
A Lower Bound for Computing Lagrange’s Real
Root Bound

Swaroop N. Prabhakar and Vikram Sharma

The Institute of Mathematical Sciences
CIT Campus, Taramani, Chennai, India 600113

npswaroop@imsc.res.in and vikram@imsc.res.in

Abstract. In this paper, we study a bound on the real roots of a poly-
nomial by Lagrange. From known results in the literature, it follows
that Lagrange’s bound is also a bound on the absolute positiveness of
a polynomial. A simple O(n logn) algorithm described in Mehlhorn-Ray
(2010) can be used to compute the bound. Our main result is that this
is optimal in the real RAM model. Our paper explores the tradeoff be-
tween improving the quality of bounds on absolute positiveness and their
computational complexity.

Keywords: Real Root Bounds, Lagrange’s Bound, Absolute Positiveness, Al-
gebraic Decision Tree, Complexity Lower Bounds.

1 Introduction

Root bounds are functions that operate on univariate polynomials with complex
coefficients and compute an upper bound on the absolute value of its roots. The
literature contains many root bounds; see, e.g., [16, Chap. 6]. Some of these root
bounds (e.g., see van der Sluis [13]), are tight relative to the largest absolute value
among all the roots of the polynomial. Often, however, one is interested in the
special case of upper bounds on just the positive real roots of a polynomial with
real coefficients; for instance, in the continued fraction based algorithms for real
root isolation [2,12]. For this special case, the literature contains some bounds
[7,14,1,4,15]. In [6], Hong showed that most of the known root bounds are in fact
bounds for absolute positiveness of a polynomial, i.e., a real number such that
the polynomial and all its non-vanishing derivatives are positive for any value
greater than this real number. He introduced a new bound and showed that it
is tight relative to the threshold of absolute positiveness of the polynomial. The
quality of a root bound is defined to be the ratio of the bound with respect to
the threshold of absolute positiveness. It was shown in [4] that within a general
framework of bounds on absolute positiveness, Hong’s bound is nearly optimal,
i.e., it is off by a constant factor with respect to the best bound that is possible
in this framework. Thus in terms of quality of real root bounds, Hong’s bound
is nearly the best. However, it was not clear if the quality of the bound was
achieved at the cost of the increased effort in computing the bound, since a naive

implementation of Hong’s bound has arithmetic cost quadratic in the degree, n,
of the polynomial. This computational bottleneck was overcome by Mehlhorn
and Ray [9], who gave an O(n) arithmetic cost algorithm to compute Hong’s
bound for univariate polynomials.

Recently, Collins [5] showed that a real root bound by Lagrange [8] is always
better than Hong’s bound. It must be noted that the Lagrange’s bound had not
been covered in the framework proposed in [4]. A simplified derivation of the
Lagrange’s bound is given in [10,3], and an extension to the complex setting is
given in [10]. The improvement is by a constant factor. Given this improvement,
one can ask the following questions regarding Lagrange’s real root bound:

Q1. Is the bound also a bound on the absolute positiveness of the polynomial?
Q2. Can the bound be computed using O(n) arithmetic operations?

In Thm. 1, we given an affirmative answer to the first question. This result is
not very surprising and immediately follows from known results in the literature.

Regarding the second question, we show in Thm. 4 that the answer is negative
in the real RAM model [11]. This is done by reducing a certain decision problem
in geometry, called the Point-Hull Bijection problem (introduced in Sect. 4), to
comparing Lagrange’s real root bound with Hong’s bound. We then show in
Thm. 2 that the complexity of the bijection problem in the real RAM model is
Ω(n log n). This is done by showing that any algebraic decision tree for deciding
the Point-Hull Bijection problem has height roughly Ω(n log n). To obtain this
lower bound, we derive a lower bound on the “topological complexity” of the
bijection problem. Using standard results (see Prop. 1 and Prop. 2) these lower
bounds translate to lower bounds in various computational models, in particular,
the real RAM model. Therefore, the best algorithm to compute Lagrange’s real
root bound is essentially the O(n log n) algorithm given in [9, Sec. 3.1]. Our
result highlights the tradeoff between obtaining bounds for absolute positiveness
that are better in quality than Hong’s bound and the arithmetic complexity of
computing them. In particular, we show that the constant factor improvement
in the quality of Lagrange’s real root bound over Hong’s bound comes at an
increased computational cost. In some sense, therefore, Hong’s bound attains
the right compromise in this quality-vs-complexity tradeoff.

