Introduction to Automatic Numbers

Automatic Presentations of Graphs and Numbers

Vikram Sharma

IMSc, Chennai, October, 2016

Numbers

- Natural (\mathbb{N}), Rationals (\mathbb{Q}), Real (\mathbb{R}), Complex (\mathbb{C}), ...

Numbers

- Natural (\mathbb{N}), Rationals (\mathbb{Q}), Real (R), Complex (\mathbb{C}), ...
- How do we compute with such numbers?

Numbers

- Natural (\mathbb{N}), Rationals (\mathbb{Q}), Real (\mathbb{R}), Complex (\mathbb{C}), \ldots
- How do we compute with such numbers?
- How do we represent such numbers?

Numbers

- Natural (\mathbb{N}), Rationals (\mathbb{Q}), Real (\mathbb{R}), Complex (\mathbb{C}), ...
- How do we compute with such numbers?
- How do we represent such numbers?

Representations

Number	Decimal	Binary	Continued Fractions
3	3	11	3
$\frac{1}{3}$	$.3333 \ldots$	$.0101 \ldots$	$0+\frac{1}{3}$
$\sqrt{2}$	$1.4142 \ldots$	$1.011 \ldots$	$1+\frac{1}{2+\frac{1}{2+\ldots}}$
e	$2.7182 \ldots$	$10.101 \ldots$	$2+\frac{1+\frac{1}{1+\frac{1}{2+\frac{1}{1+\ldots}}}}{}$

Representation of Real Numbers

- Injective map from \mathbb{R} to a set of infinite strings on an alphabet.
- Alphabet $\Sigma_{2}:=\{0,1\}$.
- $\Sigma_{2}^{*}:=\left\{\right.$ finite strings on $\left.\Sigma_{2}\right\}=\{\varepsilon, 0,1,00,01,10,11, \ldots\}$.
- Meaningful representation will preserve the arithmetic structure of \mathbb{R}.

Representation of Real Numbers

- Injective map from \mathbb{R} to a set of infinite strings on an alphabet.
- Alphabet $\Sigma_{2}:=\{0,1\}$.
- $\Sigma_{2}^{*}:=\left\{\right.$ finite strings on $\left.\Sigma_{2}\right\}=\{\varepsilon, 0,1,00,01,10,11, \ldots\}$.
- Meaningful representation will preserve the arithmetic structure of \mathbb{R}.

Computational perspective

- We only have finite amount of time and can work with finite descriptions.
- Computable Number: Representation is computable by finite means.

Representation of Real Numbers

- Injective map from \mathbb{R} to a set of infinite strings on an alphabet.
- Alphabet $\Sigma_{2}:=\{0,1\}$.
- $\Sigma_{2}^{*}:=\left\{\right.$ finite strings on $\left.\Sigma_{2}\right\}=\{\varepsilon, 0,1,00,01,10,11, \ldots\}$.
- Meaningful representation will preserve the arithmetic structure of \mathbb{R}.

Computational perspective

- We only have finite amount of time and can work with finite descriptions.
- Computable Number: Representation is computable by finite means. Turing (1936): Real numbers whose expressions as a decimal are calculable by finite means.

Representation of Real Numbers

- Injective map from \mathbb{R} to a set of infinite strings on an alphabet.
- Alphabet $\Sigma_{2}:=\{0,1\}$.
- $\Sigma_{2}^{*}:=\left\{\right.$ finite strings on $\left.\Sigma_{2}\right\}=\{\varepsilon, 0,1,00,01,10,11, \ldots\}$.
- Meaningful representation will preserve the arithmetic structure of \mathbb{R}.

Computational perspective

- We only have finite amount of time and can work with finite descriptions.
- Computable Number: Representation is computable by finite means. Turing (1936): Real numbers whose expressions as a decimal are calculable by finite means.
- Input: an $x \in \mathbb{R}$ and number $n \in \mathbb{N}$
- Output: Compute in finite time the nth bit of the real number x.

Representation of Real Numbers

- Injective map from \mathbb{R} to a set of infinite strings on an alphabet.
- Alphabet $\Sigma_{2}:=\{0,1\}$.
- $\Sigma_{2}^{*}:=\left\{\right.$ finite strings on $\left.\Sigma_{2}\right\}=\{\varepsilon, 0,1,00,01,10,11, \ldots\}$.
- Meaningful representation will preserve the arithmetic structure of \mathbb{R}.

Computational perspective

- We only have finite amount of time and can work with finite descriptions.
- Computable Number: Representation is computable by finite means. Turing (1936): Real numbers whose expressions as a decimal are calculable by finite means.
- Input: an $x \in \mathbb{R}$ and number $n \in \mathbb{N}$
- Output: Compute in finite time the nth bit of the real number x.
- Machine model: Turing Machine, Pushdown Automata, Finite Automata.

Representation of Real Numbers

- Injective map from \mathbb{R} to a set of infinite strings on an alphabet.
- Alphabet $\Sigma_{2}:=\{0,1\}$.
- $\Sigma_{2}^{*}:=\left\{\right.$ finite strings on $\left.\Sigma_{2}\right\}=\{\varepsilon, 0,1,00,01,10,11, \ldots\}$.
- Meaningful representation will preserve the arithmetic structure of \mathbb{R}.

