Introduction to Automatic Numbers

Automatic Presentations of Graphs and Numbers

Vikram Sharma

IMSc, Chennai, October, 2016

• Natural (\mathbb{N}), Rationals (\mathbb{Q}), Real (\mathbb{R}), Complex (\mathbb{C}), ...

- Natural (\mathbb{N}), Rationals (\mathbb{Q}), Real (\mathbb{R}), Complex (\mathbb{C}), ...
- How do we compute with such numbers?

- Natural (\mathbb{N}), Rationals (\mathbb{Q}), Real (\mathbb{R}), Complex (\mathbb{C}), ...
- How do we compute with such numbers?
- How do we represent such numbers?

- Natural (\mathbb{N}), Rationals (\mathbb{Q}), Real (\mathbb{R}), Complex (\mathbb{C}), ...
- How do we compute with such numbers?
- How do we represent such numbers?

Representations

Number	Decimal	Binary	Continued Fractions
3	3	11	3
$\frac{1}{3}$.3333	.0101	$0 + \frac{1}{3}$
$\sqrt{\frac{3}{2}}$	1.4142	1.011	$1 + \frac{1}{2 + \frac{1}{2$
e	2.7182	10.101	$2 + \frac{1}{1 + \frac{1}{1$
			$2+\frac{1}{1+\cdots}$

- $\bullet\,$ Injective map from ${\rm I\!R}$ to a set of infinite strings on an alphabet.
- Alphabet $\Sigma_2 := \{0, 1\}.$
- $\Sigma_2^* := \{ \text{finite strings on } \Sigma_2 \} = \{ \varepsilon, 0, 1, 00, 01, 10, 11, ... \}.$
- Meaningful representation will preserve the arithmetic structure of R.

- Injective map from ${\rm I\!R}$ to a set of infinite strings on an alphabet.
- Alphabet Σ₂ := {0,1}.
- $\Sigma_2^* := \{ \text{finite strings on } \Sigma_2 \} = \{ \epsilon, 0, 1, 00, 01, 10, 11, ... \}.$
- Meaningful representation will preserve the arithmetic structure of R.

Computational perspective

- We only have finite amount of time and can work with finite descriptions.
- Computable Number: Representation is computable by finite means.

- Injective map from ${\mathbb R}$ to a set of infinite strings on an alphabet.
- Alphabet Σ₂ := {0,1}.
- $\Sigma_2^* := \{ \text{finite strings on } \Sigma_2 \} = \{ \epsilon, 0, 1, 00, 01, 10, 11, ... \}.$
- Meaningful representation will preserve the arithmetic structure of R.

Computational perspective

- We only have finite amount of time and can work with finite descriptions.
- Computable Number: Representation is computable by finite means. <u>Turing (1936): Real numbers whose expressions as a decimal are</u> calculable by finite means.

- Injective map from ${\mathbb R}$ to a set of infinite strings on an alphabet.
- Alphabet Σ₂ := {0,1}.
- $\Sigma_2^* := \{ \text{finite strings on } \Sigma_2 \} = \{ \epsilon, 0, 1, 00, 01, 10, 11, ... \}.$
- Meaningful representation will preserve the arithmetic structure of R.

Computational perspective

- We only have finite amount of time and can work with finite descriptions.
- Computable Number: Representation is computable by finite means. Turing (1936): Real numbers whose expressions as a decimal are calculable by finite means.
- Input: an $x \in \mathbb{R}$ and number $n \in \mathbb{N}$
- Output: Compute in finite time the *n*th bit of the real number *x*.

.

- Injective map from $\mathbb R$ to a set of infinite strings on an alphabet.
- Alphabet Σ₂ := {0,1}.
- $\Sigma_2^* := \{ \text{finite strings on } \Sigma_2 \} = \{ \epsilon, 0, 1, 00, 01, 10, 11, ... \}.$
- Meaningful representation will preserve the arithmetic structure of R.

Computational perspective

- We only have finite amount of time and can work with finite descriptions.
- Computable Number: Representation is computable by finite means. <u>Turing (1936): Real numbers whose expressions as a decimal are</u> calculable by finite means.
- Input: an $x \in \mathbb{R}$ and number $n \in \mathbb{N}$
- Output: Compute in finite time the *n*th bit of the real number *x*.
- Machine model: Turing Machine, Pushdown Automata, Finite Automata.

• □ > • □ > • □ > • □ > • □

- Injective map from ${\mathbb R}$ to a set of infinite strings on an alphabet.
- Alphabet Σ₂ := {0,1}.
- $\Sigma_2^* := \{ \text{finite strings on } \Sigma_2 \} = \{ \epsilon, 0, 1, 00, 01, 10, 11, ... \}.$
- Meaningful representation will preserve the arithmetic structure of R.

