollary A6. Q.E.D.

The rest of this section completes the proof of Theorem
A in the general case where the initial box is not nice.

Consider the general case where (9) is not satisfied. Lemma C3
gives the bound for the cost of processing any box and any
component in the general case.

We know that if the initial box B0 satisfies (9), then
Lemma 12 holds. But in fact, to ensure the correctness of
Lemma 12, the condition (9) is not necessarily required. By
comparing Lemma C3 and Lemma 12, we can give a weaker
condition for the correctness of Lemma 12.

For a component C produced in the algorithm, Lemma 12
holds if

max
z∈C

log(z) ≤ min
z∈C

log(z) + 8, (19)

and

log(wC0) ≤ min
z∈C

log(z) + 8. (20)

with C0 as defined in Lemma C3(b). And for a box B pro-
duced in the algorithm, Lemma 12 holds if

max
z∈B

log(z) ≤ min
z∈φ(B)

log(z) + 8. (21)

We call a component C nice if it satisfies (19) and (20),
otherwise, it is non-nice. We call a box B nice if it satisfies
(21), otherwise it is non-nice.

From the analysis, if all the boxes and components are
nice, then Theorem A follows. But in general, the conditions
(19) to (21) are not guaranteed.

We assume that w(B0) ≥ 2, since if w(B0) < 2, it is easy
to verify that the conditions (9) is fulfilled, meaning that all
the boxes and components are nice.

First we state some simple properties of nice components
and nice boxes.

Lemma C8. Let C be a nice component in the tree T̂comp.
(a) All the constituent boxes of C are nice.

(b) All the children of C in T̂comp are nice.

Now we investigate the property of nice boxes and non-
nice boxes.

Lemma C9.
(a) If a box B satisfies wB < 2, then B is a nice box.
(b) There exists at most 256 aligned non-nice boxes of the
same size.
(c) The cost of processing a non-nice box B is bounded by

Õ(n · (τF + n log(B))).

Proof. (a) By Lemma C2, we have that φ(B) ⊂ 14B.
Therefore, to prove this lemma, it suffices to show the in-
equality: maxz∈14B log(z) ≤ minz∈14B log(z) + 8.

Since 14B is a square box, it yields maxz∈14B log(z) ≤
minz∈14B log(|z|+

√
2 · 14wB). Hence the proof reduces to

min
z∈14B

log(|z|+
√
2 · 14wB) ≤ min

z∈14B
log(z) + 8.

We can easily verify that this inequality is true if wB < 2.
(b) From the first part of this Lemma, we know that for

a box B, if the inequality minz∈14B log(|z| +
√
2 · 14wB) ≤

minz∈14B log(z) + 8 is satisfied, then B is a nice box. It is
easy to see that the above inequality is true if minz∈14B |z| ≥
wB .

Denote MB as the middle of a box B. The above dis-
cussion shows that if MB /∈ B(0, 16wB)(the box centered
at the origin and of width 16wB), then B is a nice box.
We can count that the number of aligned boxes satisfying
MB ∈ B(0, 16wB) is at most 162 = 256. Thus the number
of non-nice boxes of width wB is at most 256.

(c) By Lemma C9(a), a non-nice box has wB ≥ 2, thus
each of its four sub-boxes Bi satisfies wBi ≥ 1. The same
argument as in the proof of Lemma C1 shows that there
exists a point p in ∆Bi such that |p− zi| > 1

2n
for any root

zi. Thus we have maxz∈∆Bi
|F (z)| ≥ lcf(f) · ( 1

2n
)n, and it

yields L(∆Bi , F ) = Õ(n). The lemma follows. Q.E.D.

To show the nice components more concretely, we define a
set of square annuli. Denote by w0 the width of the smallest
box centered at the origin containing 5

4
w(B0) and denote

t0 := ⌊log(w0)⌋ for short. Note that if B0 is centered at the
origin, we have w0 = 5

4
w(B0). We now define It0+1 := ∅ and

Ii := [− 1

2i
,
1

2i
]w0,

Ai := (Ii × Ii) \ (Ii+1, Ii+1),

for i ∈ {1, . . . , t0}. Denote w(Ai) :=
1
2
· w0

2i
as the width of

the square annulus Ai.
An observation is that: for a component C, if there exists

an integer i ∈ {1, . . . , t0− 1} such that C ⊆ Ai ∪Ai+1, then
C satisfies (19).

We now investigate the bound of cost for processing all the
boxes and components in the algorithm. We know that the
cost of processing all the nice components and nice boxes are
bounded by (1). To prove that the Theorem A holds in the
general case, we need to prove that the cost of processing all
the non-nice components and non-nice boxes are bounded
by (1).