2 Absolute Positiveness of Lagrange’s Real Root Bound

In this section, we will prove that the Lagrange’s real root bound [8] is a bound
on the absolute positiveness of a polynomial. Let

f(x) :=xn −
n−1∑
k=0

akx
k, (1)

where ak ∈ R≥0. Let R(f) be the maximum and ρ(f) be the second maximum in
the sequence |ak|1/(n−k), k = 0, 1, . . . , n−1 (we assume that n > 1). Lagrange’s
real root bound of f is defined as

L(f) :=R(f) + ρ(f). (2)

It is known that L(f) is a bound on the positive roots of f [5,10,3]. We show
that it is also a bound on the positive roots of its non-vanishing derivatives.
First we prove the following result, a variation of the result in [4, Lemma. 2.2],
which shows that any upper bound on the positive roots of f is a bound on the
absolute positiveness of f .

Lemma 1. L(f) is a bound on the absolute positiveness of f defined in (1).

Proof. The jth derivative of f is given by

f (j)(x) =
n !

(n− j) !
xn−j −

n−1∑
k=j

k !

(k − j) !
akx

k−j .

Taking n !/(n− j) ! common from the RHS, we get,

f (j)(x) =
n !

(n− j) !

xn−j − n−1∑
k=j

k !
(k−j) !
n !

(n−j) !
akx

k−j

 .

Since k !
(k−j) ! <

n !
(n−j) ! , we have

f (j)(x) >
n !

(n− j) !

xn−j − n−1∑
k=j

akx
k−j

 , for all x > 0.

So,

f (j)(x) >
n !

(n− j) !

f(x)

xj
, for all x > 0.

Hence, L(f) is a bound on the absolute positiveness of f . Q.E.D.

Collins [5] used L(f) to improve upon a root bound due to Hong [6]. Consider

a general polynomial f(x) :=
n∑
i=0

aix
i ∈ R[x], where an > 0. For every ai < 0,

define
si := argmin{|ai/aj |1/(j−i) : j > i aj > 0}. (3)

Now for each j such that aj > 0, define

gj(x) := ajx
j +

∑
si=j,ai<0

aix
i.

Notice that gj is in the form given in (1), so R(gj) and ρ(gj) are well-defined as
the first and the second maximum, respectively, in the sequence |ai/aj |1/(j−i).
Define L(gj) as in (2). However, this can be done if gj has two or more negative
coefficients; otherwise, if gj has exactly one negative ai, then L(gj) is taken to
be the unique positive root of gj ; if gj does not have negative coefficients, then
L(gj) := 0. Lagrange’s Real Root Bound of f is defined as

L(f) := max
j

L(gj). (4)

To compute L(f), we can compute the polynomials gj . This can be done in
O(n log n) by the algorithm given in [9, Sec. 3.1]. We can then compute L(gj)
in O(n) time over all j. A further linear step of computing maxj L(gj) gives us
L(f). Our first result is the following:

Theorem 1. The Lagrange Real Root Bound L(f) is a bound on the absolute
positiveness of f .

Proof. Since every negative monomial aix
i has a unique si associated with it, we

have
f(x) =

∑
aj>0

gj(x).

From Lemma 1 and the definition of L(gj), we know that L(gj) is a bound on the
absolute positiveness of gj . Hence, from (4), we conclude that L(f) is a bound
on the absolute positiveness of f . Q.E.D.

Collins [5, Thm. 5] showed that L(f) is better than the Hong’s bound [6],

H(f) := 2 max
ai<0

min
aj>0
j>i

∣∣∣∣ aiaj
∣∣∣∣1/(j−i) .

Mehlhorn and Ray [9] gave an algorithm for computing H(f) in O(n) arithmetic
operations. Can a similar algorithm exist for computing L(f)? In the following
sections, we will answer this question in the negative.