Computational perspective

- We only have finite amount of time and can work with finite descriptions.
- Computable Number: Representation is computable by finite means. <u>Turing (1936): Real numbers whose expressions as a decimal are</u> calculable by finite means.
- Input: an $x \in \mathbb{R}$ and number $n \in \mathbb{N}$
- Output: Compute in finite time the *n*th bit of the real number *x*.
- Machine model: Turing Machine, Pushdown Automata, Finite Automata.

• □ > • □ > • □ > • □ > • □

Informal Definition

A real number whose *n*th bit is computable by a Finite Automata.

∃ >

Informal Definition

A real number whose *n*th bit is computable by a Finite Automata.

Finite Automata

 $M = (Q, \Sigma, \delta, q_0, F)$:

- Q finite set of states.
- Σ finite input alphabet (e.g., Σ_2).
- $\delta: Q \times \Sigma \rightarrow Q$ transition function.
- *q*₀ initial state.
- $F \subseteq Q$ set of accepting states.

Informal Definition

A real number whose *n*th bit is computable by a Finite Automata.

Finite Automata

$$M = (Q, \Sigma, \delta, q_0, F)$$
:

- Q finite set of states.
- Σ finite input alphabet (e.g., Σ_2).
- $\delta: Q \times \Sigma \rightarrow Q$ transition function.
- q₀ initial state.
- $F \subseteq Q$ set of accepting states.

- $L(M) = \{w \in \Sigma^* | \delta(q_0, w) \in F\}.$
- $= \{11, 011, 011000110, \dots\}.$
- $= \{ strings with even ones \}.$

Informal Definition

A real number whose *n*th bit is computable by a Finite Automata.

Finite Automata

$$M = (Q, \Sigma, \delta, q_0, F)$$
:

- Q finite set of states.
- Σ finite input alphabet (e.g., Σ_2).
- $\delta: Q \times \Sigma \rightarrow Q$ transition function.
- q₀ initial state.
- $F \subseteq Q$ set of accepting states.
- $\tau: Q \to \Sigma_2$.

- $L(M) = \{w \in \Sigma^* | \delta(q_0, w) \in F\}.$
- $= \{11, 011, 011000110, \dots\}.$
- $= \{ strings with even ones \}.$

Informal Definition

A real number whose *n*th bit is computable by a Finite Automata.

Finite Automata

$$M = (Q, \Sigma, \delta, q_0, F)$$
:

- Q finite set of states.
- Σ finite input alphabet (e.g., Σ_2).
- $\delta: Q \times \Sigma \rightarrow Q$ transition function.
- q₀ initial state.
- $F \subseteq Q$ set of accepting states.
- $\tau: Q \to \Sigma_2$.

- $L(M) = \{ w \in \Sigma^* | \delta(q_0, w) \in F \}.$
- $= \{11, 011, 011000110, \dots\}.$
- $= \{ strings with even ones \}.$

Informal Definition

A real number whose *n*th bit is computable by a Finite Automata.

Finite Automata

$$M = (Q, \Sigma, \delta, q_0, F)$$
:

- Q finite set of states.
- Σ finite input alphabet (e.g., Σ_2).
- $\delta: Q \times \Sigma \rightarrow Q$ transition function.
- q₀ initial state.
- $F \subseteq Q$ set of accepting states.
- $\tau: Q \to \Sigma_2$.

Thue-Morse sequence:

- $L(M) = \{ w \in \Sigma^* | \delta(q_0, w) \in F \}.$ = {11,011,011000110,....}
- $= \{ strings with even ones \}.$

Automatic Numbers – More examples

Rudin-Shapiro

*n*th bit is '1' iff the number of (overlapping) occurrences of "11" in $[n]_2$ is even.

- $L \subseteq \Sigma_2^*$ a non-regular language. Then *n*th bit is one iff $[n]_2 \in L$.
- E.g., the *n*th bit is one iff $[n]_2$ is of the form $0^k 1^k$, for some $k \ge 0$.

- $L \subseteq \Sigma_2^*$ a non-regular language. Then *n*th bit is one iff $[n]_2 \in L$.
- E.g., the *n*th bit is one iff $[n]_2$ is of the form $0^k 1^k$, for some $k \ge 0$.

- *n*th bit is one iff *n* is a square: $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \dots \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & \dots \end{bmatrix}$.
- Suppose Squares is accepted by a DFA (i.e., it is regular).

