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Numbers

Natural (N), Rationals (Q), Real (R), Complex (C), ...

How do we compute with such numbers?

How do we represent such numbers?

Representations

Number Decimal Binary Continued Fractions
3 3 11 3
1
3 .3333... .0101... 0 + 1

3√
2 1.4142... 1.011... 1 + 1

2+ 1
2+···

e 2.7182... 10.101.. 2 + 1
1+ 1

2+ 1
1+···
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Representation of Real Numbers

Injective map from R to a set of infinite strings on an alphabet.

Alphabet Σ2 := {0,1}.
Σ∗2 := {finite strings on Σ2}= {ε,0,1,00,01,10,11, ...}.
Meaningful representation will preserve the arithmetic structure of R.

Computational perspective
We only have finite amount of time and can work with finite descriptions.

Computable Number: Representation is computable by finite means.

Turing (1936): Real numbers whose expressions as a decimal are
calculable by finite means.

Input: an x ∈R and number n ∈N
Output: Compute in finite time the nth bit of the real number x .

Machine model: Turing Machine, Pushdown Automata, Finite Automata.
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Automatic Numbers

Informal Definition
A real number whose nth bit is computable by a Finite Automata.

Finite Automata
M = (Q,Σ,δ ,q0,F):

Q finite set of states.

Σ finite input alphabet (e.g., Σ2).

δ : Q×Σ→Q transition function.

q0 initial state.

F ⊆ Q set of accepting states.

τ : Q→ Σ2.

Thue-Morse sequence:
n =
tn =

1 2 3 4 5
1 1 0 1 0

6
0

7
1

. . .

. . .
T = 1

2 +
1
4 + 0 + 1

23 + 0 + 0 + 1
27 + . . .

Example

q0 q1
1

1

0 0

L(M) = {w ∈ Σ∗|δ (q0,w) ∈ F}.
= {11,011,011000110, ....}.
= {strings with even ones}.

q0/0 q1/1
1

1

0 0
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Automatic Numbers – More examples

Fredholm number = ∑n≥1 2−2n

0 0
1

0 0/1

11

0

Rudin-Shapiro

nth bit is ’1’ iff the number of (overlapping) occurrences of “11” in [n]2 is even.

1 0

0

1 0
1 1

1 1

0

0

0
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Non-Automatic Numbers

L⊆ Σ∗2 a non-regular language. Then nth bit is one iff [n]2 ∈ L.

E.g., the nth bit is one iff [n]2 is of the form 0k 1k , for some k ≥ 0.

Characteristic sequence of Squares

nth bit is one iff n is a square:

[
1 2 3 4 5 6 7 8 9 . . .
1 0 0 1 0 0 0 0 1 . . .

]
.

Suppose Squares is accepted by a DFA (i.e., it is regular).

Then Squares ∩(11)∗(00)∗01 is also regular.

What squares n have [n]2 = (11)∗(00)∗01?

If [n]2 has k “11” and ` “00” then n = (22k −1)22`+2 + 1.

Claim: n is a square iff k = `.

Thus Squares ∩(11)∗(00)∗01 =
{

12k 02k+11
}

, which is not regular.
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Properties of Automatic Numbers

Let (an)n≥1 be a sequence of bits, and Fi := {[n]2|an = i}, i ∈ {0,1}.
(an)n≥1 is automatic iff Fi is regular.

If a sequence differs from (an)n≥1 in finitely many indices it is automatic.
If (an)n≥1 is ultimately periodic with period t then it is automatic.

I Q := {0, . . . , t−1}, δ (q,b) = 2q + b mod t , b ∈ {0,1}, τ(q) := aq .

All rational numbers are automatic.

What if we want to accept the input in a different base?

k -automatic – input string is in base k

M = (Q,Σ,δ ,q0,τ): Q finite set of states,
Σ finite alphabet

Σk := {0, . . . ,k−1}

,
δ : Q×Σ→ Q transition function,
q0 initial state,
τ : Q→ Σ2.

Rationals are k -automatic
Q := {0, . . . , t−1}
δ (q,b) = kq + b mod t ,
b ∈ {0,k−1}
τ(q) := aq .
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Properties of Automatic Numbers

k and ` are multiplicatively independent if k i 6= `j , for all i, j ∈Z.

Cobham’s Theorem
If (an)n≥1 is k -automatic and `-automatic and k , ` are multiplicatively
independent then it is ultimately periodic.

Closure properties

L(k) be the set of all k -automatic reals, for k ≥ 2. x = ∑n≥1 an2−n ∈ L(k)

Q⊆ L(k)

Negation: −x = (−1) + ∑n≥1(1−an)2−n. Flip 0’s to 1’s and vice versa.

Unnormalized: if (an) is k -automatic, 0≤ an ≤ C, then so is ∑n an2−n.

Closed under addition: x,y ∈ L(k), then x + y ∈ L(k).

Division by integers: x/c ∈ L(k), c ∈Z6=0

– ∑n
an
c 2−n =

⌊ a1
c

⌋
2−1 +

⌊
2rem(a1,c)+a2

c

⌋
2−2 +

⌊
2rem(2rem(a1,c)+a2,c)

c

⌋
2−3 + · · ·

L(k) forms a vector space over Q.
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Properties of Automatic Numbers

Non-closure properties of L(k)
Multiplication:

I nth bit of xy is ∑i xiyn−i .
I Need to store all the previous bits. Not possible in finite memory.

Squaring: xy = ((x + y)2− (x−y)2)/4.

Inverse: x2 = x + 1
1

x−1−
1
x
.
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Subword Complexity

Let x be an infinite string over a finite alphabet Σ.

A subword of x is a finite substring.

p(x,n) is the number of distinct subwords of length n. At most |Σ|n.

If x is ultimately periodic then p(x,n) = O(1).

p(12345678910111213141516 . . . ,n) = 10n.

p(x,n)≤ p(x,n + 1)

≤ kp(x,n)
– Let X := {distinct subwords of length n}. Then X ×Σ are all distinct.

If x is k -automatic then p(x,n) = O(n).

Multiplication can increase the subword complexity to |Σ|n.
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Further Questions

Is
√

2 automatic? Are irrational algebraic numbers automatic?

I Algebraic number: α ∈ C s.t. ∃f (x) ∈Z[x], f (α) = 0.

Is π automatic?
Can we compute with automatic numbers?

I Given x1, . . . ,xn ∈ L(k) and a1, . . . ,an ∈Z decide ∑i aixi = 0?

Automatic Continued fractions: a0 + 1
a1+

1
a2+...

.

I Finite: Q; Periodic: Quadratic irrationals (
√

2 etc.); How about degree 3?

Stronger machine models? Pushdown automata? Turing machines are
too strong.

Reference
Allouche and Shallit – Automatic Sequences. Theory, Applications, Generalizations.

Thank You!
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