3 Algebraic Decision Trees – Basic Notations and
Definitions

Given two positive integers m, d, an (m, d)-order algebraic decision tree is a
rooted tree T in which every internal node has associated with it a multivariate
polynomial in m variables of total degree at most d. The input or domain of the
decision tree is Rm. Every internal node u of T has three children labeled “+”,
“–” and “0”. The leaves output either a zero or a one. An algebraic decision tree
computes a function from Rm to {0, 1}. The value of this function at p ∈ Rm
is computed as follows: we evaluate the polynomial associated with the root
node of T at p; depending on whether the sign of this evaluation is − , 0,
or +, the computation proceeds recursively from the child of the root node
labeled by the corresponding sign; we stop when we reach a leaf and output
the value, either zero or one, associated with the leaf. From the description, it
follows that the set of points in Rm that reach a given node in the tree form a
semi-algebraic set. It is well known that a semi-algebraic set can be partitioned
into connected components. Two points p, q ∈ Rm are said to be in the same
connected component corresponding to a node u of T iff there exists a continuous
curve γ : [0, 1] → Rm such that γ(0) = p, γ(1) = q and for all t ∈ [0, 1], the
point γ(t) on the curve satisfies the set of polynomial equalities and inequalities

from the root of T to the node u. The measure of complexity in this model is the
height of the decision tree T , which counts the number of worst case polynomial
evaluations from the root node to a leaf.

We say that an algebraic decision tree T solves the membership problem
for a set S ⊆ Rn if it satisfies the following: T outputs 1 on p ∈ Rm iff p ∈ S. The
main idea in showing a lower bound for a membership problem in the algebraic
decision tree model is to lower bound the height of T in terms of, #S, the total
number of connected components in the set S. We can then use the following
fundamental result of Ben-Or [11, p. 102] to obtain a lower bound on the height
of T :

Proposition 1. The height of any (m, d)-order algebraic decision tree T that
solves the membership problem for S is Ω(logd(#S)−m).

We will crucially use the following fact that relates lower bounds in the algebraic
decision tree model with lower bounds in the real RAM model [11, p. 30].

Proposition 2. A lower bound for a decision problem A in the algebraic deci-
sion tree model implies the same lower bound on A in the real RAM model.

4 Lower Bound on a Geometric Problem

Consider the lower hull H of (n+ 2) points in R2 such that all the (n+ 2) points
are vertices of the lower hull; note that under this assumption the vertices of
H can be ordered in increasing order of x-coordinate; in this paper, we only
consider such hulls. From any point p ∈ R2 there are two rays that are tangent
to the hull H. Of these two rays, the lower ray from p to H is the ray such that
direction of the sweep to the other ray is counterclockwise. The lower tangent
from p to H is the line corresponding to the lower ray from p. Note that p can be
on H, in which case the lower tangent is an edge containing p; in particular, if
p is a vertex of H, the lower tangent is the edge that has p as the left endpoint.
The point of lower tangency for p is the left most vertex of H on the lower
tangent from p. The definition ensures that the lower tangent is well-defined for
all points in the plane.

The Point-Hull Bijection problem is the following: For a fixed H, given
an ordered point set P = (p1, . . . , pn), where pi ∈ R2, such that all the points
in P are to the left of the leftmost vertex of H, determine if every vertex of H,
excluding the leftmost and the rightmost vertex, is a point of lower tangency
for some point in P? An ordered point set P that has such a bijection to the
vertices of H is called a YES-instance to the problem. All other instances of
P are NO-instances; in particular, if P has a point to the right of the leftmost
point of H then it is a NO-instance. Since the input is a set of n points in R2,
we take the length of the input to be 2n.

Known algorithms for computing the points of lower tangency test whether
a given point is on one side of a given line or on the line. These tests are equiv-
alent to evaluating a polynomial, and hence these algorithms can be modeled

P

H

(a)

H
P

(b)

0

1

2 3

4

5
0

1

2 3

4

5

Fig. 1. A point set P shown in blue, hull H and lower tangencies. The points in Pe and
Po are shown circumscribed by boxes and circles, respectively. The figure labelled (a)
is a NO-instance, whereas the figure labelled (b) is a YES-instance, to the Point-Hull
Bijection problem.

as algebraic decision trees. So algebraic decision trees solving the Point-Hull
bijection problem can be thought of as computing a function from R2n to the
set {0, 1}. The set of ordered point sets P that are YES-instances to the prob-
lem form a connected components in R2n. Two YES-instances are in different
connected components iff all continuous paths connecting these two instances
contain a NO-instance. We will now derive a lower bound on the number of such
components.

