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Summary
◦ The pushdown hierarchy of infinite graphs

[KNU02, Cau02, CW03]
◦ Level n : transition graphs of n-pushdown automata
◦ Can be obtained from a unique graph using logic-based

transformations
◦ Using more expressive transformations, one gets strictly
more graphs [CL07]
◦ At level 1: tree-automatic graphs
◦ Above: a strict hierarchy of tree-automatic-like graphs

◦ Our aim:
◦ Characterize these graphs directly using automata
◦ Characterize their traces

◦ This talk : spend time explaining levels 1 and 2
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Word-automatic graphs

Let u, v be finite words over alphabet C
◦ Padding of u : u�(i) = u(i) if i ∈ dom(u), � otherwise
◦ Overlap of u and v : u⊗ v : dom(u)∪dom(v)→ (C ∪�)2
such that u ⊗ v(i) = (u�(i), v �(i))

A relation R is word-automatic if {u ⊗ v | (u, v) ∈ R} is
regular (i.e. accepted by a finite automaton)

A graph G is word-automatic if all its edge relations are
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Examples of automatic graphs

Infinite grid of dimension k
◦ Vertices : words of the form an1

1 . . . ank
k representing

coordinate vectors (n1, . . . , nk)
◦ Edges :

Li = {an1
1 . . . ank

k ⊗ an1
1 . . . ani +1

i . . . ank
k | n1, . . . , nk ≥ 0}
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Examples of automatic graphs

Full binary tree with “equal length” predicate
◦ Vertices : {a, b}∗
◦ Edges :

◦ La = {u ⊗ ua | u ∈ {a, b}∗}
◦ Lb = {u ⊗ ub | u ∈ {a, b}∗}
◦ L∼ = {u ⊗ v | u, v ∈ {a, b}∗, |u| = |v |}
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Tree-automatic graphs

Let s, t be finite binary C -labelled trees
◦ Padding of t : t�(u) = t(u) if u ∈ dom(t), � otherwise
◦ Overlap of s and t : s ⊗ t : dom(s) ∪ dom(t)→ (C ∪ �)2
such that s ⊗ t(u) = (s�(u), t�(u))

A relation R is tree-automatic if {s ⊗ t | (s, t) ∈ R} is regular
(i.e. accepted by a finite tree automaton)

A graph G is tree-automatic if all its edge relations are
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Finite tree automata

A finite (binary) tree automaton over alphabet C consists in:
◦ A finite set of control states Q, some of which are root
states, and some leaf states

◦ A finite set of transitions of the form (p, c , q, r) or (p, c)
with p, q, r ∈ Q and c ∈ C
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Finite tree automata

A C -labelled tree t is accepted if it can be labelled by states in
such a way that
◦ The root of t is labelled by a root state
◦ For each leaf labelled p and c there exists a transition

(p, c)
◦ For each internal node labelled p and c , with children
labelled q and r , there exists a transition (p, c , q, r)
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Example of tree-automatic graph

Given A ⊆ {a, b}∗, write tA the smallest binary tree with all
positions in A marked

“Weak powerset” graph of the full binary tree
◦ Vertices : all tA for finite A
◦ Edges :

◦ La = {t{u} ⊗ t{ua} | u ∈ {a, b}∗}
◦ Lb = {t{u} ⊗ t{ub} | u ∈ {a, b}∗}
◦ L⊆ = {tA ⊗ tB | A ⊆ B}
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Monadic second order logic (MSO)
Language consisting of :
◦ first-order variables x , y , . . . denoting elements
◦ second-order variables X ,Y , . . . denoting sets
◦ atomic predicates R(x , y), x = y , x ∈ X
◦ Boolean connectives ∧,∨,¬
◦ first- and second-order quantification

Example (over binary relation R):

Reach(s, t) ≡ ∀X
(
s ∈ X

∧ ∀x∀y(x ∈ X ∧ xRy ⇒ y ∈ X )
)
⇒ t ∈ X
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MSO interpretations

Let:
◦ G be a Σ-labelled graph, Γ a finite set
◦ δ(x), φa(x , y) for all a ∈ Γ be MSO-formulas over

Σ-labelled graphs
◦ J =

(
δ(x), (φa(x , y))a∈Γ

)

J is called an MSO-interpretation and

J(G) = {u a−→ v | G |= δ(u) ∧ δ(v) ∧ φa(u, v)}

is the Γ-graph interpreted in G via J
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Finite sets interpretations