- $L \subseteq \Sigma_2^*$ a non-regular language. Then *n*th bit is one iff $[n]_2 \in L$.
- E.g., the *n*th bit is one iff $[n]_2$ is of the form $0^k 1^k$, for some $k \ge 0$.

- *n*th bit is one iff *n* is a square: $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \dots \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & \dots \end{bmatrix}$
- Suppose Squares is accepted by a DFA (i.e., it is regular).
- Then Squares $\cap (11)^*(00)^*01$ is also regular.

- $L \subseteq \Sigma_2^*$ a non-regular language. Then *n*th bit is one iff $[n]_2 \in L$.
- E.g., the *n*th bit is one iff $[n]_2$ is of the form $0^k 1^k$, for some $k \ge 0$.

- *n*th bit is one iff *n* is a square: $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \dots \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & \dots \end{bmatrix}$
- Suppose Squares is accepted by a DFA (i.e., it is regular).
- Then Squares $\cap (11)^*(00)^*01$ is also regular.
- What squares *n* have $[n]_2 = (11)^*(00)^*01?$

• $L \subseteq \Sigma_2^*$ a non-regular language. Then *n*th bit is one iff $[n]_2 \in L$.

• E.g., the *n*th bit is one iff $[n]_2$ is of the form $0^k 1^k$, for some $k \ge 0$.

- *n*th bit is one iff *n* is a square: $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \dots \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & \dots \end{bmatrix}$
- Suppose Squares is accepted by a DFA (i.e., it is regular).
- Then Squares $\cap (11)^*(00)^*01$ is also regular.
- What squares *n* have $[n]_2 = (11)^*(00)^*01?$
- If $[n]_2$ has k "11" and ℓ "00" then $n = (2^{2k} 1)2^{2\ell+2} + 1$.

• $L \subseteq \Sigma_2^*$ a non-regular language. Then *n*th bit is one iff $[n]_2 \in L$.

• E.g., the *n*th bit is one iff $[n]_2$ is of the form $0^k 1^k$, for some $k \ge 0$.

- *n*th bit is one iff *n* is a square: $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \dots \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & \dots \end{bmatrix}$
- Suppose Squares is accepted by a DFA (i.e., it is regular).
- Then Squares $\cap (11)^*(00)^*01$ is also regular.
- What squares *n* have $[n]_2 = (11)^*(00)^*01?$
- If $[n]_2$ has k "11" and ℓ "00" then $n = (2^{2k} 1)2^{2\ell+2} + 1$.
- Claim: *n* is a square iff $k = \ell$.

• $L \subseteq \Sigma_2^*$ a non-regular language. Then *n*th bit is one iff $[n]_2 \in L$.

• E.g., the *n*th bit is one iff $[n]_2$ is of the form $0^k 1^k$, for some $k \ge 0$.

- *n*th bit is one iff *n* is a square: $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & \dots \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & \dots \end{bmatrix}$.
- Suppose Squares is accepted by a DFA (i.e., it is regular).
- Then Squares $\cap (11)^*(00)^*01$ is also regular.
- What squares *n* have $[n]_2 = (11)^*(00)^*01?$
- If $[n]_2$ has k "11" and ℓ "00" then $n = (2^{2k} 1)2^{2\ell+2} + 1$.
- Claim: *n* is a square iff $k = \ell$.
- Thus Squares $\cap (11)^*(00)^*01 = \left\{1^{2k}0^{2k+1}1\right\}$, which is not regular.

Let $(a_n)_{n\geq 1}$ be a sequence of bits, and $F_i := \{[n]_2 | a_n = i\}, i \in \{0, 1\}.$ • $(a_n)_{n\geq 1}$ is automatic iff F_i is regular.

- $(a_n)_{n\geq 1}$ is automatic iff F_i is regular.
- If a sequence differs from $(a_n)_{n\geq 1}$ in finitely many indices it is automatic.

Properties of Automatic Numbers

Let $(a_n)_{n \ge 1}$ be a sequence of bits, and $F_i := \{[n]_2 | a_n = i\}, i \in \{0, 1\}.$

- $(a_n)_{n\geq 1}$ is automatic iff F_i is regular.
- If a sequence differs from $(a_n)_{n\geq 1}$ in finitely many indices it is automatic.
- If $(a_n)_{n\geq 1}$ is ultimately periodic with period *t* then it is automatic.
 - $Q := \{0, \ldots, t-1\}, \, \delta(q, b) = 2q + b \mod t, \, b \in \{0, 1\}, \, \tau(q) := a_q.$

- $(a_n)_{n\geq 1}$ is automatic iff F_i is regular.
- If a sequence differs from $(a_n)_{n\geq 1}$ in finitely many indices it is automatic.
- If $(a_n)_{n\geq 1}$ is ultimately periodic with period *t* then it is automatic.
 - $Q := \{0, \ldots, t-1\}, \, \delta(q, b) = 2q + b \mod t, \, b \in \{0, 1\}, \, \tau(q) := a_q.$
- All rational numbers are automatic.

