Order 2 Tree-Automatic Graphs (work in progress)

Antoine Meyer (UPEM) Joint work with Arnaud Carayol (CNRS, UPEM)

Automatic Presentations of Graphs and Numbers IMSc, 11/10/2016

Antoine Meyer

Order 2 Tree-Automatic Graphs - 1

Summary

- The pushdown hierarchy of infinite graphs [KNU02, Cau02, CW03]
 - Level *n* : transition graphs of *n*-pushdown automata
 - Can be obtained from a unique graph using logic-based transformations
- Using more expressive transformations, one gets strictly more graphs [CL07]
 - At level 1: tree-automatic graphs
 - Above: a strict hierarchy of tree-automatic-like graphs
- Our aim:
 - Characterize these graphs directly using automata
 - Characterize their traces
- This talk : spend time explaining levels 1 and 2

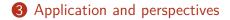
Antoine Meyer

1 Tree-automatic graphs

Defined by automata Defined by interpretations Equivalence proof

2-tree-automatic graphs

Defined by interpretations Defined by automata Equivalence proof



1 Tree-automatic graphs

Defined by automata Defined by interpretations Equivalence proof

2 2-tree-automatic graphs

Defined by interpretations Defined by automata Equivalence proof

3 Application and perspectives

1 Tree-automatic graphs Defined by automata

Defined by interpretations Equivalence proof

2-tree-automatic graphs

Defined by interpretations Defined by automata Equivalence proof

3 Application and perspectives

Word-automatic graphs

Let u, v be finite words over alphabet C

- Padding of $u : u^{\diamond}(i) = u(i)$ if $i \in dom(u)$, \diamond otherwise
- Overlap of u and $v : u \otimes v : dom(u) \cup dom(v) \to (C \cup \diamond)^2$ such that $u \otimes v(i) = (u^{\diamond}(i), v^{\diamond}(i))$

A relation R is word-automatic if $\{u \otimes v \mid (u, v) \in R\}$ is regular (i.e. accepted by a finite automaton)

A graph G is word-automatic if all its edge relations are

Examples of automatic graphs

Infinite grid of dimension k

- Vertices : words of the form a₁^{n₁} ... a_k^{n_k} representing coordinate vectors (n₁,..., n_k)
- Edges :

$$L_{i} = \{a_{1}^{n_{1}} \dots a_{k}^{n_{k}} \otimes a_{1}^{n_{1}} \dots a_{i}^{n_{i}+1} \dots a_{k}^{n_{k}} \mid n_{1}, \dots, n_{k} \geq 0\}$$

Examples of automatic graphs

Full binary tree with "equal length" predicate

• Vertices :
$$\{a, b\}^*$$

• Edges :

Tree-automatic graphs

Let s, t be finite binary C-labelled trees

- Padding of $t : t^{\diamond}(u) = t(u)$ if $u \in \text{dom}(t)$, \diamond otherwise
- Overlap of s and $t : s \otimes t : dom(s) \cup dom(t) \rightarrow (C \cup \diamond)^2$ such that $s \otimes t(u) = (s^{\diamond}(u), t^{\diamond}(u))$

A relation R is tree-automatic if $\{s \otimes t \mid (s, t) \in R\}$ is regular (i.e. accepted by a finite tree automaton)

A graph G is tree-automatic if all its edge relations are

Finite tree automata

A finite (binary) tree automaton over alphabet C consists in:

- A finite set of control states *Q*, some of which are root states, and some leaf states
- A finite set of transitions of the form (p, c, q, r) or (p, c) with $p, q, r \in Q$ and $c \in C$

Finite tree automata

A C-labelled tree t is accepted if it can be labelled by states in such a way that

- The root of t is labelled by a root state
- For each leaf labelled p and c there exists a transition (p, c)
- For each internal node labelled *p* and *c*, with children labelled *q* and *r*, there exists a transition (*p*, *c*, *q*, *r*)

Example of tree-automatic graph

Given $A \subseteq \{a, b\}^*$, write t_A the smallest binary tree with all positions in A marked

"Weak powerset" graph of the full binary tree

- Vertices : all t_A for finite A
- Edges :

Tree-automatic graphs Defined by automata Defined by interpretations Equivalence proof

2-tree-automatic graphs

Defined by interpretations Defined by automata Equivalence proof

3 Application and perspectives

Monadic second order logic (MSO)