First consider the preprocessing stage.

Lemma C10. The cost of processing all the non-nice boxes
in the preprocessing stage is bounded by (1).

Proof. In the preprocessing stage, all the T̃G tests are
performed for boxes. From Lemma B3(a), the preprocessing
stage produces O(log n) different sizes of boxes. And by
Lemma C9(b), the number of aligned non-nice boxes of the
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Figure 5: Annulus A1, A2, A3 and box 5
4
B0.

same size is bounded by 256. Thus the number of non-nice
boxes in the preprocessing stage is bounded by O(log n).

Moreover, from Lemma C9(c), the cost of each T̃G test is

bounded by Õ (n(τF + n log(B))). Apparently, log(B) ≤
log(B0), thus the cost of each T̃G test in the preprocessing

step is bounded by Õ (n(τF + n log(B0))). Hence the cost of

all the T̃G tests in the preprocessing stage is bounded by

O(log n) · Õ (n(τF + n log(B0))) = Õ (n(τF + n log(B0))) .

We can verify that the cost above is bounded by (1). Q.E.D.

Now it remains to consider the main-loop in the algorithm.

Lemma C11. The total cost of processing all the non-nice
components and non-nice boxes produced in the main-loop is
bounded by (1).

Proof.We investigate the part of the component tree T̂comp

after the preprocessing stage, denoting this part as T̂ ′
comp.

This lemma is to prove that the cost for processing all the

components in T̂ ′
comp and their constituent boxes is bounded

by (1). Note that T̂ ′
comp is a forest comprising trees rooted

in components that were place into Q1 ∪ Qdis during the
preprocessing step. Denote Q as the set of roots of the for-

est T̂ ′
comp. Denote by Z(Q) the set of all the roots of F

contained in all the components in Q.
Define the unique set I such that i ∈ I if and only if Ai

contains at least one root in Z(Q). Suppose I = i1, . . . , im
with i1 < · · · < im.

We prove this lemma in a recursive way: we first derive a
bound for the cost of processing all the non-nice components
(and their non-nice constituent boxes) that contain at least
one root in Ai1 ; then we will extend a similar bound for the
cost of processing all the non-nice components (and their
non-nice constituent boxes) that contain at least one root in
Ai2 ∪Ai1 ; in this way, we can eventually obtain a bound for
the total cost, and we will show that this cost is bounded by
(1).

Now we derive a bound for the cost of processing all the
non-nice components (and their non-nice constituent boxes)
that contain at least one root in Ai1 .

Define a set of components Pi1 = {C ∈ Q : Z(C) ∩Ai1 6=
∅}. It is easy to see that any component containing at least
one root in Ai1 is a descendant of a component in Pi1 . We
divide the discussion into to two cases: (i) |Pi1 | ≥ 2; (ii)
|Pi1 | = 1.

First investigate case (i) where Pi1 contains at least two
components.

We claim that for any component C ∈ Pi1 , it holds that
log(C) = O(log(w(Ai+1))). The proof is as follows. Denote
by Z(Pi1 ) the set of all the roots contained in all the com-
ponent in Pi1 . From the definition of Pi1 , we have Z(Pi1) ⊂
B(0, 4w(Ai1)) with B(0, 4w(Ai1)) the square centered at the
origin and of width 4w(Ai1). Thus rad(Z(Pi1)) ≤ 2

√
2w(Ai1).

Since Pi1 contains at least two components, thus for any
component C ∈ Pi1 , we have wC ≤ 2 · rad(Z(Pi1)) ≤
4
√
2w(Ai1) (See the observation in the proof of Theorem B).

Now for any C ∈ Pi1 , we have Z(C) ⊂ B(0, 4w(Ai1)) and
wC ≤ 4

√
2w(Ai1). By Corollary 5(b), the distance from any

point in C to a closest root in C is at most 2
√
2wC . Hence it

is easy to see that C ⊂ B(0, 4w(Ai1) + 2
√
2 · 4
√
2w(Ai1)) =

B(0, 20w(Ai1)). It follows log(C) = O(log(w(Ai1))).