- $(a_n)_{n\geq 1}$ is automatic iff F_i is regular.
- If a sequence differs from $(a_n)_{n\geq 1}$ in finitely many indices it is automatic.
- If $(a_n)_{n\geq 1}$ is ultimately periodic with period *t* then it is automatic.
 - $Q := \{0, \ldots, t-1\}, \, \delta(q, b) = 2q + b \mod t, \, b \in \{0, 1\}, \, \tau(q) := a_q.$
- All rational numbers are automatic.
- What if we want to accept the input in a different base?

k-automatic – input string is in base *k*

$$\begin{split} & M = (Q, \Sigma, \delta, q_0, \tau): \ Q \ \text{finite set of states}, \\ & \Sigma \ \text{finite alphabet} \\ & \delta: Q \times \Sigma \to Q \ \text{transition function}, \\ & q_0 \ \text{initial state}, \\ & \tau: Q \to \Sigma_2. \end{split}$$

- $(a_n)_{n\geq 1}$ is automatic iff F_i is regular.
- If a sequence differs from $(a_n)_{n\geq 1}$ in finitely many indices it is automatic.
- If $(a_n)_{n\geq 1}$ is ultimately periodic with period *t* then it is automatic.
 - $Q := \{0, \ldots, t-1\}, \, \delta(q, b) = 2q + b \mod t, \, b \in \{0, 1\}, \, \tau(q) := a_q.$
- All rational numbers are automatic.
- What if we want to accept the input in a different base?

k-automatic – input string is in base *k*

$$\begin{split} & M = (Q, \Sigma, \delta, q_0, \tau): \ Q \ \text{finite set of states}, \\ & \Sigma \ \text{finite alphabet} \\ & \delta: Q \times \Sigma \to Q \ \text{transition function}, \\ & q_0 \ \text{initial state}, \\ & \tau: Q \to \Sigma_2. \end{split}$$

- $(a_n)_{n\geq 1}$ is automatic iff F_i is regular.
- If a sequence differs from $(a_n)_{n\geq 1}$ in finitely many indices it is automatic.
- If $(a_n)_{n\geq 1}$ is ultimately periodic with period *t* then it is automatic.
 - $Q := \{0, \dots, t-1\}, \, \delta(q, b) = 2q + b \mod t, \, b \in \{0, 1\}, \, \tau(q) := a_q.$
- All rational numbers are automatic.
- What if we want to accept the input in a different base?

k-automatic – input string is in base *k*

$$\begin{split} M &= (Q, \Sigma, \delta, q_0, \tau): Q \text{ finite set of states}, \\ \Sigma \text{ finite alphabet } \Sigma_k := \{0, \dots, k-1\}, \\ \delta : Q \times \Sigma \to Q \text{ transition function}, \\ q_0 \text{ initial state}, \\ \tau : Q \to \Sigma_2. \end{split}$$

- $(a_n)_{n\geq 1}$ is automatic iff F_i is regular.
- If a sequence differs from $(a_n)_{n\geq 1}$ in finitely many indices it is automatic.
- If $(a_n)_{n\geq 1}$ is ultimately periodic with period *t* then it is automatic.
 - $Q := \{0, \ldots, t-1\}, \, \delta(q, b) = 2q + b \mod t, \, b \in \{0, 1\}, \, \tau(q) := a_q.$
- All rational numbers are automatic.
- What if we want to accept the input in a different base?

k-automatic - input string is in base kRation $M = (Q, \Sigma, \delta, q_0, \tau)$: Q finite set of states,• Σ finite alphabet $\Sigma_k := \{0, \dots, k-1\},$ • $\delta : Q \times \Sigma \to Q$ transition function,• q_0 initial state,• $\tau : Q \to \Sigma_2$.•

Rationals are k-automatic

•
$$Q := \{0, \ldots, t-1\}$$

•
$$\delta(q,b) = kq + b \mod t$$
,
 $b \in \{0, k-1\}$

•
$$\tau(q) := a_q$$
.

Properties of Automatic Numbers

k and ℓ are multiplicatively independent if $k^i \neq \ell^j$, for all $i, j \in \mathbb{Z}$.