Language consisting of :

- first-order variables x, y, \ldots denoting elements
- second-order variables X, Y, \ldots denoting sets
- atomic predicates R(x, y), x = y, $x \in X$
- Boolean connectives \land, \lor, \neg
- first- and second-order quantification

Example (over binary relation R):

$$\mathsf{Reach}(s,t) \equiv \forall X \big(s \in X \\ \land \forall x \forall y (x \in X \land x R y \Rightarrow y \in X) \big) \Rightarrow t \in X$$

MSO interpretations

Let:

- G be a Σ -labelled graph, Γ a finite set
- δ(x), φ_a(x, y) for all a ∈ Γ be MSO-formulas over Σ-labelled graphs

•
$$J = (\delta(x), (\phi_a(x, y))_{a \in \Gamma})$$

J is called an MSO-interpretation and

$$J(G) = \{ u \stackrel{a}{\longrightarrow} v \mid G \models \delta(u) \land \delta(v) \land \phi_{a}(u, v) \}$$

is the Γ -graph interpreted in G via J

Finite sets interpretations

Let:

- G be a Σ -labelled graph, Γ a finite set
- δ(X), φ_a(X, Y) for all a ∈ Γ be WMSO formulas over Σ-labelled graphs

•
$$J = (\delta(X), (\phi_a(X, Y))_{a \in \Gamma})$$

J is called an finite sets interpretation and

$$J(G) = \{ U \stackrel{\mathsf{a}}{\longrightarrow} V \mid G \models \delta(U) \land \delta(V) \land \phi_{\mathsf{a}}(U, V) \}$$

is the Γ -graph interpreted in G via J

Antoine Meyer

Examples (revisited)

All previous examples can be finite-sets interpreted either in (\mathbb{N},\leq) or in the full binary tree Δ_2

Grid :

- δ_X : set of distinct numbers $\{n_1, \ldots, n_k\}$ encodes tuple $(n_1 1, n_2 n_1 1, \ldots, n_k n_{k-1} 1)$
- φ_i(X, Y) ensures that the smallest i − 1 elements of X
 and Y coincide, and all others are incremented by 1 in Y

Examples (revisited)

All previous examples can be finite-sets interpreted either in (\mathbb{N},\leq) or in the full binary tree Δ_2

Full binary tree with equal length predicate :

- Node u is represented by $\{i \mid u(i) = b\} \cup \{|u|\}$
- $\phi_a(X, Y)$ checks that $Y = X \setminus \{\max(X)\} \cup \{\max(X) + 1\}$
- $\phi_b(X, Y)$ checks that $Y = X \cup \{\max(X) + 1\}$
- $\phi_{\sim}(X, Y)$ checks that $\max(X) = \max(Y)$

Examples (revisited)

All previous examples can be finite-sets interpreted either in (\mathbb{N},\leq) or in the full binary tree Δ_2

Weak powerset of Δ_2 :

- t_A (tree with all nodes in A marked) represented by... A !
- $\phi_a(X, Y)$ holds iff $X = \{u\}$ and $Y = \{ua\}$
- $\phi_b(X, Y)$ holds iff $X = \{u\}$ and $Y = \{ub\}$

•
$$\phi_{\subseteq}(X, Y)$$
 holds iff $X \subseteq Y$

1 Tree-automatic graphs

Defined by automata Defined by interpretations Equivalence proof

2-tree-automatic graphs

Defined by interpretations Defined by automata Equivalence proof

3 Application and perspectives

Interpreting tree-automatic graphs

Proposition: [CL07] Tree-automatic graphs coincide with the finite-sets interpretations of Δ_2

- \supseteq : For each formula $\phi(X, Y)$:
 - From $\phi(X, Y)$, build as usual an equivalent parity automaton over Δ_2 annotated by $\{0, 1\}^2$
 - Convert into an automaton over finite trees containing all positions in X and Y (finite sets !)
 - $\circ\,$ Below, it suffices to know from which states the parity automaton accepts Δ_2 to crop the computation

Interpreting tree-automatic graphs

Proposition: [CL07] Tree-automatic graphs coincide with the finite-sets interpretations of Δ_2

