
Definability of Recursive Predicates in the
Induced Subgraph Order

Ramanathan S. Thinniyam

Institute of Mathematical Sciences, Chennai

11 October, 2016

Graph Orders

I G is the set of all isomorphism types of simple finite graphs.

I For g , g ′ ∈ G, g ≤ g ′ iff g is an induced subgraph of g ′.

I Other orders such as subgraph and minor can also be studied.

N1

N2

N3

P3

K2
K3

K2N1

Objective

I Study logical theories of such objects.

I In this talk we will concentrate on the induced subgraph order
with an additional constant P3 for the path on three vertices :
(G,≤,P3).

I In particular, definability of predicates and decidability of
fragments.

I Different as compared to study of graphs as done in finite
model theory (graph as a model).

Induced Subgraph as FO Structure

N1

N2

N3

P3

K2

K3

K2N1

Constants No (direct) access to the edge relation E i.e. the internal
structure of a graph.

Literature on Combinatorial Theories of Order

I Series of papers by Jezek and McKenzie “Definability in
Substructure Orderings” I to IV (2009,2010) studies
substructure order over finite posets, semilattices, lattices,
distributive lattices. Emphasis on constant definability.

I Extended by Wires (2012) to induced subgraph. (G,≤,P3)
interprets arithmetic (predicate version (N, φ+, φ×)).

I Word orders such as subword, infix, lpo studied by Kuske
(2006). Emphasis in Kuske’s work on decidability.

I Previous work by R. Ramanujam and R.T. on mutual
interpretability of induced subgraph, subgraph and minor
orders with arithmetic.

Definability in the Induced Subgraph Order : Wires’s Work

I Wires proves that various graph families (such as cycles,
paths, stars denoted C,P,S respecively) and important graph
theoretical predicates such as connectivity, order of a graph
etc. can be defined.

I Emphasis in Wires’ paper on constants definability and finding
set of all automorphisms.

I Our concern : computational content of these objects.

Main Result

Theorem
The set of all recursive predicates over graphs is definable in
(G,≤,P3).

The result is obtained by combining multiple modules which deal
with definability in arithmetic and graphs.

Example of Definability I

Lemma (Wires)

The family {Kn : 1 ≤ n} ∪ {Nn : 1 ≤ n} comprised of all cliques
and isolated points is definable.

KN(x) := ¬(∃y ∃z y 6= z ∧ y � z ∧ z � y ∧ y < x ∧ z < x)

Above formula says “Downclosure of x under ≤ is a chain”.
Clearly the family satisfies the property.

Example of Definability I

For the reverse direction, consider any graph g not of the family.
There are vertices u, v , x , y in g such that |{u, v , x , y}| ≥ 3 and
¬Exy and Euv .
Thus both K2 and N2 are induced subgraphs of g but these are
incomparable graphs.

Example of Definability II

Lemma (Wires)

All graphs of cardinality at most 4 are definable as constants.

First define the covering relation:

x l y := x ≤ y ∧ ∀z ¬(x < z < y)

By repeated use of the covering relation we can define for every
fixed k > 0, the relation x lk y iff there are exactly k graphs
between x and y .

∅(x) :=∀y x ≤ y N1(x) := ∅l x

InducedSubgraph

Example of Definability II

{K3,N3}(x) := KN(x) ∧ ∅l2 x

{P3,K2N1}(x) := ¬KN(x) ∧ ∅l2 x

Since we already have P3, we can get K2N1.

Recursive Predicates on Graphs

I To talk about graph properties accepted by Turing machines,
we need to encode graphs as strings.

I We will use a specific encoding of graphs as numbers
(equivalently, binary strings) for our purposes, which we call
UN (unique number).

I UN : G → N is a 1-1 map which fixes a vertex ordering of the
graph.

Definition
A predicate R ⊆ Gn (for some n) is said to be recursive if there is a
Turing machine M such that L(M) = UN(R).

Detailed Statement of Main Result

We first restate the main result : For every recursive predicate
R ⊆ Gn, there is a formula φR,G(x̄) in the language of graphs such
that for any n − tuple ḡ of graphs,

(G,≤,P3) |= φR,G(ḡ) ⇐⇒ ḡ ∈ R

Important Remarks

I Mutual interpretability with arithmetic does not automatically
give the result i.e. definability of recursive predicates.

I A key ingredient required is the ability to access the internal
structure of a graph in order to do computation on it.