Computational perspective

- We only have finite amount of time and can work with finite descriptions.
- Computable Number: Representation is computable by finite means. Turing (1936): Real numbers whose expressions as a decimal are calculable by finite means.
- Input: an $x \in \mathbb{R}$ and number $n \in \mathbb{N}$
- Output: Compute in finite time the nth bit of the real number x.
- Machine model: Turing Machine, Pushdown Automata, Finite Automata.

Automatic Numbers

Informal Definition

A real number whose nth bit is computable by a Finite Automata.

Automatic Numbers

Informal Definition

A real number whose nth bit is computable by a Finite Automata.

Finite Automata

Example

$$
M=\left(Q, \Sigma, \delta, q_{0}, F\right):
$$

- Q finite set of states.
- Σ finite input alphabet (e.g., Σ_{2}).

- $\delta: Q \times \Sigma \rightarrow Q$ transition function.
- q_{0} initial state.
- $F \subseteq Q$ set of accepting states.

Automatic Numbers

Informal Definition

A real number whose nth bit is computable by a Finite Automata.

Finite Automata

Example

$M=\left(Q, \Sigma, \delta, q_{0}, F\right):$

- Q finite set of states.
- Σ finite input alphabet (e.g., Σ_{2}).
- $\delta: Q \times \Sigma \rightarrow Q$ transition function.
- q_{0} initial state.
- $F \subseteq Q$ set of accepting states.

$L(M)=\left\{w \in \Sigma^{*} \mid \delta\left(q_{0}, w\right) \in F\right\}$.
$=\{11,011,011000110, \ldots$.$\} .$
$=\{$ strings with even ones $\}$.

Automatic Numbers

Informal Definition

A real number whose nth bit is computable by a Finite Automata.

Finite Automata

$M=\left(Q, \Sigma, \delta, q_{0}, F\right):$

- Q finite set of states.
- Σ finite input alphabet (e.g., Σ_{2}).
- $\delta: Q \times \Sigma \rightarrow Q$ transition function.
- q_{0} initial state.
- $F \subseteq Q$ set of accepting states.
- $\tau: Q \rightarrow \Sigma_{2}$.

Example

$L(M)=\left\{w \in \Sigma^{*} \mid \delta\left(q_{0}, w\right) \in F\right\}$.
$=\{11,011,011000110, \ldots$.$\} .$
$=\{$ strings with even ones $\}$.

Automatic Numbers

Informal Definition

A real number whose nth bit is computable by a Finite Automata.

Finite Automata

$M=\left(Q, \Sigma, \delta, q_{0}, F\right):$

- Q finite set of states.
- Σ finite input alphabet (e.g., Σ_{2}).
- $\delta: Q \times \Sigma \rightarrow Q$ transition function.
- q_{0} initial state.
- $F \subseteq Q$ set of accepting states.
- $\tau: Q \rightarrow \Sigma_{2}$.

Example

$L(M)=\left\{w \in \Sigma^{*} \mid \delta\left(q_{0}, w\right) \in F\right\}$.
$=\{11,011,011000110, \ldots$.$\} .$
$=\{$ strings with even ones $\}$.

Automatic Numbers

Informal Definition

A real number whose nth bit is computable by a Finite Automata.

Finite Automata

$M=\left(Q, \Sigma, \delta, q_{0}, F\right)$:

- Q finite set of states.
- Σ finite input alphabet (e.g., Σ_{2}).
- $\delta: Q \times \Sigma \rightarrow Q$ transition function.
- q_{0} initial state.
- $F \subseteq Q$ set of accepting states.
- $\tau: Q \rightarrow \Sigma_{2}$.

Thue-Morse sequence:

```
n=1:1
t
```


Example

$L(M)=\left\{w \in \Sigma^{*} \mid \delta\left(q_{0}, w\right) \in F\right\}$.
$=\{11,011,011000110, \ldots$.$\} .$
$=\{$ strings with even ones $\}$.

Automatic Numbers - More examples

Fredholm number $=\sum_{n \geq 1} 2^{-2^{n}}$

Automatic Numbers - More examples

Fredholm number $=\sum_{n \geq 1} 2^{-2^{n}}$

Rudin-Shapiro

nth bit is ' 1 ' iff the number of (overlapping) occurrences of " 11 " in $[n]_{2}$ is even.

Non-Automatic Numbers

- $L \subseteq \Sigma_{2}^{*}$ a non-regular language. Then nth bit is one iff $[n]_{2} \in L$.
- E.g., the nth bit is one iff $[n]_{2}$ is of the form $0^{k} 1^{k}$, for some $k \geq 0$.

Non-Automatic Numbers

- $L \subseteq \Sigma_{2}^{*}$ a non-regular language. Then nth bit is one iff $[n]_{2} \in L$.
- E.g., the nth bit is one iff $[n]_{2}$ is of the form $0^{k} 1^{k}$, for some $k \geq 0$.

Characteristic sequence of Squares

- nth bit is one iff n is a square: $\left[\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \ldots \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & \ldots\end{array}\right]$.
- Suppose Squares is accepted by a DFA (i.e., it is regular).

Non-Automatic Numbers

- $L \subseteq \Sigma_{2}^{*}$ a non-regular language. Then nth bit is one iff $[n]_{2} \in L$.
- E.g., the nth bit is one iff $[n]_{2}$ is of the form $0^{k} 1^{k}$, for some $k \geq 0$.

Characteristic sequence of Squares

- nth bit is one iff n is a square: $\left[\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \ldots \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & \ldots\end{array}\right]$.
- Suppose Squares is accepted by a DFA (i.e., it is regular).
- Then Squares $\cap(11)^{*}(00)^{*} 01$ is also regular.

