Recurrences

1 The Domain and Range Transformation Approach

The fundamental recurrence can be defined as follows:

$$S(n) = S(n-1) + d(n)$$
(1)

where S(0) = 0, and d(n) is called the **driving function**. The reason we consider this recurrence as fundamental is that we immediately have the "solution" that $S(n) = \sum_{i=1}^{n} d(i)$. So, if d(n) can be summed easily, then we have a closed form for S_n . For instance, if d(n) = n then S(n) = n(n+1)/2. Moreover, we know powerful techniques, such as perturbation method, finite calculus etc., for summations.

Remark: The result above is just a reformulation of the fundamental theorem of finite calculus, since $\Delta S(n) = d(n)$.

Thus our aim should be to reduce an aribtrary recurrence to the fundamental recurrence. Let's see two such approaches for doing reductions.

¶1. Range Transformation Suppose our recurrence is of the form

$$R(n) = aR(n-1) + d(n).$$

How do we reduce such a recurrence to a fundamental recurrence. Let's define $S(n) := R(n)/a^n$; thus S(0) = R(0). Then dividing both sides of the equation above by a^n , we obtain

$$S(n) = S(n-1) + \frac{d(n)}{a^n}.$$

Thus we get that

$$S(n) = R(0) + \sum_{i=1}^n \frac{d(i)}{a^i}$$

and consequently

$$R(n) = a^{n}R(0) + \sum_{i=1}^{n} d(i)a^{n-i}$$

The above approach is called a "range" transformation since S(n) is a transformation of the range of R(n); their domain is the same.

¶2. Domain Transformation Suppose our recurrence is of the form

$$T(n) = T(n/b) + d(n).$$

How do we reduce such a recurrence to a fundamental form? Let's suppose $n = b^k$. Then let's define $S(k) := T(b^k)$; thus S(0) = T(1). From this it follows that

$$S(k) = S(k-1) + d(b^k)$$

and hence $S(k) = T(1) + \sum_{k=1}^{\log_b n} d(b^k).$ Therefore,

$$T(n) = \sum_{k=1}^{\log_b n} d(n/b^{k-1}) + T(1)$$

Clearly, in this situation we had transformed the domain.

What if we have the general "divide and conquer" recurrence:

$$T(n) = aT(n/b) + d(n).$$

How should we proceed? Which of the two transformations should we apply first? If we start with a range transformation then we are in trouble since we obtain $S(n) = T(n/b)/a^{n-1} + d(n)/a^n$. But now applying the domain transformation does not give us the fundamental recurrence. So let's try the other way round. Applying domain transformation first we get

$$R(k) = aR(k-1) + d(b^k).$$

Clearly, this is in a form suitable to apply a range transformation, by which we obtain

$$S(k) = S(k-1) + \frac{d(b^k)}{a^k}.$$

This we know how to solve, and we can "propogate" the solution back to the original recurrence.

Let's apply what we've learnt to a recurrence coming from Karatsuba's algorithm:

$$T(n) = 3T(n/2) + n.$$

By Domain transformation, we've $R(k) = 3R(k-1) + 2^k$. By range transformation we further have $S(k) = S(k-1) + (2/3)^k$. Thus $S(k) = \sum_{i=0}^k (2/3)^i$ and hence $R(k) = \sum_{i=0}^k 3^{k-i}2^i$, and

$$T(n) \le \sum_{i=0}^{\log n} 3^{\log n} (2/3)^i \le n^{\log 3} \sum_{i\ge 0} (2/3)^i = 3n^{\log 3}.$$