Suppose P is an ordered point set that is a YES-instance to the Point-Hull
Bijection problem with respect to a given hull H. By enumerating the vertices of
H from left to right, starting with 0 to (n+ 1), we partition P into two subsets
as follows:

Po :={pi ∈ P | pi’s point of lower tangency on H is odd}

and
Pe :={pi ∈ P | pi’s point of lower tangency on H is even}.

For the ease of exposition, we assume that all the odd indices in P are in Po and
all the even indices are in Pe. We now construct a large set P of ordered point
sets obtained from P such that all these instances are solutions to the Point-Hull
Bijection problem. Keeping Po fixed, we apply a permutation σ to the indices
of points in Pe; let Pσ be the ordered point set obtained in this manner from P .
Note that the permutation σ only changes the order in which the points from
Pe are processed, but Pσ is still a solution to the problem. The set P, therefore,
contains (n/2)! many instances that are solutions to the Point-Hull Bijection
problem. We are now in a position to derive the following lower bound:

Lemma 2. There are at least (n/2)! connected components for the Point-Hull
Bijection problem.

Proof. Consider two distinct ordered point sets Pσ, Pσ′ ∈ P. Then we know
that there is an even position 2i such that j :=σ(2i) is not the same as k :=σ′(2i).

In other words, the points pj ∈ Pe at the position indexed 2i in Pσ and the point
pk ∈ Pe at the same position in Pσ′ are different (by construction, the points in
the odd position are the same in both).

Let ` be the vertical line touching the leftmost point of H. Consider a contin-
uous curve γ : [0, 1]→ R2n that connects Pσ and Pσ′ . Without loss of generality,
we assume that γ(t) stays to the left `; otherwise, we obtain a NO-instance to
the problem. The component, γ2i(t), of γ(t) gives us a continuous path between
pj and pk. Since the points in P are to the left of `, and the lower tangents
intersect ` in decreasing order of y-coordinates, it follows that the points pj and
pk are on opposite sides of the lower tangent incident on either the (j−1) or the
(j + 1) vertex of H. As γ2i(t) is a continuous function and is also restricted to
the left of `, it intersects one of these tangents. So we have a point set Q ∈ R2n

on γ(t) such that there are two points in Q that have the same lower tangent in
H, which means that Q is a NO-instance to the problem. Therefore, Pσ and Pσ′

are in different connected components, and so we have the desired lower bound.
For an illustration, see Figure 2.

Q.E.D.

H

`

0

1

2 3

4

5

p1

p2

p3

γ2(t)

p4

Fig. 2. In the example above Pσ = {p1, p2, p3, p4} and Pσ′ = {p1, p4, p3, p2}, j = 2
and k = 4. Now the component γ2(t) is a continuous path in R2 that takes p2 to p4.
Clearly, the path intersects the lower tangent of p3 at the point shown in red.

Using the lemma above along with Prop. 1 and Prop. 2, we obtain the fol-
lowing lower bound.

Theorem 2. The arithmetic complexity of any algorithm solving the Point-Hull
Bijection problem is Ω(n log n) in the real RAM model, where 2n is the length
of the input.

It must be noted that d does not play a role in the lower bound above, because
for a given algebraic decision tree d is fixed and hence (1/ log d) is a constant.

To show the lower bound on algorithms computing L(f), we need a point-hull
pair that satisfies certain properties. For a hullH, let MinSlopeH and MaxSlopeH
denote the least and the largest slope over the edges of H. We call a point-hull
pair (P,H) nice if it satisfies the following conditions:

(A1): MaxSlopeH < MinSlopeH + 1.

(A2): The interval (MinSlopeH ,MaxSlopeH] contains the slopes of all the
lower tangents from P to H.

(A3): The x-coordinates of points in P and H are fixed to 0, . . . , 2n+ 1.

An example of a nice point-hull pair is given in Figure 3; assumptions (A1) and
(A2) are not restrictive since we can construct instances where these assumptions
hold, as shown in the figure.