Non-Automatic Numbers

- $L \subseteq \Sigma_{2}^{*}$ a non-regular language. Then nth bit is one iff $[n]_{2} \in L$.
- E.g., the nth bit is one iff $[n]_{2}$ is of the form $0^{k} 1^{k}$, for some $k \geq 0$.

Characteristic sequence of Squares

- nth bit is one iff n is a square: $\left[\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \ldots \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & \ldots\end{array}\right]$.
- Suppose Squares is accepted by a DFA (i.e., it is regular).
- Then Squares $\cap(11)^{*}(00)^{*} 01$ is also regular.
- What squares n have $[n]_{2}=(11)^{*}(00)^{*} 01$?

Non-Automatic Numbers

- $L \subseteq \Sigma_{2}^{*}$ a non-regular language. Then nth bit is one iff $[n]_{2} \in L$.
- E.g., the nth bit is one iff $[n]_{2}$ is of the form $0^{k} 1^{k}$, for some $k \geq 0$.

Characteristic sequence of Squares

- nth bit is one iff n is a square: $\left[\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \ldots \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & \ldots\end{array}\right]$.
- Suppose Squares is accepted by a DFA (i.e., it is regular).
- Then Squares $\cap(11)^{*}(00)^{*} 01$ is also regular.
- What squares n have $[n]_{2}=(11)^{*}(00)^{*} 01$?
- If $[n]_{2}$ has k " 11 " and ℓ " 00 " then $n=\left(2^{2 k}-1\right) 2^{2 \ell+2}+1$.

Non-Automatic Numbers

- $L \subseteq \Sigma_{2}^{*}$ a non-regular language. Then nth bit is one iff $[n]_{2} \in L$.
- E.g., the nth bit is one iff $[n]_{2}$ is of the form $0^{k} 1^{k}$, for some $k \geq 0$.

Characteristic sequence of Squares

- nth bit is one iff n is a square: $\left[\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \ldots \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & \ldots\end{array}\right]$.
- Suppose Squares is accepted by a DFA (i.e., it is regular).
- Then Squares $\cap(11)^{*}(00)^{*} 01$ is also regular.
- What squares n have $[n]_{2}=(11)^{*}(00)^{*} 01$?
- If $[n]_{2}$ has k " 11 " and ℓ " 00 " then $n=\left(2^{2 k}-1\right) 2^{2 \ell+2}+1$.
- Claim: n is a square iff $k=\ell$.

Non-Automatic Numbers

- $L \subseteq \Sigma_{2}^{*}$ a non-regular language. Then nth bit is one iff $[n]_{2} \in L$.
- E.g., the nth bit is one iff $[n]_{2}$ is of the form $0^{k} 1^{k}$, for some $k \geq 0$.

Characteristic sequence of Squares

- nth bit is one iff n is a square: $\left[\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \ldots \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & \ldots\end{array}\right]$.
- Suppose Squares is accepted by a DFA (i.e., it is regular).
- Then Squares $\cap(11)^{*}(00)^{*} 01$ is also regular.
- What squares n have $[n]_{2}=(11)^{*}(00)^{*} 01$?
- If $[n]_{2}$ has k " 11 " and ℓ " 00 " then $n=\left(2^{2 k}-1\right) 2^{2 \ell+2}+1$.
- Claim: n is a square iff $k=\ell$.
- Thus Squares $\cap(11)^{*}(00)^{*} 01=\left\{1^{2 k} 0^{2 k+1} 1\right\}$, which is not regular.

Properties of Automatic Numbers

Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of bits, and $F_{i}:=\left\{[n]_{2} \mid a_{n}=i\right\}, i \in\{0,1\}$.

- $\left(a_{n}\right)_{n \geq 1}$ is automatic iff F_{i} is regular.

Properties of Automatic Numbers

Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of bits, and $F_{i}:=\left\{[n]_{2} \mid a_{n}=i\right\}, i \in\{0,1\}$.

- $\left(a_{n}\right)_{n \geq 1}$ is automatic iff F_{i} is regular.
- If a sequence differs from $\left(a_{n}\right)_{n \geq 1}$ in finitely many indices it is automatic.

Properties of Automatic Numbers

Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of bits, and $F_{i}:=\left\{[n]_{2} \mid a_{n}=i\right\}, i \in\{0,1\}$.

- $\left(a_{n}\right)_{n \geq 1}$ is automatic iff F_{i} is regular.
- If a sequence differs from $\left(a_{n}\right)_{n \geq 1}$ in finitely many indices it is automatic.
- If $\left(a_{n}\right)_{n \geq 1}$ is ultimately periodic with period t then it is automatic.
- $Q:=\{0, \ldots, t-1\}, \delta(q, b)=2 q+b \bmod t, b \in\{0,1\}, \tau(q):=a_{q}$.

Properties of Automatic Numbers

Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of bits, and $F_{i}:=\left\{[n]_{2} \mid a_{n}=i\right\}, i \in\{0,1\}$.

- $\left(a_{n}\right)_{n \geq 1}$ is automatic iff F_{i} is regular.
- If a sequence differs from $\left(a_{n}\right)_{n \geq 1}$ in finitely many indices it is automatic.
- If $\left(a_{n}\right)_{n \geq 1}$ is ultimately periodic with period t then it is automatic.
- $Q:=\{0, \ldots, t-1\}, \delta(q, b)=2 q+b \bmod t, b \in\{0,1\}, \tau(q):=a_{q}$.
- All rational numbers are automatic.

