
The Twelvefold Way

The Twelvefold Way1 is a uniform approach to classify many standard combinatorial problems, such as counting
permutations, equivalence classes, surjective functions, partitions, compositions etc. Throughout this write up we
assume f : X → Y , and |X| = m and |Y | = n; xi’s will denote elements of X and yi’s elements of Y .

The first combinatorial question we can ask is, How many functions are there from X to Y ? The number is nm,
since for each x ∈ X there are m possiblities for to map it in Y . An application of this result is to count the number
of subsets of X: each subset S of X cooresponds to a functions χS : X → {0, 1}, where χS is the characteristic
function corresponding to S; the result then says that there are 2m such functions, and hence subsets.

How many injective or one-to-one functions are there from X to Y ? The element x1 has n choices; for each such
choice of x1, the element x2 has n−1; for each such choices of x1 and x2 the element x3 has n−2 choices. Continuing
in this manner we see that the number of injective functions from X to Y are n(n − 1)(n − 2) . . . (n −m + 1). If
|X| = |Y | then this gives us the number of permutations of the set X .

How many surjective or onto functions are there from X to Y ? The argument is a bit involved. A surjective
function f should have the property that the n inverse sets f−1(y1), f

−1(y2), . . . , f
−1(yn) are all non-empty, or in

other words, they partition X . In how many ways can we partition X? We know it is
{
m
n

}
. Now the function f acts

as an injective map from a partition of X to Y ; thus from the second result above, each partition can be mapped in n!
ways to Y . So the number of injective maps from X to Y is

{
m
n

}
n!.

An implicit assumption in our definition of the sets X and Y is that each element of X is different. In a “bins-
and-balls” interpretation of f (where f(xi) = yj means that the ball xi is placed in the bin yj) it means that our balls
are all of different colours/labels and so are the bins. If, however, our balls were of the same colour/label then our
answers above do not apply since permutations within balls in the same bin does not matter. Give instances where
f is the same when say X is indistinguishable, Y is indistinguishable, and both X and Y are indistinguishable. We
will enumerate the total number of functions, injective functions and surjetive functions for these three cases. These
nine enumeration problems, along with the three that we have already mentioned form the classification called the
Twelvefold Way. Before we proceed with the enumeration, we will formalize the notion of indistinguishability, and
and what it means to count functions over indistinguishable sets. Figure 1 illustrates functions that are different when
either X or Y or both are indistinguishable.

Given an indistinguishable set X , we say that two functions f , g from X to Y are equivalent if there exists a
permutation π of X such that for all x ∈ X , f(π(x)) = g(x). We claim that this is an equivalence relation (reflexive
is the identity permutation, symmetric is the inverse permutation, and transitivity is by composition). Thus the set of all
functions from X to Y is partitioned into equivalence classes. Similarly, we can define equivalence between functions
f, g when only Y is indist. as there exists a permutation σ such that for all x ∈ X , σ(f(x)) = g(x); when both X and
Y are indist. as there exists permutations π : X → X , and σ : Y → Y such that for all x ∈ X σ(f(π(x)) = g(x). It
can be verified that these relations are indeed equivalence relations.

To count functions that are injective or surjective when say X is indistinguishable, it would suffice to count the
number of equivalence classes if we can show that the notions of injectiveness and surjectiveness remain invariant
over an equivalence class. More precisely, we have to show that if f and g are equivalent then f is injective iff g is
injective; similarly for surjectiveness.

¶1. X Indistinguishable Total: Number of non-negative solutions to i1+i2+ · · ·+in = m, which is the coefficient
of m in (1− x)−n, i.e.,

(−n
m

)
.

Injective:
(
n
m

)
.

Surjective: Number of positive solutions to i1 + i2 + · · · + in = m, or equivalently non-negative solutions to
i1 + i2 + · · ·+ in = m− n, which is

( −n
m−n

)
.

1The classification was introduced by Rota; the terminology by Joel Spencer as a reference to the EIghtfold Way of Buddhism’
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Figure 1: (a) Two functions different when X and Y are distinguishable, (b) Two functions different when X is
indistinguishable, (c) Two functions different when Y is indistinguishable, and (d) Two functions different when both
X and Y are indistinguishable.

¶2. Y Indistinguishable Total: Every function f : X → Y corresponds to a partition of X . The number of
functions that partition X into k boxes is

{
m
k

}
. Thus total functions Bm =

∑m
k=1

{
m
k

}
.

Injective: 1.
Surjective:

{
m
n

}
.

¶3. X and Y Indistinguishable Since neither the permutations of the balls, neither of the boxes matters, what
matters is the number of ways to writem as sum of n, or the number of non-negative solutions to i1+i2+· · ·+in = m,
where the ordering of the solutions does not matter. We cheat here and introduce the solution as a definition, p(m, k),
as the number of partitions of m into exactly k non-zero parts. Then the answer to our question is

∑n
k=1 p(m, k).

Injective: 1.
Surjective: p(m,n).

X and Y distinguishable X indistinguishable Y indistinguishable X and Y indist.
f : X → Y nm

( −n
m−n

)
Bn

∑n
k=1 p(m, k)

Injective (n)m = n(n− 1) . . . (n−m+ 1)
(
n
m

)
1/0 1/0

Surjective
{
m
n

}
n!

( −n
m−n

) {
m
n

}
p(m,n)
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