0

0

2 3

5
p1

p2

p3 4
1

p4

q

H

Fig. 3. The vertices labeled 0 to 5 are the vertices of H; the point set P is shown in
blue; the red points are obtained by swapping the y-coordinates of p2 and p4. Note
that q and p3 have the same point of tangency on H.

For a nice point-hull pair (P,H), the input is only the ordered set of y-
coordinates of the points in P . However, our earlier argument in Lemma 2 breaks
down, because we cannot permute points in Pe, since their x-coordinates are
fixed and permuting the y-coordinates may yield a NO-instance to the Point-
Hull Bijection problem; e.g., in Figure 3, if we swap the y-coordinates of p2 and
p4 then the resulting point set is a NO-instance.

For every input y ∈ Rn, define the ordered point set

Py :=((0, y0), . . . , (n− 1, yn−1)).

Since the x-coordinates are fixed, we have to count the number of connected
components corresponding to y ∈ Rn such that (Py, H) is a YES-instance of the
Point-Hull Bijection problem.

To create a large number of input instances that are in different connected
components we do the following. For (xi, yi) := pi ∈ Pe, we define the following
point set

Qi :={points of intersection of tangents incident on even vertices

in H with the line x = xi}.

For the example shown in Figure 3, the sets Q2 and Q4 are illustrated in Figure 4.
For every pi ∈ Pe, we have |Qi| = n/2. So p2 can be replaced with n/2 points
from Q2 corresponding to the n/2 tangents. However, to maintain a bijection,
p4 has to avoid the tangent on which p2 is mapped, and so can be replaced with
((n/2)−1) points from Q4. Continuing in this manner, we obtain a YES-instance
Py′ . The construction gives us (n/2)! such input instances y′ ∈ Rn. Our claim
is that two such instances y,y′ are in different connected components in Rn,
i.e., on every continuous path connecting them there is a y′′ such that Py′′ is a
NO-instance to the Point-Hull Bijection problem.

0

0

2 3

5
p1

p2

p3 4
1

p4 q2

q4

H

Fig. 4. The sets Q2 = {p2, q2} and Q4 = {p4, q4} corresponding to the example shown
in Figure 3.

Consider a continuous curve γ : [0, 1]→ Rn connecting y and y′. There has
to be a pi ∈ Pe that is mapped to (xi, yi) ∈ Py and (xi, y

′
i) ∈ P ′y, where yi 6= y′i.

Let γi : [0, 1] → R be the ith component of γ that maps yi to y′i. Therefore,

in R2, γi takes the point (xi, yi) to (xi, y
′
i) along the line x = xi. Since (xi, yi)

and (xi, y
′
i) are on two different tangents incident on even vertices in H, and γi

can only move along the line x = xi, it has to cross a tangent which is incident
on an odd vertex of H; e.g., in Figure 4, the path from p2 to q2 keeping the
x-coordinate fixed crosses the lower tangent corresponding to p3. So there is a
point y′′ ∈ Rn along the path of γ from y to y′ such that Py′′ is a NO-instance to
the Point-Hull Bijection problem. Hence y and y′ are in two different connected
components in Rn. Therefore, we apply Prop. 1 and Prop. 2, to get the following
result.

Theorem 3. The arithmetic complexity of any algorithm solving the Point-Hull
Bijection problem for a nice point-hull pair (P,H) in the real RAM model is
Ω(n log n), where n is the length of the input.

5 Lower Bound on Computing Lagrange’s Real Root
Bound

In this section, we will use Thm. 3 to derive a lower bound on the arithmetic
complexity of computing L(f) (recall the definition from (4)). Before we proceed
with the derivation, we reinterpret L(f).

Given a polynomial f(x) :=
∑n
i=0 aix

i, let

pi :=(i, log(1/|ai|))

be the point corresponding to the monomial aix
i in f . For ai < 0, define si as

in (3); recall that si is only defined for negative monomials. For a given pi such
that ai < 0, let Hi be the lower hull of the points in the set {pj : j > i, aj > 0}.
By definition of si we have∣∣∣∣ aiasi

∣∣∣∣ 1
si−i

= min
j>i;aj>0

log

∣∣∣∣ aiaj
∣∣∣∣ 1
j−i

.