Properties of Automatic Numbers

Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of bits, and $F_{i}:=\left\{[n]_{2} \mid a_{n}=i\right\}, i \in\{0,1\}$.

- $\left(a_{n}\right)_{n \geq 1}$ is automatic iff F_{i} is regular.
- If a sequence differs from $\left(a_{n}\right)_{n \geq 1}$ in finitely many indices it is automatic.
- If $\left(a_{n}\right)_{n \geq 1}$ is ultimately periodic with period t then it is automatic.
- $Q:=\{0, \ldots, t-1\}, \delta(q, b)=2 q+b \bmod t, b \in\{0,1\}, \tau(q):=a_{q}$.
- All rational numbers are automatic.
- What if we want to accept the input in a different base?

k-automatic - input string is in base k

$M=\left(Q, \Sigma, \delta, q_{0}, \tau\right): Q$ finite set of states,
Σ finite alphabet
$\delta: Q \times \Sigma \rightarrow Q$ transition function, q_{0} initial state,
$\tau: Q \rightarrow \Sigma_{2}$.

Properties of Automatic Numbers

Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of bits, and $F_{i}:=\left\{[n]_{2} \mid a_{n}=i\right\}, i \in\{0,1\}$.

- $\left(a_{n}\right)_{n \geq 1}$ is automatic iff F_{i} is regular.
- If a sequence differs from $\left(a_{n}\right)_{n \geq 1}$ in finitely many indices it is automatic.
- If $\left(a_{n}\right)_{n \geq 1}$ is ultimately periodic with period t then it is automatic.
- $Q:=\{0, \ldots, t-1\}, \delta(q, b)=2 q+b \bmod t, b \in\{0,1\}, \tau(q):=a_{q}$.
- All rational numbers are automatic.
- What if we want to accept the input in a different base?

k-automatic - input string is in base k

$M=\left(Q, \Sigma, \delta, q_{0}, \tau\right): Q$ finite set of states,
Σ finite alphabet
$\delta: Q \times \Sigma \rightarrow Q$ transition function, q_{0} initial state,
$\tau: Q \rightarrow \Sigma_{2}$.

Properties of Automatic Numbers

Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of bits, and $F_{i}:=\left\{[n]_{2} \mid a_{n}=i\right\}, i \in\{0,1\}$.

- $\left(a_{n}\right)_{n \geq 1}$ is automatic iff F_{i} is regular.
- If a sequence differs from $\left(a_{n}\right)_{n \geq 1}$ in finitely many indices it is automatic.
- If $\left(a_{n}\right)_{n \geq 1}$ is ultimately periodic with period t then it is automatic.
- $Q:=\{0, \ldots, t-1\}, \delta(q, b)=2 q+b \bmod t, b \in\{0,1\}, \tau(q):=a_{q}$.
- All rational numbers are automatic.
- What if we want to accept the input in a different base?

k-automatic - input string is in base k

$M=\left(Q, \Sigma, \delta, q_{0}, \tau\right): Q$ finite set of states,
Σ finite alphabet $\Sigma_{k}:=\{0, \ldots, k-1\}$,
$\delta: Q \times \Sigma \rightarrow Q$ transition function, q_{0} initial state,
$\tau: Q \rightarrow \Sigma_{2}$.

Properties of Automatic Numbers

Let $\left(a_{n}\right)_{n \geq 1}$ be a sequence of bits, and $F_{i}:=\left\{[n]_{2} \mid a_{n}=i\right\}, i \in\{0,1\}$.

- $\left(a_{n}\right)_{n \geq 1}$ is automatic iff F_{i} is regular.
- If a sequence differs from $\left(a_{n}\right)_{n \geq 1}$ in finitely many indices it is automatic.
- If $\left(a_{n}\right)_{n \geq 1}$ is ultimately periodic with period t then it is automatic.
- $Q:=\{0, \ldots, t-1\}, \delta(q, b)=2 q+b \bmod t, b \in\{0,1\}, \tau(q):=a_{q}$.
- All rational numbers are automatic.
- What if we want to accept the input in a different base?

k-automatic - input string is in base k

$M=\left(Q, \Sigma, \delta, q_{0}, \tau\right): Q$ finite set of states, Σ finite alphabet $\Sigma_{k}:=\{0, \ldots, k-1\}$, $\delta: Q \times \Sigma \rightarrow Q$ transition function, q_{0} initial state,
$\tau: Q \rightarrow \Sigma_{2}$.

Rationals are k-automatic

- $Q:=\{0, \ldots, t-1\}$
- $\delta(q, b)=k q+b \bmod t$, $b \in\{0, k-1\}$
- $\tau(q):=a_{q}$.

Properties of Automatic Numbers

k and ℓ are multiplicatively independent if $k^{i} \neq \ell^{j}$, for all $i, j \in \mathbb{Z}$.

Properties of Automatic Numbers

k and ℓ are multiplicatively independent if $k^{i} \neq \ell^{j}$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $\left(a_{n}\right)_{n \geq 1}$ is k-automatic and ℓ-automatic and k, ℓ are multiplicatively independent then it is ultimately periodic.