Properties of Automatic Numbers

k and ℓ are multiplicatively independent if $k^i \neq \ell^j$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $(a_n)_{n\geq 1}$ is *k*-automatic and ℓ -automatic and *k*, ℓ are multiplicatively independent then it is ultimately periodic.

k and ℓ are multiplicatively independent if $k^i \neq \ell^j$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $(a_n)_{n\geq 1}$ is *k*-automatic and ℓ -automatic and *k*, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

L(k) be the set of all *k*-automatic reals, for $k \ge 2$. $\mathbf{x} = \sum_{n \ge 1} a_n 2^{-n} \in L(k)$ • $\mathbb{Q} \subseteq L(k)$

k and ℓ are multiplicatively independent if $k^i \neq \ell^j$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $(a_n)_{n\geq 1}$ is *k*-automatic and ℓ -automatic and *k*, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x} = (-1) + \sum_{n \ge 1} (1 a_n) 2^{-n}$. Flip 0's to 1's and vice versa.

k and ℓ are multiplicatively independent if $k^i \neq \ell^j$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $(a_n)_{n\geq 1}$ is *k*-automatic and ℓ -automatic and *k*, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x} = (-1) + \sum_{n \ge 1} (1 a_n) 2^{-n}$. Flip 0's to 1's and vice versa.
- Unnormalized: if (a_n) is *k*-automatic, $0 \le a_n \le C$, then so is $\sum_n a_n 2^{-n}$.

k and ℓ are multiplicatively independent if $k^i \neq \ell^j$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $(a_n)_{n\geq 1}$ is *k*-automatic and ℓ -automatic and *k*, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x} = (-1) + \sum_{n \ge 1} (1 a_n) 2^{-n}$. Flip 0's to 1's and vice versa.
- Unnormalized: if (a_n) is k-automatic, 0 ≤ a_n ≤ C, then so is ∑_n a_n2⁻ⁿ.
 Trivial if C < 2 as the bits a_n are the same. How to handle the carries?

k and ℓ are multiplicatively independent if $k^i \neq \ell^j$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $(a_n)_{n\geq 1}$ is *k*-automatic and ℓ -automatic and *k*, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x} = (-1) + \sum_{n \ge 1} (1 a_n) 2^{-n}$. Flip 0's to 1's and vice versa.
- Unnormalized: if (a_n) is *k*-automatic, $0 \le a_n \le C$, then so is $\sum_n a_n 2^{-n}$. – Trivial if C < 2 as the bits a_n are the same. How to handle the carries? If $a_n = 2a_{n-1} + r$ then $\sum_{n=0}^{n} a_n 2^{-n} = \sum_{n=0}^{n} (a_n + r) 2^{-n}$ (until $a_n + r < 2$)
 - If $a_n = 2q_{n-1} + r_n$ then $\sum_n a_n 2^{-n} = \sum (q_n + r_n) 2^{-n}$ (until $q_n + r_n \le 2$).

k and ℓ are multiplicatively independent if $k^i \neq \ell^j$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $(a_n)_{n\geq 1}$ is *k*-automatic and ℓ -automatic and *k*, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x} = (-1) + \sum_{n \ge 1} (1 a_n) 2^{-n}$. Flip 0's to 1's and vice versa.
- Unnormalized: if (a_n) is k-automatic, 0 ≤ a_n ≤ C, then so is ∑_n a_n2⁻ⁿ.
 Trivial if C < 2 as the bits a_n are the same. How to handle the carries?
 - Inviding C < 2 as the bits a_n are the same. How to handle the carries
 - If $a_n = 2q_{n-1} + r_n$ then $\sum_n a_n 2^{-n} = \sum (q_n + r_n) 2^{-n}$ (until $q_n + r_n \le 2$).
 - Carry bit: $c_n = 1$ if $\exists m > n$ s.t. $c_m = 2$ and $\forall i \in [n, m], q_i + r_i = 1$.

k and ℓ are multiplicatively independent if $k^i \neq \ell^j$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $(a_n)_{n\geq 1}$ is *k*-automatic and ℓ -automatic and *k*, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x} = (-1) + \sum_{n \ge 1} (1 a_n) 2^{-n}$. Flip 0's to 1's and vice versa.
- Unnormalized: if (a_n) is k-automatic, $0 \le a_n \le C$, then so is $\sum_n a_n 2^{-n}$.
 - Trivial if C < 2 as the bits a_n are the same. How to handle the carries?
 - If $a_n = 2q_{n-1} + r_n$ then $\sum_n a_n 2^{-n} = \sum (q_n + r_n) 2^{-n}$ (until $q_n + r_n \le 2$).
 - Carry bit: $c_n = 1$ if $\exists m > n$ s.t. $c_m = 2$ and $\forall i \in [n, m], q_i + r_i = 1$.
 - Use non-determinism to compute c_n .