Let:
◦ G be a Σ-labelled graph, Γ a finite set
◦ δ(X ), φa(X ,Y ) for all a ∈ Γ be WMSO formulas over

Σ-labelled graphs
◦ J =

(
δ(X ), (φa(X ,Y ))a∈Γ

)

J is called an finite sets interpretation and

J(G) = {U a−→V | G |= δ(U) ∧ δ(V ) ∧ φa(U ,V )}

is the Γ-graph interpreted in G via J
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Examples (revisited)

All previous examples can be finite-sets interpreted either in
(N,≤) or in the full binary tree ∆2

Grid :
◦ δX : set of distinct numbers {n1, . . . , nk} encodes tuple

(n1 − 1, n2 − n1 − 1, . . . , nk − nk−1 − 1)
◦ φi(X ,Y ) ensures that the smallest i − 1 elements of X
and Y coincide, and all others are incremented by 1 in Y
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Examples (revisited)

All previous examples can be finite-sets interpreted either in
(N,≤) or in the full binary tree ∆2

Full binary tree with equal length predicate :
◦ Node u is represented by {i | u(i) = b} ∪ {|u|}
◦ φa(X ,Y ) checks that Y = X \ {max(X )}∪{max(X ) + 1}
◦ φb(X ,Y ) checks that Y = X ∪ {max(X ) + 1}
◦ φ∼(X ,Y ) checks that max(X ) = max(Y )
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Examples (revisited)

All previous examples can be finite-sets interpreted either in
(N,≤) or in the full binary tree ∆2

Weak powerset of ∆2 :
◦ tA (tree with all nodes in A marked) represented by... A !
◦ φa(X ,Y ) holds iff X = {u} and Y = {ua}
◦ φb(X ,Y ) holds iff X = {u} and Y = {ub}
◦ φ⊆(X ,Y ) holds iff X ⊆ Y
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Interpreting tree-automatic graphs

Proposition: [CL07] Tree-automatic graphs coincide with the
finite-sets interpretations of ∆2

⊇: For each formula φ(X ,Y ) :
◦ From φ(X ,Y ), build as usual an equivalent parity
automaton over ∆2 annotated by {0, 1}2

◦ Convert into an automaton over finite trees containing all
positions in X and Y (finite sets !)

◦ Below, it suffices to know from which states the parity
automaton accepts ∆2 to crop the computation
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Interpreting tree-automatic graphs

Proposition: [CL07] Tree-automatic graphs coincide with the
finite-sets interpretations of ∆2

⊆: For each tree automaton over C 2,
◦ Reduce C to a singleton by coding (patterns in the tree’s
structure)

◦ Represent any (finite) tree by its domain (finite set
⊆ {a, b}∗)

◦ Build a WMSO formula satisfied in ∆2 by pairs of sets
encoding accepted overlaps of pairs of trees
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A few words on the infinite binary
tree (∆2)

Close connection with pushdown automata :
◦ Set of paths of the full {a, b} tree : {a, b}∗

◦ Positions may be used to represent stack contents over
stack alphabet {a, b}

◦ MSO interpretations yield the transition graphs of
pushdown automata (PDA)

◦ FS interpretations yield the tree-automatic graphs

Decidable MSO theory

Generalizations exist for more general pushdown automata
accessing nested stacks of stacks
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Order 2 pushdown stacks (2-stacks)

Let A be a finite stack alphabet
◦ a stack is a sequence [a1 . . . a`] with ai ∈ A
◦ a 2-stack is a sequence [s1 . . . s`] with si a stack

Allowed 2-stack operations:
◦ pusha

1: add a at the top of the topmost stack
◦ popa

1: remove a from the top of the topmost stack
◦ push2: duplicate the topmost stack
◦ pop2: destroy the topmost stack
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Order 2 pushdown automata

Definition: an order 2 pushdown automaton (2-PDA) is a
finite-state automaton with an auxiliary 2-stack, with
transitions of the form:
from p, if top symbol is a, move to q and apply op, reading b

p, a b−→ q, op

◦ All operations chosen in {push1, pop1, push2, pop2}
◦ Acceptance by final state
◦ If b is ε, then all other (p, a) transitions also labelled ε
◦ Deterministic or ε-free versions less expressive
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Pushdown graphs and trees

A 2-PDA A can be used to generate a language, or:
◦ A configuration graph (with ε-transitions):