Properties of Automatic Numbers

k and ℓ are multiplicatively independent if $k^{i} \neq \ell^{j}$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $\left(a_{n}\right)_{n \geq 1}$ is k-automatic and ℓ-automatic and k, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

$L(k)$ be the set of all k-automatic reals, for $k \geq 2 . \mathbf{x}=\sum_{n \geq 1} a_{n} 2^{-n} \in L(k)$

- $\mathbb{Q} \subseteq L(k)$

Properties of Automatic Numbers

k and ℓ are multiplicatively independent if $k^{i} \neq \ell^{j}$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $\left(a_{n}\right)_{n \geq 1}$ is k-automatic and ℓ-automatic and k, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

$L(k)$ be the set of all k-automatic reals, for $k \geq 2 . \mathbf{x}=\sum_{n \geq 1} a_{n} 2^{-n} \in L(k)$

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x}=(-1)+\sum_{n \geq 1}\left(1-a_{n}\right) 2^{-n}$. Flip 0's to 1 's and vice versa.

Properties of Automatic Numbers

k and ℓ are multiplicatively independent if $k^{i} \neq \ell^{j}$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $\left(a_{n}\right)_{n \geq 1}$ is k-automatic and ℓ-automatic and k, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

$L(k)$ be the set of all k-automatic reals, for $k \geq 2 . \mathbf{x}=\sum_{n \geq 1} a_{n} 2^{-n} \in L(k)$

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x}=(-1)+\sum_{n \geq 1}\left(1-a_{n}\right) 2^{-n}$. Flip 0's to 1 's and vice versa.
- Unnormalized: if $\left(a_{n}\right)$ is k-automatic, $0 \leq a_{n} \leq C$, then so is $\sum_{n} a_{n} 2^{-n}$.

Properties of Automatic Numbers

k and ℓ are multiplicatively independent if $k^{i} \neq \ell^{j}$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $\left(a_{n}\right)_{n \geq 1}$ is k-automatic and ℓ-automatic and k, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

$L(k)$ be the set of all k-automatic reals, for $k \geq 2 . \mathbf{x}=\sum_{n \geq 1} a_{n} 2^{-n} \in L(k)$

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x}=(-1)+\sum_{n \geq 1}\left(1-a_{n}\right) 2^{-n}$. Flip 0's to 1 's and vice versa.
- Unnormalized: if $\left(a_{n}\right)$ is k-automatic, $0 \leq a_{n} \leq C$, then so is $\sum_{n} a_{n} 2^{-n}$. - Trivial if $C<2$ as the bits a_{n} are the same. How to handle the carries?

Properties of Automatic Numbers

k and ℓ are multiplicatively independent if $k^{i} \neq \ell^{j}$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $\left(a_{n}\right)_{n \geq 1}$ is k-automatic and ℓ-automatic and k, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

$L(k)$ be the set of all k-automatic reals, for $k \geq 2 . \mathbf{x}=\sum_{n \geq 1} a_{n} 2^{-n} \in L(k)$

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x}=(-1)+\sum_{n \geq 1}\left(1-a_{n}\right) 2^{-n}$. Flip 0's to 1 's and vice versa.
- Unnormalized: if $\left(a_{n}\right)$ is k-automatic, $0 \leq a_{n} \leq C$, then so is $\sum_{n} a_{n} 2^{-n}$. - Trivial if $C<2$ as the bits a_{n} are the same. How to handle the carries?
- If $a_{n}=2 q_{n-1}+r_{n}$ then $\sum_{n} a_{n} 2^{-n}=\sum\left(q_{n}+r_{n}\right) 2^{-n}$ (until $q_{n}+r_{n} \leq 2$).

Properties of Automatic Numbers

k and ℓ are multiplicatively independent if $k^{i} \neq \ell^{j}$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $\left(a_{n}\right)_{n \geq 1}$ is k-automatic and ℓ-automatic and k, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

$L(k)$ be the set of all k-automatic reals, for $k \geq 2 . \mathbf{x}=\sum_{n \geq 1} a_{n} 2^{-n} \in L(k)$

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x}=(-1)+\sum_{n \geq 1}\left(1-a_{n}\right) 2^{-n}$. Flip 0's to 1 's and vice versa.
- Unnormalized: if $\left(a_{n}\right)$ is k-automatic, $0 \leq a_{n} \leq C$, then so is $\sum_{n} a_{n} 2^{-n}$.
- Trivial if $C<2$ as the bits a_{n} are the same. How to handle the carries?
- If $a_{n}=2 q_{n-1}+r_{n}$ then $\sum_{n} a_{n} 2^{-n}=\sum\left(q_{n}+r_{n}\right) 2^{-n}$ (until $q_{n}+r_{n} \leq 2$).
- Carry bit: $c_{n}=1$ if $\exists m>n$ s.t. $c_{m}=2$ and $\forall i \in[n, m], q_{i}+r_{i}=1$.

Properties of Automatic Numbers

k and ℓ are multiplicatively independent if $k^{i} \neq \ell^{j}$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $\left(a_{n}\right)_{n \geq 1}$ is k-automatic and ℓ-automatic and k, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

$L(k)$ be the set of all k-automatic reals, for $k \geq 2 . \mathbf{x}=\sum_{n \geq 1} a_{n} 2^{-n} \in L(k)$

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x}=(-1)+\sum_{n \geq 1}\left(1-a_{n}\right) 2^{-n}$. Flip 0's to 1 's and vice versa.
- Unnormalized: if $\left(a_{n}\right)$ is k-automatic, $0 \leq a_{n} \leq C$, then so is $\sum_{n} a_{n} 2^{-n}$.
- Trivial if $C<2$ as the bits a_{n} are the same. How to handle the carries?
- If $a_{n}=2 q_{n-1}+r_{n}$ then $\sum_{n} a_{n} 2^{-n}=\sum\left(q_{n}+r_{n}\right) 2^{-n}$ (until $q_{n}+r_{n} \leq 2$).
- Carry bit: $c_{n}=1$ if $\exists m>n$ s.t. $c_{m}=2$ and $\forall i \in[n, m], q_{i}+r_{i}=1$.
- Use non-determinism to compute c_{n}.