This can be interpreted as the slope of the lower tangent from pi to Hi; note
that if pj ∈ Hi is the point of lower tangency for pi then si = j. For aj > 0,
define Tj as the set of lower tangents associated with pj , i.e.,

Tj :={pi ∈ P , such that si = j}.

Let MaxSlope1j and MaxSlope2j be the first and second maximum over the
slopes of the lower tangents of the points in Tj ; if |Tj | = 0, then MaxSlope1j = 0
and if |Tj | = 1, then MaxSlope2j = 0. Define

MaxSlope := max
j
{MaxSlope1j , where aj > 0}. (5)

Then we have the following interpretations: For Hong’s bound

H(f) = 21+MaxSlope, (6)

and for Lagrange’s real root bound

L(f) = max

(
max

j: |Tj |=1
2MaxSlope1j , max

j: |Tj |>1

(
2MaxSlope1j + 2MaxSlope2j

))
. (7)

Using this interpretation, we will derive a lower bound on computing L(f).

Theorem 4. An algorithm for computing L(f) for a real polynomial f of degree
n requires Ω(n log n) arithmetic operations in the real RAM model.

Proof. The main idea of the proof is to use an algorithm for computing Lagrange’s
real root bound to decide the Point-Hull Bijection problem for a nice point-hull
pair (Py, H), where y ∈ Rn.

Let (Py, H) be a nice point-hull pair such that

Py = {(i, ai) : i ∈ [0, . . . , n− 1], ai ∈ R}

and
H = {(i, bi) : i ∈ [n, . . . , 2n+ 1], bi ∈ R}.

From (Py, H), we construct the following polynomial

f(x) :=
∑

(i,bi)∈H

xi

2bi
−

∑
(i,ai)∈Py

xi

2ai
. (8)

This reduction from (Py, H) to f requires O(n) many exponentiation operations.
To decide the Point-Hull Bijection problem for (Py, H), we do the following:

compute L(f) and H(f), for f given in (8). If 2L(f) = H(f), we output YES;
otherwise, we output NO. We now prove the correctness of this algorithm.

If (Py, H) is a YES-instance of the Point-Hull Bijection problem, then for all
j, such that aj > 0, |Tj | = 1. Therefore, from (5), (6) and (7), we obtain that
H(f) = 2L(f).

Now we prove the converse: If (Py, H) is a NO-instance of the Point-Hull
Bijection problem then 2L(f) > H(f). Let j be an index such that |Tj | > 1.
Then from the interpretation of L(f) given in (7) we obtain that

2L(f) ≥ 2(2MaxSlope1j + 2MaxSlope2j)

≥ 22+MinSlopeH

> 21+MaxSlopeH

≥ 21+MaxSlope = H(f),

where the second and fourth inequalities follow from assumption (A2), and the
third inequality follows from assumption (A1).

Since H(f) can be computed with O(n) many arithmetic operations, we can
decide whether a nice point-hull pair (Py, H) is a YES-instance in essentially
the time taken by the algorithm for computing L(f). From the lower bound in
Thm. 3 and the result in [11, p. 29, Prop. 1], we get the desired claim. Q.E.D.

6 Conclusion and Further Directions

In this paper, we show that Lagrange’s real root bound L(f) is a bound on the
absolute positiveness of a polynomial f . A goal in this line of work is to actually
derive a tight bound on the largest positive root f , if one exists. Note that such
a bound should be able to detect if f has a positive real root or not. It is clear
that any algorithm for isolating real roots can be used to detect existence of a
positive real root. In the converse direction, we can ask the following question:
Is the problem of deciding whether a polynomial has a positive root at least as
hard as isolating its real roots? One way to prove such a statement is to give
a reduction from real root isolation that takes sub-quadratic (in the degree)
arithmetic cost and makes at most sub-linear calls to detecting positive roots.
On the other hand, one can also try to obtain an algorithm with sub-quadratic
arithmetic cost for detecting or approximating positive roots.

