Assignment 3

Due Date: 14th November 2012

Please be precise, concise, and legible in your answers; a good idea may be to submit a pdf file with your answers. Discussion is encouraged, and so is its acknowledgement. If you are using a reference then cite it in your solution. *Please write your own solutions; copying of solutions will not be accepted.*

- 1. Let L be a lattice and $\{A, B, C\}$ a partition of L such that
 - (a) if $x \in A$ and $y \leq x$ then $y \in A$, and
 - (b) if $x \in C$ and $x \leq y$ then $y \in C$.

Show that

$$1 + \sum_{x \in A} \sum_{y \in C} \mu(x, y) = \sum_{x, y \in B} \mu(x, y).$$

Hints: Show that $\sum_{x,y \in L} \mu(x,y) = 1$.

2. Consider two partitions $\mathbf{A} := \{A_1, \ldots, A_k\}$ and $\mathbf{B} := \{B_1, \ldots, B_\ell\}$ of the set [n]. We say that

 $\mathbf{A} \leq \mathbf{B}$

if each A_i is contained in some B_j .

- (a) Show that the set of all partitions of [n] forms a lattice under the above ordering.
- (b) What is **0** and **1** in this lattice?
- (c) Show that $\mu(\mathbf{0}, \mathbf{1}) = (-1)^{n-1}(n-1)!$.

Hints: For third part, first show that if $\mathbf{B} := \{\{1\}, \{2, \dots, n\}\}$ then $\sum_{\mathbf{C} \wedge \mathbf{B} = \mathbf{0}} \mu(\mathbf{C}, \mathbf{1}) = \mathbf{0}$. How do the partitions \mathbf{C} , such that $\mathbf{C} \wedge \mathbf{B} = \mathbf{0}$, look like? Use induction.

- 3. Let P be a poset and for $x, y \in P$, let n_k be the number of chains $a_0 = x < a_1 < \cdots < a_k = y$. Derive a formula for $\mu(x, y)$ in terms of n_k s.
- 4. Let v_1, \ldots, v_n be *n* vertices. Consider a tree *T* on these vertices, and let $d_i(T)$ denote the degree of v_i in *T*. Show that the following polynomial

$$p(x_1, \dots, x_n) := \sum_{\text{all trees } T \text{ on } v_1, \dots, v_n} x_1^{d_1(T) - 1} \dots x_n^{d_n(T) - 1}$$

is equal to $(x_1 + \cdots + x_n)^{n-2}$. Derive Cayley's formula from this observation.

- 5. Let T_n be the number of trees on v_1, \ldots, v_n .
 - (a) Derive a recurrence for T_n .
 - (b) Use the recurrence to derive Cayley's formula.
- 6. A **permutation matrix** is an $n \times n$ matrix where there is exactly one 1 in each row and column. Let M be an $n \times n$ matrix with the following properties:
 - (a) all entries are non-negative real numbers, and

(b) the entries in any row and column add up to 1.

Using Hall's theorem, show that

$$M = \sum_{i=1}^{k} \alpha_i P_i,$$

where $\alpha_i \geq 0$, $\sum_i \alpha_i = 1$, and P_i s are permutation matrices.

Hint: Construct a bipartite graph (A, B), where A is the row set and B the column set of M. When is there an edge between A and B? What does a matching represent on this graph?

- 7. Let G be a 3-connected graph.
 - (a) Show that every degree three vertex in a 3-connected graph has a contractible edge.
 - (b) Let T be a spanning tree for G with no contractible edge. Give arguments for the following:
 - i. For every edge uv of T there is a vertex w such that $\{u, v, w\}$ forms a vertex cut in G. Call such a vertex cut as T-separating triple and the resulting components as T-split components.
 - ii. A minimal T-split component is a set that does not contain another T-split component in it. Show that a minimal T-split component is a single vertex v with degree 3, and is incident to exactly one edge in T.
 - iii. Show that v has a neighbor v' that is also a minimal T-split component.
 - (c) Does a DFS-tree for G contain a contractible edge?
- 8. Given a graph G = (V, E), let $v, w \in V$ be two non-adjacent vertices in G, i.e., $vw \notin E$. Let \mathcal{L} be the set of all sets S of minimum cardinality k that separate v and w. Given $S \subseteq V \setminus \{v\}$, let S_v be the set of vertices $z \in S$ such that v and z are connected in the set $G (S \setminus \{z\})$, i.e., there is a path between v and z that does not go through S. For $S, T \in \mathcal{L}$, define the following operations on \mathcal{L} :

 $S \wedge T := (S \cup T)_v$ and $S \vee T := (S \cup T)_w$.

- (a) Are $S \wedge T$ and $S \vee T$ in \mathcal{L} ?
- (b) Show that \mathcal{L} is a lattice.
- (c) How should we pick an extremal graph G' that has the same v w vertex connectivity as G?
- (d) Let z be a vertex on a v w path in G'. Let x_1, \ldots, x_m be neighbors of z on some v z path. Let K_i be a vertex cut separating v and w, if we remove the edge $x_i z$. Define $S_i := K_i \cup \{x_i\}$ and $T_i := K_i \cup \{z\}$. Show the following.
 - i. What is the size of K_i s?
 - ii. Is $S_i \cup T_i$ in \mathcal{L} ? If yes, then how are they related in \mathcal{L} ?
 - iii. Define $S := S_1 \lor S_2 \lor \cdots \lor S_m$ and $T := T_1 \lor T_2 \lor \cdots \lor T_m$. Show that |T S| = 1.
 - iv. What does |T S| = 1 imply about the degree of z?
 - v. From above infer that there exists k independent paths from v to w.