Properties of Automatic Numbers

k and ℓ are multiplicatively independent if $k^{i} \neq \ell^{j}$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $\left(a_{n}\right)_{n \geq 1}$ is k-automatic and ℓ-automatic and k, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

$L(k)$ be the set of all k-automatic reals, for $k \geq 2 . \mathbf{x}=\sum_{n \geq 1} a_{n} 2^{-n} \in L(k)$

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x}=(-1)+\sum_{n \geq 1}\left(1-a_{n}\right) 2^{-n}$. Flip 0's to 1 's and vice versa.
- Unnormalized: if $\left(a_{n}\right)$ is k-automatic, $0 \leq a_{n} \leq C$, then so is $\sum_{n} a_{n} 2^{-n}$.
- Trivial if $C<2$ as the bits a_{n} are the same. How to handle the carries?
- If $a_{n}=2 q_{n-1}+r_{n}$ then $\sum_{n} a_{n} 2^{-n}=\sum\left(q_{n}+r_{n}\right) 2^{-n}$ (until $q_{n}+r_{n} \leq 2$).
- Carry bit: $c_{n}=1$ if $\exists m>n$ s.t. $c_{m}=2$ and $\forall i \in[n, m], q_{i}+r_{i}=1$.
- Use non-determinism to compute c_{n}.
- Closed under addition: $\mathbf{x}, \mathbf{y} \in L(k)$, then $\mathbf{x}+\mathbf{y} \in L(k)$.

Properties of Automatic Numbers

k and ℓ are multiplicatively independent if $k^{i} \neq \ell^{j}$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $\left(a_{n}\right)_{n \geq 1}$ is k-automatic and ℓ-automatic and k, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

$L(k)$ be the set of all k-automatic reals, for $k \geq 2 . \mathbf{x}=\sum_{n \geq 1} a_{n} 2^{-n} \in L(k)$

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x}=(-1)+\sum_{n \geq 1}\left(1-a_{n}\right) 2^{-n}$. Flip 0's to 1 's and vice versa.
- Unnormalized: if $\left(a_{n}\right)$ is k-automatic, $0 \leq a_{n} \leq C$, then so is $\sum_{n} a_{n} 2^{-n}$.
- Closed under addition: $\mathbf{x}, \mathbf{y} \in L(k)$, then $\mathbf{x}+\mathbf{y} \in L(k)$.
- Division by integers: $\mathbf{x} / c \in L(k), c \in \mathbb{Z}_{\neq 0}$

Properties of Automatic Numbers

k and ℓ are multiplicatively independent if $k^{i} \neq \ell^{j}$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $\left(a_{n}\right)_{n \geq 1}$ is k-automatic and ℓ-automatic and k, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

$L(k)$ be the set of all k-automatic reals, for $k \geq 2 . \mathbf{x}=\sum_{n \geq 1} a_{n} 2^{-n} \in L(k)$

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x}=(-1)+\sum_{n \geq 1}\left(1-a_{n}\right) 2^{-n}$. Flip 0's to 1's and vice versa.
- Unnormalized: if $\left(a_{n}\right)$ is k-automatic, $0 \leq a_{n} \leq C$, then so is $\sum_{n} a_{n} 2^{-n}$.
- Closed under addition: $\mathbf{x}, \mathbf{y} \in L(k)$, then $\mathbf{x}+\mathbf{y} \in L(k)$.
- Division by integers: $\mathbf{x} / c \in L(k), c \in \mathbb{Z}_{\neq 0}$

$$
-\sum_{n} \frac{a_{n}}{c} 2^{-n}=\left\lfloor\frac{a_{1}}{c}\right\rfloor 2^{-1}+\left\lfloor\frac{2 \operatorname{rem}\left(a_{1}, c\right)+a_{2}}{c}\right\rfloor 2^{-2}+\left\lfloor\frac{2 \operatorname{rem}\left(2 \operatorname{rem}\left(a_{1}, c\right)+a_{2}, c\right)}{c}\right\rfloor 2^{-3}+\cdots
$$

Properties of Automatic Numbers

k and ℓ are multiplicatively independent if $k^{i} \neq \ell^{j}$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $\left(a_{n}\right)_{n \geq 1}$ is k-automatic and ℓ-automatic and k, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

$L(k)$ be the set of all k-automatic reals, for $k \geq 2 . \mathbf{x}=\sum_{n \geq 1} a_{n} 2^{-n} \in L(k)$

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x}=(-1)+\sum_{n \geq 1}\left(1-a_{n}\right) 2^{-n}$. Flip 0's to 1 's and vice versa.
- Unnormalized: if $\left(a_{n}\right)$ is k-automatic, $0 \leq a_{n} \leq C$, then so is $\sum_{n} a_{n} 2^{-n}$.
- Closed under addition: $\mathbf{x}, \mathbf{y} \in L(k)$, then $\mathbf{x}+\mathbf{y} \in L(k)$.
- Division by integers: $\mathbf{x} / c \in L(k), c \in \mathbb{Z}_{\neq 0}$
$-\sum_{n} \frac{a_{n}}{c} 2^{-n}=\left\lfloor\frac{a_{1}}{c}\right\rfloor 2^{-1}+\left\lfloor\frac{2 \operatorname{rem}\left(a_{1}, c\right)+a_{2}}{c}\right\rfloor 2^{-2}+\left\lfloor\frac{\operatorname{2rem}\left(2 \operatorname{rem}\left(a_{1}, c\right)+a_{2}, c\right)}{c}\right\rfloor 2^{-3}+\cdots$
- $L(k)$ forms a vector space over \mathbb{Q}.