- \subseteq : For each tree automaton over C^2 ,
 - Reduce *C* to a singleton by coding (patterns in the tree's structure)
 - Represent any (finite) tree by its domain (finite set $\subseteq \{a, b\}^*$)
 - $\circ\,$ Build a WMSO formula satisfied in Δ_2 by pairs of sets encoding accepted overlaps of pairs of trees

Tree-automatic graphs

Defined by automata Defined by interpretations Equivalence proof

2-tree-automatic graphs

Defined by interpretations Defined by automata Equivalence proof

3 Application and perspectives

Tree-automatic graphs

Defined by automata Defined by interpretations Equivalence proof

2-tree-automatic graphs Defined by interpretations Defined by automata Equivalence proof

3 Application and perspectives

Antoine Meyer

A few words on the infinite binary tree (Δ_2)

Close connection with pushdown automata :

- Set of paths of the full $\{a, b\}$ tree : $\{a, b\}^*$
- Positions may be used to represent stack contents over stack alphabet {a, b}
- MSO interpretations yield the transition graphs of pushdown automata (PDA)
- FS interpretations yield the tree-automatic graphs

Decidable MSO theory

Generalizations exist for more general pushdown automata accessing nested stacks of stacks

Order 2 pushdown stacks (2-stacks)

Let A be a finite stack alphabet

- a stack is a sequence $[a_1 \dots a_\ell]$ with $a_i \in A$
- a 2-stack is a sequence $[s_1 \dots s_\ell]$ with s_i a stack

Allowed 2-stack operations:

- $push_1^a$: add *a* at the top of the topmost stack
- pop_1^a : remove *a* from the top of the topmost stack
- *push*₂: duplicate the topmost stack
- *pop*₂: destroy the topmost stack

Order 2 pushdown automata

Definition: an order 2 pushdown automaton (2-PDA) is a finite-state automaton with an auxiliary 2-stack, with transitions of the form:

from p, if top symbol is a, move to q and apply op, reading b

$$p, a \stackrel{b}{\longrightarrow} q, op$$

- All operations chosen in {*push*₁, *pop*₁, *push*₂, *pop*₂}
- Acceptance by final state
- If b is ε , then all other (p, a) transitions also labelled ε
- Deterministic or ε -free versions less expressive

Pushdown graphs and trees

A 2-PDA ${\mathcal A}$ can be used to generate a language, or:

- A configuration graph (with ε -transitions): $(p, s) \xrightarrow{b} (q, s')$ if $(p, top(s) \xrightarrow{b} q, op) \in \mathcal{A}, s' = op(s)$
- A transition graph (ε -closure of the configuration graph)
- A tree (unfolding of the transition graph)

Whenever \mathcal{A} is deterministic, so are the above structures

The "order 2 treegraph" (Δ_2^2)

Definition: vertices corresponding to all 2-stacks, edges representing operations $push_1^a$, $push_1^b$ and $push_2$

Close connection with 2-PDA :

- Walks between *s* and *t* (allowing some backward edges) encode sequences of 2-stack operations yielding *t* from *s*
- MSO interpretations of this graph yield the transition graphs of order 2 pushdown automata (2-PDA)

Decidable MSO theory

Definition: a graph G is 2-(tree-)automatic if there exists a finite set interpretation J such that $G = J(\Delta_2^2)$

Tree-automatic graphs

Defined by automata Defined by interpretations Equivalence proof

2-tree-automatic graphs Defined by interpretations Defined by automata Equivalence proof

3 Application and perspectives

Antoine Meyer

An order 2 generator tree

Remarks:

- No pure automata-based characterization of 2-TA
- $\circ~\Delta_2^2$ is not a tree! \rightarrow Look for another generator

Definition: Let T_2^2 be the unfolding of Δ_2 with added backward edges (labelled \bar{a}, \bar{b})

Properties:

- There is an MSO-int. J such that $\Delta_2^2 = J(T_2^2)$
- Paths from the root of T_2^2 encode sequences of stack operations which are well-defined on []₁

Finite tree automata over T_2^2

Idea:

- Use T_2^2 as a fixed enclosing domain to define binary relations over finite trees
- Define tree automata running on finite C^2 -labelled prefixes of T_2^2

Problem:

- \circ T_2^2 has infinitely many non-isomorphic subtrees
- Finite tree automata lack expressiveness w.r.t FSI

Solution: allow tree automata to test the stack content reached after a sequence of operations

Tree automata with oracles

Definition: finite tree automata with transitions of the form (p, c, O, q, r) with O a regular language over $\{a, b\}$