k and ℓ are multiplicatively independent if $k^i \neq \ell^j$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $(a_n)_{n\geq 1}$ is *k*-automatic and ℓ -automatic and *k*, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

L(k) be the set of all k-automatic reals, for $k \ge 2$. $\mathbf{x} = \sum_{n \ge 1} a_n 2^{-n} \in L(k)$

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x} = (-1) + \sum_{n \ge 1} (1 a_n) 2^{-n}$. Flip 0's to 1's and vice versa.
- Unnormalized: if (a_n) is *k*-automatic, $0 \le a_n \le C$, then so is $\sum_n a_n 2^{-n}$.
 - Trivial if C < 2 as the bits a_n are the same. How to handle the carries?
 - If $a_n = 2q_{n-1} + r_n$ then $\sum_n a_n 2^{-n} = \sum (q_n + r_n) 2^{-n}$ (until $q_n + r_n \le 2$).
 - Carry bit: $c_n = 1$ if $\exists m > n$ s.t. $c_m = 2$ and $\forall i \in [n, m], q_i + r_i = 1$.

– Use non-determinism to compute c_n .

• Closed under addition: $\mathbf{x}, \mathbf{y} \in L(k)$, then $\mathbf{x} + \mathbf{y} \in L(k)$.

k and ℓ are multiplicatively independent if $k^i \neq \ell^j$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $(a_n)_{n\geq 1}$ is *k*-automatic and ℓ -automatic and *k*, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x} = (-1) + \sum_{n \ge 1} (1 a_n) 2^{-n}$. Flip 0's to 1's and vice versa.
- Unnormalized: if (a_n) is *k*-automatic, $0 \le a_n \le C$, then so is $\sum_n a_n 2^{-n}$.
- Closed under addition: $\mathbf{x}, \mathbf{y} \in L(k)$, then $\mathbf{x} + \mathbf{y} \in L(k)$.
- Division by integers: $\mathbf{x}/c \in L(k), c \in \mathbb{Z}_{\neq 0}$

k and ℓ are multiplicatively independent if $k^i \neq \ell^j$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $(a_n)_{n\geq 1}$ is *k*-automatic and ℓ -automatic and *k*, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x} = (-1) + \sum_{n \ge 1} (1 a_n) 2^{-n}$. Flip 0's to 1's and vice versa.
- Unnormalized: if (a_n) is *k*-automatic, $0 \le a_n \le C$, then so is $\sum_n a_n 2^{-n}$.
- Closed under addition: $\mathbf{x}, \mathbf{y} \in L(k)$, then $\mathbf{x} + \mathbf{y} \in L(k)$.
- Division by integers: $\mathbf{x}/c \in L(k)$, $c \in \mathbb{Z}_{\neq 0}$

$$-\sum_{n} \frac{a_n}{c} 2^{-n} = \left\lfloor \frac{a_1}{c} \right\rfloor 2^{-1} + \left\lfloor \frac{2\operatorname{rem}(a_1,c) + a_2}{c} \right\rfloor 2^{-2} + \left\lfloor \frac{2\operatorname{rem}(2\operatorname{rem}(a_1,c) + a_2,c)}{c} \right\rfloor 2^{-3} + \cdots$$

k and ℓ are multiplicatively independent if $k^i \neq \ell^j$, for all $i, j \in \mathbb{Z}$.

Cobham's Theorem

If $(a_n)_{n\geq 1}$ is *k*-automatic and ℓ -automatic and *k*, ℓ are multiplicatively independent then it is ultimately periodic.

Closure properties

L(k) be the set of all *k*-automatic reals, for $k \ge 2$. $\mathbf{x} = \sum_{n>1} a_n 2^{-n} \in L(k)$

- $\mathbb{Q} \subseteq L(k)$
- Negation: $-\mathbf{x} = (-1) + \sum_{n \ge 1} (1 a_n) 2^{-n}$. Flip 0's to 1's and vice versa.
- Unnormalized: if (a_n) is *k*-automatic, $0 \le a_n \le C$, then so is $\sum_n a_n 2^{-n}$.
- Closed under addition: $\mathbf{x}, \mathbf{y} \in L(k)$, then $\mathbf{x} + \mathbf{y} \in L(k)$.
- Division by integers: $\mathbf{x}/c \in L(k)$, $c \in \mathbb{Z}_{\neq 0}$

$$-\sum_{n} \frac{a_{n}}{c} 2^{-n} = \left\lfloor \frac{a_{1}}{c} \right\rfloor 2^{-1} + \left\lfloor \frac{2\operatorname{rem}(a_{1},c) + a_{2}}{c} \right\rfloor 2^{-2} + \left\lfloor \frac{2\operatorname{rem}(2\operatorname{rem}(a_{1},c) + a_{2},c)}{c} \right\rfloor 2^{-3} + \cdots$$

• L(k) forms a vector space over \mathbb{Q} .