Properties of Automatic Numbers

Non-closure properties of $L(k)$

- Multiplication:

Properties of Automatic Numbers

Non-closure properties of $L(k)$

- Multiplication:
- nth bit of $\mathbf{x y}$ is $\sum_{i} x_{i} y_{n-i}$.

Properties of Automatic Numbers

Non-closure properties of $L(k)$

- Multiplication:
- nth bit of $\mathbf{x y}$ is $\sum_{i} x_{i} y_{n-i}$.
- Need to store all the previous bits. Not possible in finite memory.

Properties of Automatic Numbers

Non-closure properties of $L(k)$

- Multiplication:
- nth bit of $\mathbf{x y}$ is $\sum_{i} x_{i} y_{n-i}$.
- Need to store all the previous bits. Not possible in finite memory.
- Squaring: $\mathbf{x y}=\left((\mathbf{x}+\mathbf{y})^{2}-(\mathbf{x}-\mathbf{y})^{2}\right) / 4$.

Properties of Automatic Numbers

Non-closure properties of $L(k)$

- Multiplication:
- nth bit of $\mathbf{x y}$ is $\sum_{i} x_{i} y_{n-i}$.
- Need to store all the previous bits. Not possible in finite memory.
- Squaring: $\mathbf{x y}=\left((\mathbf{x}+\mathbf{y})^{2}-(\mathbf{x}-\mathbf{y})^{2}\right) / 4$.
- Inverse: $\mathbf{x}^{2}=\mathbf{x}+\frac{1}{\frac{1}{x-1}-\frac{1}{x}}$.

Subword Complexity

Let \mathbf{x} be an infinite string over a finite alphabet Σ.

- A subword of \mathbf{x} is a finite substring.

Subword Complexity

Let \mathbf{x} be an infinite string over a finite alphabet Σ.

- A subword of \mathbf{x} is a finite substring.
- $p(\mathbf{x}, n)$ is the number of distinct subwords of length n. At most $|\Sigma|^{n}$.

Subword Complexity

Let \mathbf{x} be an infinite string over a finite alphabet Σ.

- A subword of \mathbf{x} is a finite substring.
- $p(\mathbf{x}, n)$ is the number of distinct subwords of length n. At most $|\Sigma|^{n}$.
- If \mathbf{x} is ultimately periodic then $p(\mathbf{x}, n)=O(1)$.

Subword Complexity

Let \mathbf{x} be an infinite string over a finite alphabet Σ.

- A subword of \mathbf{x} is a finite substring.
- $p(\mathbf{x}, n)$ is the number of distinct subwords of length n. At most $|\Sigma|^{n}$.
- If \mathbf{x} is ultimately periodic then $p(\mathbf{x}, n)=O(1)$.
- $p(12345678910111213141516 \ldots, n)=10^{n}$.

Subword Complexity

Let \mathbf{x} be an infinite string over a finite alphabet Σ.

- A subword of \mathbf{x} is a finite substring.
- $p(\mathbf{x}, n)$ is the number of distinct subwords of length n. At most $|\Sigma|^{n}$.
- If \mathbf{x} is ultimately periodic then $p(\mathbf{x}, n)=O(1)$.
- $p(12345678910111213141516 \ldots, n)=10^{n}$.
- $p(\mathbf{x}, n) \leq p(\mathbf{x}, n+1)$

Subword Complexity

Let \mathbf{x} be an infinite string over a finite alphabet Σ.

- A subword of \mathbf{x} is a finite substring.
- $p(\mathbf{x}, n)$ is the number of distinct subwords of length n. At most $|\Sigma|^{n}$.
- If \mathbf{x} is ultimately periodic then $p(\mathbf{x}, n)=O(1)$.
- $p(12345678910111213141516 \ldots, n)=10^{n}$.
- $p(\mathbf{x}, n) \leq p(\mathbf{x}, n+1) \leq k p(\mathbf{x}, n)$

Subword Complexity

Let \mathbf{x} be an infinite string over a finite alphabet Σ.

- A subword of \mathbf{x} is a finite substring.
- $p(\mathbf{x}, n)$ is the number of distinct subwords of length n. At most $|\Sigma|^{n}$.
- If \mathbf{x} is ultimately periodic then $p(\mathbf{x}, n)=O(1)$.
- $p(12345678910111213141516 \ldots, n)=10^{n}$.
- $p(\mathbf{x}, n) \leq p(\mathbf{x}, n+1) \leq k p(\mathbf{x}, n)$
- Let $X:=\{$ distinct subwords of length $n\}$. Then $X \times \Sigma$ are all distinct.

Subword Complexity

Let \mathbf{x} be an infinite string over a finite alphabet Σ.

