
Probabilistic Method

The classic approaches to existence results are either inductive, constructive or reductio ad absurdum.
Probabilistic Method (PM) is another alternative. In existence proofs, we are given a set of objects and we
want to show the existence of a subset that has a desired property. The usual approach in PM is to pick
an object from the set randomly (according to some suitable distribution) and show that the probability of
picking an object with the desired property is non-zero, thus implying its existence; occasionally, it is better
to show that the probability of picking an object not having the desired property is strictly smaller than one.
If our universe set is countable, then one can say that there is no necessity to introduce probability, as we can
enumerate all the elements and check them if they have the desired property or not; though this approach
is constructive, the size of the universe sets is usually huge and so the approach is not computationally
feasible; on the contrary, PM-based proofs are usually slick. The use of basic tools (expectation, variance,
Markov’s inequality, Chebyshev’s inequality) and not so basic tools (Lovász Local Lemma, Martingales,
Random Walks) from probability have led to various breakthroughs. In this lecture, we present some of
these results.1

1 Tournaments

A tournament Tn is an orientation of Kn, i.e., to each edge (i, j) we assign a direction i → j or j → i,
where “i→ j” is to be interpreted as i defeats j in a match; there cannot be any ties. Formally, T = (V,E),
where V = [n] and E is the edges of Kn with their orientations.

Given a k, a tournament T is said to have property Sk if for every subset of k players, there is a
remaining player who defeats them all. E.g., the triangle with edges {(1, 2), (2, 3), (3, 1)} has S1 but not S2;
in fact it cannot have S2. Can a graph on four vertices have S2? No! How about five vertices? No, again!
How many vertices should we have to get a tournament with property S2, or in general Sk? This problem
was raised by Schütte and resolved by Erdős (1963). PM gives us a sufficient condition.

Theorem 1 (Erdös (1963)). Given a k, if(
n

k

)
(1− 2−k)n−k < 1

then there exists a tournament Tn with property Sk.

Proof.

1. The idea is that for n sufficiently large a random tournament on Kn is likely to have property Sk.
What is a random tournament? For every edge (i, j) in Kn with probability half we either orient it

i→ j or j → i. Thus all the 2(n2) tournaments are equally likely.

2. What is the probability that Tn does not have the property Sk? For S ∈
(

[n]
k

)
, let AS be the event

that S does not have a winner in V \ S. Then the desired probability is that there exists an S that
has no winner, i.e., at least one of the events AS occurs, which is equal to

Pr(
⋃

S∈([n]
k )

AS) ≤
∑

S∈([n]
k )

Pr(AS). (1)

1The earliest use of PM was by Szele (1943) in showing the existence of Hamiltonian paths in tournaments, however, it was
Erdős who revealed its true potential by applying it extensively.
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3. What is Pr(AS)? The probability that v ∈ V \S is a winner for S is 2−k, i.e., it has a directed edge to all
the vertices in S. Thus the probability that v is not a winner is 1−2−k. Thus Pr(AS) = (1−2−k)n−k,
i.e., no vertex in v ∈ V \ S is a winner w.r.t. S and since all the edges were oriented independently.
Plugging this upper bound in (1), we obtain that if(

n

k

)
(1− 2−k)n−k < 1

then with positive probability no event AS occurs, and hence there is a tournament Tn that has property
Sk.

Q.E.D.

In the proof above, we used the simple observation that for n events A1, . . . , An, the probability that at
least one of them occurs satisfies Pr(∪ni=1Ai) ≤

∑n
i=1 Pr(Ai).

Suppose we want to know if there is a tournament Tn with a linear order on the players, i.e., an ordering
of the players v1, . . . , vn such that v1 → v2 → · · · → vn−1 → vn? Clearly, such a linear order is equivalent
to having a Hamiltonian path in Tn. PM can not only tell us whether there is a tournament that has a
Hamiltonian path, but can also be used to exhibit tournaments with a large number of Hamiltonian paths,
which is a more quantitative result. Szele’s result was a result in this direction, and combines PP with PM.
The fundamental results that it uses are the linearity of expectation: If X1, . . . , Xn are random variables,
then

E[X := c1X1 + · · ·+ cnXn] =

n∑
i=1

ciE[Xi]; (2)

and the fact that there are points σ1, σ
′ in the probability space such that X(σ) ≥ E[X] and Xσ′ ≤ E[X],

which is equivalent to the PP.

Theorem 2 (Szele (1943)). There is a tournament Tn with n!/2n−1 Hamiltonian paths.