• Multiplication:

- Multiplication:
 - *n*th bit of **xy** is $\sum_i x_i y_{n-i}$.

- Multiplication:
 - *n*th bit of **xy** is $\sum_i x_i y_{n-i}$.
 - Need to store all the previous bits. Not possible in finite memory.

- Multiplication:
 - *n*th bit of **xy** is $\sum_i x_i y_{n-i}$.
 - Need to store all the previous bits. Not possible in finite memory.
- Squaring: $xy = ((x + y)^2 (x y)^2)/4$.

- Multiplication:
 - *n*th bit of **xy** is $\sum_i x_i y_{n-i}$.
 - Need to store all the previous bits. Not possible in finite memory.

• Squaring:
$$xy = ((x + y)^2 - (x - y)^2)/4$$
.

• Inverse:
$$\mathbf{x}^2 = \mathbf{x} + \frac{1}{\frac{1}{\mathbf{x}-1} - \frac{1}{\mathbf{x}}}$$
.

• A subword of **x** is a finite substring.

- A subword of **x** is a finite substring.
- $p(\mathbf{x}, n)$ is the number of distinct subwords of length *n*. At most $|\Sigma|^n$.

- A subword of **x** is a finite substring.
- *p*(**x**, *n*) is the number of distinct subwords of length *n*. At most |Σ|ⁿ.
- If **x** is ultimately periodic then $p(\mathbf{x}, n) = O(1)$.

- A subword of **x** is a finite substring.
- *p*(**x**, *n*) is the number of distinct subwords of length *n*. At most |Σ|ⁿ.
- If **x** is ultimately periodic then $p(\mathbf{x}, n) = O(1)$.
- $p(12345678910111213141516..., n) = 10^n$.

- A subword of **x** is a finite substring.
- *p*(**x**, *n*) is the number of distinct subwords of length *n*. At most |Σ|ⁿ.
- If **x** is ultimately periodic then $p(\mathbf{x}, n) = O(1)$.
- $p(12345678910111213141516..., n) = 10^n$.
- $p(\mathbf{x}, n) \leq p(\mathbf{x}, n+1)$

- A subword of **x** is a finite substring.
- *p*(**x**, *n*) is the number of distinct subwords of length *n*. At most |Σ|ⁿ.
- If **x** is ultimately periodic then $p(\mathbf{x}, n) = O(1)$.
- $p(12345678910111213141516..., n) = 10^n$.
- $p(\mathbf{x}, n) \leq p(\mathbf{x}, n+1) \leq kp(\mathbf{x}, n)$

- A subword of **x** is a finite substring.
- *p*(**x**, *n*) is the number of distinct subwords of length *n*. At most |Σ|ⁿ.
- If **x** is ultimately periodic then $p(\mathbf{x}, n) = O(1)$.
- $p(12345678910111213141516..., n) = 10^n$.
- $p(\mathbf{x},n) \leq p(\mathbf{x},n+1) \leq kp(\mathbf{x},n)$
 - Let $X := \{ \text{distinct subwords of length } n \}$. Then $X \times \Sigma$ are all distinct.

- A subword of **x** is a finite substring.
- *p*(**x**, *n*) is the number of distinct subwords of length *n*. At most |Σ|ⁿ.
- If **x** is ultimately periodic then $p(\mathbf{x}, n) = O(1)$.
- $p(12345678910111213141516..., n) = 10^n$.
- p(x, n) ≤ p(x, n+1) ≤ kp(x, n)
 Let X := {distinct subwords of length n}. Then X × Σ are all distinct.
- If **x** is *k*-automatic then $p(\mathbf{x}, n) = O(n)$.

- A subword of **x** is a finite substring.
- *p*(**x**, *n*) is the number of distinct subwords of length *n*. At most |Σ|ⁿ.
- If **x** is ultimately periodic then $p(\mathbf{x}, n) = O(1)$.
- $p(12345678910111213141516..., n) = 10^n$.
- $p(\mathbf{x}, n) \le p(\mathbf{x}, n+1) \le kp(\mathbf{x}, n)$ - Let $X := \{$ distinct subwords of length $n\}$. Then $X \times \Sigma$ are all distinct.
- If **x** is *k*-automatic then $p(\mathbf{x}, n) = O(n)$.
- Multiplication can increase the subword complexity to |Σ|ⁿ.

• Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?

• Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?