Consider the trees in the forest T̂ ′
comp. For each tree rooted

in a component C in Pi1 , there exists an unique minimum
subtree such that each leaf Ct of this subtree satisfies

Z(Ct) ⊆ Ai1 ∪ Ai1+1 (22)

or Z(Ct) ∩Ai1 = ∅, (23)

we denote this subtree as T (C). Note that T (C) is well-

defined because any leaf C′
t of T̂comp satisfies W (C′

t) < ε ≤ 1,
and we know that w(Ai1+1) ≥ 1, thus C′

t satisfies either
(22) or (23). Therefore, the subtree defined above must ex-
ist. Denote by T (Pi1) the forest comprising all the subtrees
rooted in components in Pi1 and defined as above. And de-
note U(Pi1) as the union of the leaves of T (Pi1) satisfying
condition (22) and all the descendants of these leaves. It is
easy to check that the components containing at least one
root in Ai1 are in T (Pi1) or U(Pi1).

The following arguments prove that all the components
in U(Pi1) are nice. By the definition of U(Pi1), for any
component C ∈ U(Pi1), we have C ⊆ Ai1 ∪Ai1+1. Thus, C
satisfies (19). Assume that C0 is the last special component
above C, it is easy to see that log(wC0) = O(log(w(Ai1))).
[To see this, note that for any C ∈ Pi1 , it is proved log(C) =
O(log(w(Ai1))), and C0 is in the forest rooted in Pi1 .] Hence
condition (20) is satisfied. It follows that all the components
in U(Pi1) are nice.

We now discuss the cost of processing all the non-nice
components (and their non-nice constituent boxes) that con-
tain at least one root in Ai1 . From the discussion above,
these components are the nodes in T (Pi1) except for the
leaves. We claim that for a component C ∈ T (Pi1), if
C is not a leaf of T (Pi1), then wC ≥ 1

6n
· w(Ai1), and

thus the depth of all the trees in T (Pi1) is bounded by
O(log n). [To see this, note that if wC < 1

6n
· w(Ai1), then

WC < 3n · 1
6n
· w(Ai1) = 1

2
w(Ai1) = w(Ai1+1), thus ei-

ther C ⊆ Ai1 ∪ Ai1+1 or C ∩ Ai1 = ∅ holds, and hence C
is a leaf of T (Pi1), contradiction. Meanwhile, we already
showed that wC′ ≤ 4

√
2w(Ai1) for any C′ ∈ Pi1 . Thus the

process C′ → · · · → C takes O(log n) steps.] Now consider
the cost of processing each component in C(Pi1). Suppose
that Ct is a leaf a C(Pi1), C is an ancestor of Ct in C(Pi1)
and C0 is the last special component above C. Since Ct ⊆
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Ai1 ∪Ai1+1(by the definition of Ct ⊆ Ai1 ∪Ai1+1), we know
that φ(Ct) ⊆ Ai1 ∪Ai1+1. Thus any root ξ in φ(Ct) satisfies
|ξ| ≥ w(Ai1+1) = 1

2
w(Ai1). And we already showed that

log(wC0) = O(log(w(Ai1))) and log(C) = O(log(w(Ai1))).
It follows log(wC0) = O(log(ξ)) and log(C) = O(log(ξ)).
Thus by Lemma C3, it is easy to check that the cost of pro-

cessing C is bounded by Õ(n · Lφ(Ct)) where Lφ(Ct) is as
defined in (2). Hence the cost of processing all the ancestors
of Ct in T (Pi1) is bounded by

O(log n) · Õ(nLφ(Ct)) = Õ(nLφ(Ct))

Denote the set of all the leaves of T (Pi1) that satisfy (22)

as Mi1 . We can see that {φ(Ct) : Ct ∈Mi1} ⊂ Ŝ ∩ (Ai1 ∪
Ai1+1). By charging each component in T (Pi1) to a leaf
below it satisfying (22), we can bound the cost for processing
all the components in T (Pi1) by

Õ(n
∑

D∈Ŝ∩(Ai1
∪Ai1+1)

LD) (24)

with LD defined in (2). It remains to bound the cost of
processing all the non-nice constituent boxes of the compo-
nents in T (Pi1). With the same arguments as in the proof
of Lemma C10, we can conclude that the cost of process-
ing all the non-nice constituent boxes in T (Pi1) is bounded

by Õ (n(τF + n log(ξ))), where ξ is an arbitrary root in Ai1 ,
and this cost is evidently bounded by (24).

Then we investigate case (ii) where Pi1 contains only one
component. Suppose C is the component in Pi1 . Consider

the tree in T̂ ′
comp that is rooted in C. Analogously to case

(i), we look for an unique minimum subtree in T (C) such
that the leaves of T (C) satisfies either (22) or (23), we know
from the discussion of case (i) that such a subtree exists. But
here we further require this subtree to have at least 2 leaves.
We now divide the case (ii) into two subcases depending on
whether such T (C) exists or not.