Proof. A Hamiltonian path in Tn is a permutation σ of the vertices such that (σ(i), σ(i+1)), i = 1, . . . , n,
is an edge in Tn. Given an arbitrary permutation σ, let Xσ : Sn → {0, 1} be the indicator variable telling
us whether σ is a Hamiltonian path or not; thus E[Xσ] = Pr{σ is a Hamiltonian path} = 1/2n−1 . Then for
X :=

∑
σ∈Sn Xσ, E[X] is the expected number of Hamiltonian paths in Tn. From (2) it follows that

E[X] =
∑
σ∈Sn

E[Xσ] =
n!

2n−1
.

From PP we know that there is a σ such that Xσ ≥ E[X]. Q.E.D.

2 Chromatic Number and Girth

Chromatic Number of a graph G, χ(G), is the minimum number of colors required to color G s.t. no two
adjacent vertices get the same color. A large value of χ(G) would seem to suggest that the graph is highly
connected, and in particular, that the graph contains a complete graph, which would imply it has triangles.
However, this is not the case.2 Blanche Descartes had already shown that there are graphs with arbitrarily
high chromatic number but minimum length of cycles at least four. This latter quantity is called the girth
of G, γ(G). Let’s see the construction.

We will construct a sequence of graphs G3, G4, . . . s.t. χ(Gn) = n, but Gn has not triangles. Let G3 :=C5,
then clearly χ(G3) = 3. Let Gn = (Vn, En). We construct Gn+1 from Gn as follows: Let V ′ be a copy of the
vertices of Vn s.t. they are in bijection, v ∈ V → v′ ∈ V ′; connect each vertex v′ ∈ V ′ to all the neighbors
of v in Gn; introduce a new vertex z and connect it to all the vertices in V ′; then Vn+1 :=Vn ∪ V ′ ∪ {z} and
En+1 :=En plus all the edges introduced in the last two steps of the construction.

Claim:
2On the contrary, Hadwiger’s conjecture states that this is almost the case, i.e., if the chromatic number of the graph is n

then the graph contains Kn as a minor.
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1. χ(Gn+1) = n+ 1. That n+ 1 colors suffice is easy to see: every vertex v′ ∈ V ′ can take the same color
as its corresponding vertex v ∈ Vn, and z takes a color different from all the n colors used in V ′. Why
are n+ 1 colors necessary? Considering a coloring of Gn using n colors; let C1, . . . , Cn be the partition
of V induced by the colors. We claim that within each Ci there must be a vertex vi that is neighbor
to vertices from all the remaining color classes; if not, then for every v ∈ Ci we can color it with one
of the remaining colors and hence we can color Gn with fewer than n colors, which is a contradiction.
Therefore, the vertex v′i corresponding to vi has to have the same color as vi. Hence V ′ needs n colors,
and consequently z needs a new colors, which implies that Gn+1 needs n+ 1 colors.

2. γ(G) = 4. The cycles already present in Gn have length at least 4. The new cycles are obtained by
the edges connecting Vn to V ′ and the edges connecting V ′ to z. These new cycles have length at least
4: since to connect v, w ∈ Vn we need the three edges v − v′ − z −w′ −w; the best we can do is when
w = v; or in other words, we need one edge to enter V ′ and two edges to exit from it.

But can we do better than four? Can there be graphs whose coloring and girth both are large?

Theorem 3 (Erdős (1959)). For every k > 2, there exists a graph G such that χ(G) > k and γ(G) > k.

Idea: To construct a probability space and show that the probability that χ(G) ≤ k is < 1/2 or the
probability that γ(G) ≤ k is < 1/2. Thus there must be a graph for which both properties are at least k.
This time, however, the distribution will not be uniform.

Step 1: Our first step is actually to replace χ(G) with another parameter ι(G), the independence number
of G. Intuitively, χ and ι are connected, but they are connected in an inverse manner. Any χ coloring of
V partitions V into P1, . . . , Pχ sets, where vertices of the same color are in the same partition. Moreover,
vertices in the same partition are independent of each other, thus |Pj | < ι. Since Pj ’s form a partition of V
it follows that |P1|+ |P2|+ · · ·+ |Pχ| = n. Substituting the upper bound on |Pj |’s we obtain

χι ≥ n. (3)

The probability that χ is small thus implies that ι is large. In fact, we will show that Pr{ι > cn} is small,
for some fraction c.