(p, s) b−→ (q, s ′) if (p, top(s) b−→ q, op) ∈ A, s ′ = op(s)
◦ A transition graph (ε-closure of the configuration graph)
◦ A tree (unfolding of the transition graph)

Whenever A is deterministic, so are the above structures
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The “order 2 treegraph” (∆2
2)

Definition: vertices corresponding to all 2-stacks, edges
representing operations pusha

1, pushb
1 and push2

Close connection with 2-PDA :
◦ Walks between s and t (allowing some backward edges)
encode sequences of 2-stack operations yielding t from s

◦ MSO interpretations of this graph yield the transition
graphs of order 2 pushdown automata (2-PDA)

Decidable MSO theory

Definition: a graph G is 2-(tree-)automatic if there exists a
finite set interpretation J such that G = J(∆2

2)
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An order 2 generator tree

Remarks:
◦ No pure automata-based characterization of 2-TA
◦ ∆2

2 is not a tree! → Look for another generator

Definition: Let T 2
2 be the unfolding of ∆2 with added

backward edges (labelled ā, b̄)

Properties:
◦ There is an MSO-int. J such that ∆2

2 = J(T 2
2 )

◦ Paths from the root of T 2
2 encode sequences of stack

operations which are well-defined on [ ]1
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Finite tree automata over T 2
2

Idea:
◦ Use T 2

2 as a fixed enclosing domain to define binary
relations over finite trees

◦ Define tree automata running on finite C 2-labelled
prefixes of T 2

2

Problem:
◦ T 2

2 has infinitely many non-isomorphic subtrees
◦ Finite tree automata lack expressiveness w.r.t FSI

Solution: allow tree automata to test the stack content
reached after a sequence of operations
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Tree automata with oracles

Definition: finite tree automata with transitions of the form
(p, c ,O, q, r) with O a regular language over {a, b}

A C -labelled tree t is accepted if it can be labelled by states in
such a way that
◦ The root of t is labelled by a root state
◦ Each leaf is labelled by a leaf state
◦ For each internal node labelled p and c and reachable
from the root by w , with children labelled q and r , there
exists a transition (p, c ,O, q, r) with w([ ]1) ∈ O
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2-tree automatic relations

Definition: a relation R is 2-tree-automatic if
◦ Its support are finite trees t with dom(t) ⊂ dom(T 2

2 )
◦ The set {s ⊗ t | (s, t) ∈ R} is accepted by a tree
automaton with oracles

No change to the notion of padding

A graph is 2-tree-automatic if each of its edge relations is
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Equivalence proof

Proposition: Given a graph G , the following statements are
equivalent

1 There exists a FSI J such that G = J(∆2
2)

2 There exists a FSI J such that G = J(T 2
2 )

3 For each edge label a, the a-labelled edge relation in G is
accepted by a finite tree automaton with oracles
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Equivalence proof

1 ⇐⇒ 2:
◦ For all FSI J there exists a FSI J ′ such that

J(∆2
2) = J ′(T 2

2 )
◦ The converse also holds
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Equivalence proof

2 =⇒ 3:
◦ From each φ(X ,Y ) in J , build an equivalent parity
automaton A over T 2

2 annotated by {0, 1}2

◦ Lemma: for any state p of A, there exists a regular
language Op such that A accepts T 2

2 from node w and
state p iff w([ ]1) ∈ Op

◦ Convert A into a tree automaton with oracles Op over
finite prefixes of T 2

2 containing all positions in X and Y
3 =⇒ 2: As previously, transforming tests into equivalent
WMSO formulas
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Traces of automatic graphs

Extension of previous results on traces:
◦ The traces of automatic graphs are the context-sensitive
languages (linearly bounded Turing machines)
[MS01, Ris02, CM06]

◦ The traces of tree-automatic graphs are the class
DTIME(2O(m)) (alternating LBM, ASPACE(m)) [Mey07]

Using similar techniques, show that the languages of 2-TA
graphs form the class DTIME(22O(m)) accepted by
ASPACE(m)-P machines
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Towards a tree-automatic hierarchy
Similar classes of n-tree-automatic graphs are defined by
finite-set interpretations from ∆n

2

Work in progress:
◦ Define corresponding trees T n

2

◦ Define tree automata with oracles for level n (difficult)
◦ Generalize the result on traces to all levels

Possible implications:
◦ New proof of strictness based on traces
◦ No known results about the classes obtained using
collapsible stacks
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