A C-labelled tree t is accepted if it can be labelled by states in such a way that

- The root of t is labelled by a root state
- Each leaf is labelled by a leaf state
- For each internal node labelled p and c and reachable from the root by w, with children labelled q and r, there exists a transition (p, c, O, q, r) with w([]₁) ∈ O

2-tree automatic relations

Definition: a relation R is 2-tree-automatic if

- Its support are finite trees t with dom $(t) \subset dom(T_2^2)$
- The set $\{s \otimes t \mid (s, t) \in R\}$ is accepted by a tree automaton with oracles

No change to the notion of padding

A graph is 2-tree-automatic if each of its edge relations is

Tree-automatic graphs

Defined by automata Defined by interpretations Equivalence proof

2-tree-automatic graphs

Defined by interpretations Defined by automata Equivalence proof

Antoine Meyer

Equivalence proof

Proposition: Given a graph G, the following statements are equivalent

- **1** There exists a FSI J such that $G = J(\Delta_2^2)$
- **2** There exists a FSI J such that $G = J(T_2^2)$
- So For each edge label a, the a-labelled edge relation in G is accepted by a finite tree automaton with oracles

Equivalence proof

- $1 \iff 2$:
 - For all FSI J there exists a FSI J' such that $J(\Delta_2^2) = J'(T_2^2)$
 - The converse also holds

Equivalence proof

$2 \implies 3$:

- From each $\phi(X, Y)$ in *J*, build an equivalent parity automaton *A* over T_2^2 annotated by $\{0, 1\}^2$
- Lemma: for any state p of A, there exists a regular language O_p such that A accepts T₂² from node w and state p iff w([]₁) ∈ O_p
- Convert A into a tree automaton with oracles O_p over finite prefixes of T_2^2 containing all positions in X and Y

3 \implies 2: As previously, transforming tests into equivalent *WMSO* formulas

Tree-automatic graphs

Defined by automata Defined by interpretations Equivalence proof

2-tree-automatic graphs

Defined by interpretations Defined by automata Equivalence proof

3 Application and perspectives

Traces of automatic graphs

Extension of previous results on traces:

- The traces of automatic graphs are the context-sensitive languages (linearly bounded Turing machines) [MS01, Ris02, CM06]
- The traces of tree-automatic graphs are the class DTIME(2^{O(m)}) (alternating LBM, ASPACE(m)) [Mey07]

Using similar techniques, show that the languages of 2-TA graphs form the class $DTIME(2^{2^{O(m)}})$ accepted by ASPACE(m)-P machines

Towards a tree-automatic hierarchy

Similar classes of *n*-tree-automatic graphs are defined by finite-set interpretations from Δ_2^n

Work in progress:

- Define corresponding trees T_2^n
- Define tree automata with oracles for level *n* (difficult)
- · Generalize the result on traces to all levels

Possible implications:

- New proof of strictness based on traces
- No known results about the classes obtained using collapsible stacks

Didier Caucal.

On infinite terms having a decidable monadic theory. In *MFCS*, volume 2420 of *LNCS*, pages 165–176. Springer, 2002.

Thomas Colcombet and Christof Löding. Transforming structures by set interpretations. Logical Methods in Computer Science (LMCS), 3(2), 2007.

Arnaud Carayol and Antoine Meyer. Context-sensitive languages, rational graphs and determinism. *Logical Methods in Computer Science*, 2(2), 2006.

Arnaud Carayol and Stefan Wöhrle.

The caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata.

In FSTTCS, volume 2914 of LNCS, pages 112-123. Springer, 2003.

Teodor Knapik, Damian Niwinski, and Paweł Urzyczyn. Higher-order pushdown trees are easy. In *FoSSaCS*, volume 2303 of *LNCS*, pages 205–222, Springer, 2002.

Antoine Meyer.

Traces of term-automatic graphs.

In MFCS, volume 4708 of LNCS, pages 489–500. Springer, 2007.

Christophe Morvan and Colin Stirling. Rational graphs trace context-sensitive languages.

In MFCS, volume 2136 of LNCS, pages 548-559. Springer, 2001.

Chloe Rispal.

The synchronized graphs trace the context-sensitive languages. *Electr. Notes Theor. Comput. Sci.*, 68(6):55–70, 2002.