Step 2: What is the probability space? It is the set G(n, p) of graphs on n vertices where the individual
edges appear with probability p, independent of each other; p will be appropriately chosen later. So, the

probability that Kn is picked is p(
n
2); in general, a graph with m edges is picked with probability pm(1 −

p)(
n
2)−m.
Step 3: What is the probability that a G ∈ G(n, p) has ι(G) ≥ r? What is the probability that R ⊆ V ,

|R| = r, is an independent set? It is (1− p)(
r
2). If AR is the event that R is an independent set, then

Pr(ι(G) ≥ r) = Pr(
⋃

R∈(Vr )

AR) ≤
∑
R∈(Vr )

Pr(AR) =

(
n

r

)
(1− p)(

r
2) ≤ (ne−p(r−1)/2)r,

where the last step follows from the fact that for all p, (1 − p) ≤ e−p. Recall that we wanted to show that
the probability that ι is greater than a certain fraction of n is smaller than half. In particular, choosing
r = n/2k in the inequality above we get that there exists N1, s.t. for all n > N1

Pr(ι ≥ n

2k
) <

1

2
. (4)

Step 4: We now derive a similar result for γ(G). We want to show that there exists an N2 s.t. for all
n ≥ N2, Pr(γ(G) ≤ k) is small. Let X be the random variable that counts the number of cycles with length
≤ k. We will in fact show that Pr(X ≥ s) is small, i.e., we cannot have too many cycles with length ≤ k.
To get this result, we use yet another fundamental result from probability, namely Markov’s inequality.

Step 5: What is the probability that a given subset C ⊆ V forms a cycle of length j? Every permutation
of c1, . . . , cj can be thought of as a cycle. However, some permutations give rise to the same cycle: all cyclic
shifts of a permutation gives the same cycle, and since the graph is undirected, the permutation and its
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reverse are the same cycle. Thus the number of cycles of length j is j!/(2j) = (j − 1)!/2. Thus the total
number of cycles of length j in G are

(
n
j

)
(j − 1)!/2; every such cycle appears with probability pj .

Step 6: Recall that X is the random variable that counts the number of cycles with length ≤ k. With
each cycle C, we associate the indicator random variable XC that is one iff C appears in G; thus E[XC ] = p|C|.
Clearly, X =

∑
C||C|≤kXC . Since X is a positive random variable, from Markov’s inequality we obtain

Pr{X ≥ s} ≤ E[X]

s
.

Moreover, from the linearity of expectation we have

Pr{X ≥ s} ≤ 1

s

∑
C||C|≤k

E[XC ] =
1

s

k∑
j=3

(
n

j

)
(j − 1)!pj/2 ≤ 1

s

1

2

∑
j

(np)j ≤ (k − 2)(np)k/2.

Thus

Pr{X ≥ n/2} ≤ k (np)k

n
.

An appropriate choice of p, yields that the RHS is smaller than 1/2. Thus there exists N2 s.t. for all n ≥ N2

Pr{X(G) ≥ n/2} < 1

2
. (5)

Step 7: Let N ≥ maxN1, N2. Then from (4) and (5) it follows that there is a graph H on N vertices
such that

ι(H) <
N

2k
and X(H) <

N

2
.

How small is χ(H)? From (3) it follows that χ(H) ≥ n/ι(H) > 2k. So H has a large chromatic number,
but not girth as it has cycles with length ≤ k. We construct a new graph G from H by deleting one vertex
from these cycles thus breaking all the cycles of length ≤ k. The resulting graph G is not empty as we have
deleted at most N/2 vertices, and clearly γ(G) > k. What about ι(G)? Well, ι(G) ≤ ι(H), as we have
removed vertices from, say, the simple cycles, and that does not increase ι. Again applying (3) to G we get

χ(G) ≥ N

2ι(G)
≥ N

2ι(H)
> k.

Thus G has both the desired properties.
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3 Lovász Local Lemma

Given an n-uniform hypergraph H, we say H is k-colorable if there is a k-coloring of its vertices such that
no edge is monochromatic. When can we say that H is, let’s say, 2-colorable? Let’s apply the PM to this
problem when H is n-uniform. If we color the set of vertices randomly with 2-colors, where we can pick
any color with equal probability, then the probability that an edge is monochromatic is 21−n, since all the
n vertices get the same color with prob 2−n and there are two colors to choose from. Let Be be the event
that e is monochromatic. Thus probability that at least one of Be occurs is

Pr(
⋃
e∈E

Be) ≤
∑
e∈E

Pr(Be). (6)