• Algebraic number: $\alpha \in \mathbb{C}$ s.t. $\exists f(x) \in \mathbb{Z}[x], f(\alpha) = 0$.

- Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?
 - Algebraic number: $\alpha \in \mathbb{C}$ s.t. $\exists f(x) \in \mathbb{Z}[x], f(\alpha) = 0$.
- Is π automatic?

- Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?
 - Algebraic number: $\alpha \in \mathbb{C}$ s.t. $\exists f(x) \in \mathbb{Z}[x], f(\alpha) = 0$.
- Is π automatic?
- Can we compute with automatic numbers?

- Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?
 - Algebraic number: $\alpha \in \mathbb{C}$ s.t. $\exists f(x) \in \mathbb{Z}[x], f(\alpha) = 0$.
- Is π automatic?
- Can we compute with automatic numbers?
 - Given $\mathbf{x}_1, \ldots, \mathbf{x}_n \in L(k)$ and $a_1, \ldots, a_n \in \mathbb{Z}$ decide $\sum_i a_i \mathbf{x}_i = 0$?

- Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?
 - Algebraic number: $\alpha \in \mathbb{C}$ s.t. $\exists f(x) \in \mathbb{Z}[x], f(\alpha) = 0$.
- Is π automatic?
- Can we compute with automatic numbers?
 - Given $\mathbf{x}_1, \ldots, \mathbf{x}_n \in L(k)$ and $a_1, \ldots, a_n \in \mathbb{Z}$ decide $\sum_i a_i \mathbf{x}_i = 0$?
- Automatic Continued fractions: $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$.

- Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?
 - Algebraic number: $\alpha \in \mathbb{C}$ s.t. $\exists f(x) \in \mathbb{Z}[x], f(\alpha) = 0$.
- Is π automatic?
- Can we compute with automatic numbers?
 - Given $\mathbf{x}_1, \ldots, \mathbf{x}_n \in L(k)$ and $a_1, \ldots, a_n \in \mathbb{Z}$ decide $\sum_i a_i \mathbf{x}_i = 0$?
- Automatic Continued fractions: $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$.
 - Finite: \mathbb{Q} ; Periodic: Quadratic irrationals ($\sqrt{2}$ etc.); How about degree 3?

- Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?
 - Algebraic number: $\alpha \in \mathbb{C}$ s.t. $\exists f(x) \in \mathbb{Z}[x], f(\alpha) = 0$.
- Is π automatic?
- Can we compute with automatic numbers?
 - Given $\mathbf{x}_1, \ldots, \mathbf{x}_n \in L(k)$ and $a_1, \ldots, a_n \in \mathbb{Z}$ decide $\sum_i a_i \mathbf{x}_i = 0$?
- Automatic Continued fractions: $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$.
 - Finite: \mathbb{Q} ; Periodic: Quadratic irrationals ($\sqrt{2}$ etc.); How about degree 3?
- Stronger machine models? Pushdown automata? Turing machines are too strong.

- Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?
 - ► Algebraic number: $\alpha \in \mathbb{C}$ s.t. $\exists f(x) \in \mathbb{Z}[x], f(\alpha) = 0$.
- Is π automatic?
- Can we compute with automatic numbers?
 - Given $\mathbf{x}_1, \ldots, \mathbf{x}_n \in L(k)$ and $a_1, \ldots, a_n \in \mathbb{Z}$ decide $\sum_i a_i \mathbf{x}_i = 0$?
- Automatic Continued fractions: $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$.
 - Finite: \mathbb{Q} ; Periodic: Quadratic irrationals ($\sqrt{2}$ etc.); How about degree 3?
- Stronger machine models? Pushdown automata? Turing machines are too strong.

Reference

Allouche and Shallit – Automatic Sequences. Theory, Applications, Generalizations.

- Is $\sqrt{2}$ automatic? Are irrational algebraic numbers automatic?
 - Algebraic number: $\alpha \in \mathbb{C}$ s.t. $\exists f(x) \in \mathbb{Z}[x], f(\alpha) = 0$.
- Is π automatic?
- Can we compute with automatic numbers?
 - Given $\mathbf{x}_1, \ldots, \mathbf{x}_n \in L(k)$ and $a_1, \ldots, a_n \in \mathbb{Z}$ decide $\sum_i a_i \mathbf{x}_i = 0$?
- Automatic Continued fractions: $a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$.
 - Finite: \mathbb{Q} ; Periodic: Quadratic irrationals ($\sqrt{2}$ etc.); How about degree 3?
- Stronger machine models? Pushdown automata? Turing machines are too strong.

Reference

Allouche and Shallit – Automatic Sequences. Theory, Applications, Generalizations.

Thank You!