Consider the first subcase where the tree T (C) does not
exist, meaning that C is the parent of only one leaf in the
special component tree T ∗

comp, denote this leaf as C′. The
problem transforms into investigating the cost for processing
all the non-nice components and their non-nice constituent
boxes in the path C → · · · → C′. The length of this path is
bounded by smax. And by Lemma C3, the cost for processing
each component in the path is bounded by

Õ(n(τF + n log(B0) + kD · (log(ε−1) + k) + TD)) (25)

where D = φ(C′) and TD is defined in (15). Since smax is
negligible compared to (25), thus the total cost for process-
ing all the non-nice components in the path C → · · · → C′ is
bounded by (25). It remains to bound the cost of processing
the non-nice constituent boxes. With the same arguments
as in the proof of Lemma C10, we can bounded the cost of

processing the non-nice boxes with Õ((n(τF + n log(B)))),
which is predominated by (25).

Now consider the second subcase where T (C) exists. We
decomposes the tree T (C) into 2 parts: the first part is the
non-special sequence led by C, and the second part is the rest
of T (C). It is easy to see that this second part is analogous
to T (Pi1) in case (i). Thus we can conclude that the cost
of processing the non-nice components in the second part is
bounded by (24). We can further see that the first part is
analogous to the first subcase in case (ii), thus the bound
for processing all the non-nice components in the first part is

bounded by (25) where D is an arbitrary ε-cluster contained
in Ai1∪Ai1+1. It remains to bound the cost of processing all
the non-nice constituent boxes of the components in T (C).
Note that the number of steps is bounded by O(smax) in
the first part, and bounded by O(log n) in the second part.
Thus there are O(smax) different sizes of boxes in T (C), for
the similar reason as in the proof of Lemma C10, we can
obtain the cost of processing all the non-nice boxes in T (C)

is bounded by Õ (n(τF + n log(B0))).
Combining case (i) and case (ii), we conclude that the

cost for processing all the non-nice components (and their
non-nice constituent boxes) containing at least one root in
Ai1 is bounded by

Õ(n2 log(B0) + n
∑

D∈Ŝ∩(Ai1
∪Ai1+1)

LD).

Look at the rest part of T̂ ′
comp, denoted as T̂ ′′

comp. Note

that T̂ ′′
comp is a forest comprising the trees rooted in the

components contained in Q \ Pi1 or the leaves of T (Pi1)

satisfying (23). All the components in T̂ ′′
comp contain no root

in Ai1 . Furthermore, we can show that the root C of any

tree in T̂ ′′
comp satisfies wC ≤ 4

√
2w(Ai1). To see this, assume

by contradiction that wC > 4
√
2w(Ai1). For any zi ∈ C and

zj ∈ Ai1 , we have |zi − zj | < 4
√
2w(Ai1) since all the roots

in C are contained in Ii2 × Ii2 . If wC > 4
√
2w(Ai1) then it

follows |zi − zj | < wC . This contradicts to the fact that zi
and zj are in different components. And we know that all

the roots in the components in T̂ ′′
comp are contained in the

square B(0, 4w(Ai2)) and all the components in T̂ ′′
comp are

contained in the square B(0, 4w(Ai2)+2
√
2 · 4
√
2w(Ai1)) ⊂

B(0, 20w(Ai1)).
Analogously, we can prove that the cost of processing all

the non-nice components (and their non-nice boxes) in T̂ ′′
comp

that containing at least one root in Ai2 is bounded by

Õ(n2 log(w(Ai1)) + n
∑

D∈Ŝ∩(Ai2
∪Ai2+1)

LD).

And note that log(w(Ai1)) ≤ log(ξi1) with ξi1 an arbitrary
root contained in Ai1 . Thus we can conclude that the cost
for processing all the non-nice components (and their non-
nice constituent boxes) that contain at least one root in Ai1∪
Ai2 is bounded by

Õ(n2 log(B0) + n
∑

D∈Ŝ∩(Ai1
∪Ai2

∪Ai2+1)
LD).

By recursive analysis, we can eventually deduce the cost
of processing all the non-nice components and their non-nice
constituent boxes produced in the main-loop, it is bounded
by

Õ(n2 log(B0) + n
∑

D∈Ŝ
LD),

and it is bounded by (1). Q.E.D.

20


	Introduction
	Main Result
	What is New
	Practical Significance

	Preliminary
	Box Subdivision
	Component Tree

	Component Properties
	The Clustering Algorithm
	Bound on Number of Boxes
	Bit Complexity
	Conclusion
	References
	Root Bounds
	LEMMA A1
	Lemma A2
	Lemma A3
	Theorem 2
	Bound on TD in the Theorem A

	Bound on Number of Boxes
	Bit Complexity