Another direction to pursue is to generalize L(f) to the multivariate setting.
In [6], Hong actually derives a bound on the absolute positiveness of multivariate
polynomials. In this setting, the notion of absolute positiveness is the following:
A multivariate polynomial P (x1, . . . , xn) with real coefficients is said to be ab-
solutely positive from a positive real value B iff P and all its non-zero partial
derivatives of arbitrary order are positive for x1 ≥ B, . . . , xn ≥ B. It is natural
to derive a version of the Lagrange real root bound for multivariate polynomials
and give an algorithm to compute it, similar to the one in [9]. One could then
try to generalize the lower bound in Thm. 3 to this more general setting.

Acknowledgement: The authors would like to express their gratitude to Dr.
Prashant Batra and the referees for their invaluable comments and suggestions.

References

1. Akritas, A.G., Strzeboński, A., Vigklas, P.: Implementations of a New Theorem
for Computing Bounds for Positive Roots of Polynomials. Computing 78, 355–367
(2006)

2. Akritas, A.: Vincent’s theorem in algebraic manipulation. Ph.D. thesis, Opera-
tions Research Program, North Carolina State University, Raleigh, North Carolina
(1978)

3. Batra, P.: On the quality of some root-bounds. Sixth International Conference
on Mathematical Aspects of Computer and Information Sciences (MACIS) (Nov,
2015), berlin, Germany

4. Batra, P., Sharma, V.: Bounds on absolute positiveness of multivariate polynomi-
als. J. Symb. Comput. 45(6), 617–628 (2010)

5. Collins, G.E.: Krandick’s Proof of Lagrange’s Real Root Bound Claim. J. Symb.
Comput. 70(C), 106–111 (Sep 2015), http://dx.doi.org/10.1016/j.jsc.2014.
09.038

6. Hong, H.: Bounds for absolute positiveness of multivariate polynomials. J. Symb.
Comput. 25(5), 571–585 (1998)

7. Kioustelidis, J.: Bounds for the positive roots of polynomials. Journal of Compu-
tational and Applied Mathematics 16, 241–244 (1986)

http://dx.doi.org/10.1016/j.jsc.2014.09.038
http://dx.doi.org/10.1016/j.jsc.2014.09.038

8. Lagrange, J.L.: Traité de la résolution des équations numériques de tous les degrés,
Œuvres de Lagrange, vol. 8. Gauthier-Villars, Paris, 4th edn. (1879)

9. Mehlhorn, K., Ray, S.: Faster algorithms for computing Hong’s bound on absolute
positiveness. Journal of Symbolic Computation 45(6), 677 – 683 (2010), http:

//www.sciencedirect.com/science/article/pii/S0747717110000301

10. Mignotte, M., Ştefănescu, D.: On an Estimation of Polynomial Roots by Lagrange.
Prepublication de l’Institut de Recherche Mathématique Avancée, IRMA, Univ.
de Louis Pasteur et C.N.R.S. (2002), https://books.google.co.in/books?id=

NAd4NAEACAAJ

11. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.
Springer-Verlag (1985)

12. Sharma, V.: Complexity of real root isolation using continued fractions. Theor.
Comput. Sci. 409(2), 292–310 (2008)

13. van der Sluis, A.: Upper bounds for roots of polynomials. Numer. Math. 15, 250–
262 (1970)

14. Ştefănescu, D.: New bounds for the positive roots of polynomials. Journal of Uni-
versal Computer Science 11(12), 2132–2141 (2005)

15. Ştefănescu, D.: A new polynomial bound and its efficiency. In: Gerdt, V.P., Koepf,
W., Seiler, W.M., Vorozhtsov, E.V. (eds.) Computer Algebra in Scientific Com-
puting - 17th International Workshop, CASC 2015, Aachen, Germany, September
14-18, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9301, pp. 457–
467. Springer (2015), http://dx.doi.org/10.1007/978-3-319-24021-3_33

16. Yap, C.K.: Fundamental Problems of Algorithmic Algebra. Oxford University Press
(2000)

http://www.sciencedirect.com/science/article/pii/S0747717110000301
http://www.sciencedirect.com/science/article/pii/S0747717110000301
https://books.google.co.in/books?id=NAd4NAEACAAJ
https://books.google.co.in/books?id=NAd4NAEACAAJ
http://dx.doi.org/10.1007/978-3-319-24021-3_33

	A Lower Bound For Computing Lagrange's Real Root Bound