I Builds on the work by Jezek and McKenzie and by Wires.

Proof Sketch : Definability of Recursive Predicates in
Arithmetic

Given recursive predicate R ⊆ Gn, the definition gives us a Turing
machine M which recognises UN(R). By a classical theorem, there
is a formula φUN(R),N(x̄) in the language of numbers (i.e. using
predicates φ+ and φ×) such that

(N, φ+, φ×) |= φUN(R),N(n̄) ⇐⇒ n̄ ∈ UN(R)

Proof Sketch : Definability of Arithmetic in Graphs

Theorem (Wires)

Consider the map UG : N→ G which sends every number n to the
graph Nn made of n isolated points. We denote the image of a
tuple n̄ of numbers under this map by UG (n̄).
UG (N) is a definable family in the induced order.
There are formulae in φG(+)(x , y , z) and φG(×)(x , y , z) over graphs
such that for any three tuple of numbers (n1, n2, n3),

(N, φ+, φ×) |= φ+(n1, n2, n3)

⇐⇒
(G,≤,P3) |= φG(+)(UG (n1),UG (n2),UG (n3))

Similarly for φ×(x , y , z).

Proof Sketch : Translation of Arithmetical Formulae into
Graph Theory

Corollary: For every arithmetical formula φN(x̄) there is a graph
formula φG(N)(x̄) such that for

(N, φ+, φ×) |= φN(n̄)

⇐⇒
(G,≤,P3) |= φG(N)(UG (n̄))

Proof Sketch : Applying the Translation

Applying the above translation to φUN(R),N(x̄), we get
φG(UN(R),N)(x̄)) in the language of graphs.

Given a graph g , suppose we are able to obtain the graph
UG (UN(g)) (and vice versa) in a definable way inside graph theory,
we can do the computation inside arithmetic and come back.

To do this, we need

1. Definable “vertex labelled representations” of graphs (as other
graphs) called o-presentations (Jezek and McKenzie, Wires).

2. Access to the edge relation of a graph (represented as a
number) inside arithmetic.

Proof Sketch : O-presentations

S4

v1
v2
v4

v3
C7

C9

C8

C10

Figure: Top left : the graph S4. Bottom left: a vertex labelling of S4.
Right: o-presentation of S4 corresponding to the given vertex labelling.

Proof Sketch: Defining O-presentations in Graphs

Definition
For graphs g , g ′ we write g ′ = g̃ iff g ′ is an o-presentation of g .
The set of all graphs which are o-presentation is denoted G̃.

Theorem
The following predicates are definable in graphs:

1. The set of all o-presentations G̃
2. The relation x = ỹ relating a graph and one of its

o-presentations.

3. The predicate edgeExistsOP(x , i , j) iff there is a graph y with
x = ỹ and there is an edge between the vertices vi and vj as
assigned by the o-presentation.

Proof Sketch: Edge Relation in Arithmetic

Theorem
The following predicates are definable in arithmetic:

1. φUN(x) iff x is a number representing a graph in the chosen
encoding.

2. φedgeExists(x , i , j) iff φUN(x) holds and there is an edge
between vertex vi and vertex vj in the graph represented by x .

3. φgraphOrder (n,m) iff the length of the binary representation of
n is equal to 1 +

(m
2

)
.

Proof Sketch: Putting it Together

Theorem
The predicate φenc(x , n) iff n = UG (UN(x)), is definable in graphs.

φenc(x , n) :=n ∈ N ∧ ∃y y = x̃ ∧ φG(graphOrder)(n, |x |) ∧
φG(UN)(n) ∧ ∀1 ≤ i < j ≤ |x |
φG(edgeExists)(n, i , j) ⇐⇒ edgeExistsOP(y , i , j)

We now finally get the desired formula for the predicate R:

φR,G(x̄) := ∃ȳ
n∧

i=1

φenc(xi , yi) ∧ φG(UN(R),N)(ȳ)

Future Directions

I Try to replicate the proof for other graph orders.

I Decidable fragments : Syntactic fragments such as ∃∗∀∗,
graph classes such as bounded vertex cover graphs, theory of
the covering relation Th(G,l)

I Come up with natural computational predicates over graphs
(like bit in arithmetic) which can be used to produce a simpler
proof.

I Characterize computational complexity classes such as PTIME
as a fragment of this (or other) theory.

THANK YOU

	Introduction
	Work Ahead