If the number of edges are < 2n−1 then we are sure that there is a 2-coloring of H where none of the events
Be occur. Clearly, this result took the extreme case. Already for n = 2 the result is not interesting, since it
says that a graph with one vertex is 2-colorable. Let’s apply the same argument to the case when an edge
has at least k vertices. In this case the probability that an edge is monochromatic is ≤ 21−k, and the number
of edges are

∑n
j=k

(
n
j

)
. Now if k is very small compared to n, then the number of edges is much larger than

21−k and the argument above fails. The reason is that the upper bound in (6) is not tight.
In PM we usually want to show that nothing “bad” occurs, i.e., if B1, . . . , Bn were some bad events then we

want to show that the probability that none of the bad events occur is positive, namely Pr(B1∩B2∩· · ·∩Bn) >
0. Without making any assumptions on the dependence amongst the events, the best we can say about
Pr(B1 ∩ B2 ∩ · · · ∩ Bn) is that it is greater than 1−

∑
i Pr(Bi). However, this is meaningful if the sums of

the probabilities is strictly smaller than one. On the other extreme, if we assume that the events B1, . . . , Bn
are independent, i.e., if

Pr(B1 ∩B2 ∩ · · · ∩Bn) = Pr(B1) Pr(B2) · · ·Pr(Bn),

then we can say something tighter, namely

Pr(B1 ∩B2 ∩ · · · ∩Bn) = Pr(B1) Pr(B2) · · ·Pr(Bn)

i.e., the events Bi’s are also independent; note that the RHS is > 1−
∑
i Pr(Bi). But what if there is some

dependence amongst the events? What can we say then? How do we model these dependencies? Lovász
Local Lemma (LLL) gives us a way to do that.

We first model the dependencies using directed graphs. Let B1, . . . , Bn be events in a probability space.
A directed graph G = (V,E) with V = [n] is a dependency digraph for B1, . . . , Bn if each event Bi is
independent of all the events Bj with (i, j) 6∈ E.

Lemma 4 (Lovász Local Lemma (1975)). Let B1, . . . , Bn be events in a probability space and G = (V,E) be
their dependency digraph. Suppose there are n real numbers x1, . . . , xn, 0 ≤ xi ≤ 1, s.t.

Pr(Bi) ≤ xi
∏

(i,j)∈E

(1− xj) (7)

then

Pr(

n⋂
i=1

Bi) ≥
n∏
i=1

(1− xi).

Proof. The proof is based upon induction, but first we massage our claim. Repeatedly using the result
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that for two events A,B, Pr(A ∩B) = Pr(B) Pr(A|B), we obtain

Pr(

n⋂
i=1

Bi) = Pr(B1) Pr(

n⋂
i=2

Bi|B1)

= Pr(B1) Pr(B2|B1) Pr(

n⋂
i=2

Bi|B1 ∩B2)

= Pr(B1) Pr(B2|B1) Pr(B3|B2 ∩B1) Pr(

n⋂
i=4

Bi|B1 ∩B2 ∩B3)

...

= Pr(B1) Pr(B2|B1) Pr(B3|B2 ∩B1) . . .Pr(Bn|
n−1⋂
i=1

Bi).

We can further simplify the equation above by using the fact that Pr(A|B) + Pr(A|B) = 1 (i.e., given B
either A or its complement A must happen) to get

Pr(

n⋂
i=1

Bi) = (1− Pr(B1))(1− Pr(B2|B1))(1− Pr(B3|B2 ∩B1)) . . . (1− Pr(Bn|
n−1⋂
i=1

Bi)). (8)

We next derive an upper bound on Pr(Bi| ∩j∈S Bj), for S ⊆ [n]. To get the desired result, we must show
that

Pr(Bi| ∩j∈S Bj) ≤ xi. (9)

We prove this by using induction on |S|. When |S| = 0, then the claim follows from the assumption that
Pr(Bi) ≤ xi

∏
(i,j)∈E(1− xj) ≤ xi. So suppose the claim holds for all subsets of [n] of size smaller than |S|.

For succinctness, let BS := ∩j∈S Bj .
Consider Pr(Bi|BS). We can partition S into two parts S1, S2 where S1 = {j ∈ S|(i, j) ∈ E} and

S2 = S \ S1. Then from the fact that Pr(A|B ∩ C) = Pr(A ∩B|C)/Pr(B|C), we obtain

Pr(Bi|BS) =
Pr(Bi ∩BS1

|BS2
)

Pr(BS1
|BS2

)
. (10)

To get an upper bound on the LHS, we derive an upper bound on the numerator in the RHS and a lower
bound on the denominator on the RHS.