- A subword of \mathbf{x} is a finite substring.
- $p(\mathbf{x}, n)$ is the number of distinct subwords of length n. At most $|\Sigma|^{n}$.
- If \mathbf{x} is ultimately periodic then $p(\mathbf{x}, n)=O(1)$.
- $p(12345678910111213141516 \ldots, n)=10^{n}$.
- $p(\mathbf{x}, n) \leq p(\mathbf{x}, n+1) \leq k p(\mathbf{x}, n)$
- Let $X:=\{$ distinct subwords of length $n\}$. Then $X \times \Sigma$ are all distinct.
- If \mathbf{x} is k-automatic then $p(\mathbf{x}, n)=O(n)$.

Subword Complexity

Let \mathbf{x} be an infinite string over a finite alphabet Σ.

- A subword of \mathbf{x} is a finite substring.
- $p(\mathbf{x}, n)$ is the number of distinct subwords of length n. At most $|\Sigma|^{n}$.
- If \mathbf{x} is ultimately periodic then $p(\mathbf{x}, n)=O(1)$.
- $p(12345678910111213141516 \ldots, n)=10^{n}$.
- $p(\mathbf{x}, n) \leq p(\mathbf{x}, n+1) \leq k p(\mathbf{x}, n)$
- Let $X:=\{$ distinct subwords of length $n\}$. Then $X \times \Sigma$ are all distinct.
- If \mathbf{x} is k-automatic then $p(\mathbf{x}, n)=O(n)$.
- Multiplication can increase the subword complexity to $|\Sigma|^{n}$.

Further Questions

- Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?

Further Questions

- Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?
- Algebraic number: $\alpha \in \mathbb{C}$ s.t. $\exists f(x) \in \mathbb{Z}[x], f(\alpha)=0$.

Further Questions

- Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?
- Algebraic number: $\alpha \in \mathbb{C}$ s.t. $\exists f(x) \in \mathbb{Z}[x], f(\alpha)=0$.
- Is π automatic?

Further Questions

- Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?
- Algebraic number: $\alpha \in \mathbb{C}$ s.t. $\exists f(x) \in \mathbb{Z}[x], f(\alpha)=0$.
- Is π automatic?
- Can we compute with automatic numbers?

Further Questions

- Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?
- Algebraic number: $\alpha \in \mathbb{C}$ s.t. $\exists f(x) \in \mathbb{Z}[x], f(\alpha)=0$.
- Is π automatic?
- Can we compute with automatic numbers?
- Given $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in L(k)$ and $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ decide $\sum_{i} a_{i} \mathbf{x}_{i}=0$?

Further Questions

- Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?
- Algebraic number: $\alpha \in \mathbb{C}$ s.t. $\exists f(x) \in \mathbb{Z}[x], f(\alpha)=0$.
- Is π automatic?
- Can we compute with automatic numbers?
- Given $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in L(k)$ and $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ decide $\sum_{i} a_{i} \mathbf{x}_{i}=0$?
- Automatic Continued fractions: $a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}}$.

Further Questions

- Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?
- Algebraic number: $\alpha \in \mathbb{C}$ s.t. $\exists f(x) \in \mathbb{Z}[x], f(\alpha)=0$.
- Is π automatic?
- Can we compute with automatic numbers?
- Given $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in L(k)$ and $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ decide $\sum_{i} a_{i} \mathbf{x}_{i}=0$?
- Automatic Continued fractions: $a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots .}}$.
- Finite: \mathbb{Q}; Periodic: Quadratic irrationals ($\sqrt{2}$ etc.); How about degree 3 ?

Further Questions

- Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?
- Algebraic number: $\alpha \in \mathbb{C}$ s.t. $\exists f(x) \in \mathbb{Z}[x], f(\alpha)=0$.
- Is π automatic?
- Can we compute with automatic numbers?
- Given $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in L(k)$ and $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ decide $\sum_{i} a_{i} \mathbf{x}_{i}=0$?
- Automatic Continued fractions: $a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}}$.
- Finite: \mathbb{Q}; Periodic: Quadratic irrationals ($\sqrt{2}$ etc.); How about degree 3?
- Stronger machine models? Pushdown automata? Turing machines are too strong.

Further Questions

- Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?
- Algebraic number: $\alpha \in \mathbb{C}$ s.t. $\exists f(x) \in \mathbb{Z}[x], f(\alpha)=0$.
- Is π automatic?
- Can we compute with automatic numbers?
- Given $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in L(k)$ and $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ decide $\sum_{i} a_{i} \mathbf{x}_{i}=0$?
- Automatic Continued fractions: $a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}}$.
- Finite: Q; Periodic: Quadratic irrationals ($\sqrt{2}$ etc.); How about degree 3?
- Stronger machine models? Pushdown automata? Turing machines are too strong.

Reference

Allouche and Shallit - Automatic Sequences. Theory, Applications, Generalizations.

Further Questions

- Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?
- Algebraic number: $\alpha \in \mathbb{C}$ s.t. $\exists f(x) \in \mathbb{Z}[x], f(\alpha)=0$.
- Is π automatic?
- Can we compute with automatic numbers?
- Given $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n} \in L(k)$ and $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ decide $\sum_{i} a_{i} \mathbf{x}_{i}=0$?
- Automatic Continued fractions: $a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}}$.
- Finite: Q; Periodic: Quadratic irrationals ($\sqrt{2}$ etc.); How about degree 3?
- Stronger machine models? Pushdown automata? Turing machines are too strong.

Reference

Allouche and Shallit - Automatic Sequences. Theory, Applications, Generalizations.

Thank You!