1. Since Pr(A ∩B|C) ≤ Pr(A|C), we get

Pr(Bi ∩BS1
|BS2

) ≤ Pr(Bi|BS2
).

But Bi is independent of BS2
and hence also with its complement BS2

. Thus

Pr(Bi ∩BS1
|BS2

) ≤ Pr(Bi|BS2
) = Pr(Bi) ≤ xi

∏
(i,j)∈E

(1− xj), (11)

where the last step follows from (7). Note that if S1 = ∅ then Pr(Bi|BS) = Pr(Bi|BS2) and so this
equation still applies, and we do not have to write it as a fraction as in (10). So in the next case, we
can assume |S2| < |S|.

2. Let S1 = {j1, . . . , jk}. Then from an argument similar to the one used to derive (8) but applied to
conditional probabilities it follows that

Pr(BS1
|BS2

) = (1− Pr(Bj1 |BS2
))(1− Pr(Bj2 |Bj1 ∩BS2

)) . . . (1− Pr(Bjk |B[k−1] ∩BS2
)).

Since |S2| < |S|, we apply (9) to each negative term on the RHS, to get

Pr(BS1
|BS2

) ≥
∏
j∈S1

(1− xj) ≥
∏

j∈N(i)

(1− xj). (12)
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Plugging (11) and (12) in (10) we have the proof of the claim (9), hence completing the induction. Substi-
tuting the upper bound in (9) into (8) gives us the desired lower bound:

Pr(B[n]) ≥
n∏
i=1

(1− xi).

Q.E.D.

As a useful corollary of LLL is the symmetric-LLL:

Corollary 5. Let B1, . . . , Bn be events s.t. Pr(Bi) ≤ p, for all i = 1, . . . , n, and suppose that in the
dependency digraph each event Bi has out-degree at most d, i.e., Bi is dependent on at most d other events.
If ep(d+ 1) ≤ 1 then with positive probability none of the events B1, . . . , Bn occur.

Proof. To get the claim we just have to choose xi’s such that p ≤ xi
∏

(i,j)∈E(1−xj). For simplicity, let’s

assume all xi’s are the same, say x. Suppose, for contradiction, p > x
∏

(i,j)∈E(1−x). Since i has out-degree

at most d, we have p > x(1 − x)d. Let’s choose x = 1/(d + 1), then since (1 − 1/(d + 1))d > 1/e, we have
ep(d + 1) > 1, which is a contradiction to our assumption that ep(d + 1) ≤ 1. Thus p ≤ x

∏
(i,j)∈E(1 − x),

x = 1/(d+ 1), and so with positive probability none of the events Bi’s occur. Q.E.D.

Note: The corollary above is independent of the number of events. We will also need a simplified version
for the asymmetric case:

Corollary 6. Let B1, . . . , Bn be events in a probability space and G = (V,E) be their dependency graph. If
for a given i,

∑
(i,j)∈E Pr(Bj) ≤ 1/4 then with positive probability none of the events B1, . . . , Bn occur.

Proof. Substitute xi := 2P (Bi). Then we want to show that 1 ≤ 2
∏

(i,j)∈E(1− 2 Pr(Bj)). But we know

that
∏

(i,j)∈E(1− 2 Pr(Bj)) ≥ 1− 2
∑

(i,j)∈E Pr(Bj) ≥ 1 since
∑

(i,j)∈E Pr(Bj) ≤ 1/4. Q.E.D.

We now apply LLL to different problems.

¶1. Hypergraphs: What if instead of restricting edges, we restrict the dependency of each edge? The
following theorem does that.

Theorem 7. Let H be a hypergraph in which every edges has at least k elements and each edge of H intersects
at most d other edges. If e(d+ 1) ≤ 2k−1 then H is 2-colorable.

Proof. The probability that an edge is monochromatic is ≤ 21−k. Since each edge intersects at most d
other edges, the event Be is dependent on at most d other events. Since e(d+1) ≤ 2k−1, applying symmetric-
LLL gives us the existence of a 2-colorable hypergraph. Q.E.D.

¶2. Directed Cycles of Given Multiplicity: Another surprising application of LLL is the following
result:

Theorem 8 (Alon and Linial (1989)). Let G = (V,E) be a simple directed graph with minimum out-degree
δ and maximum indegree d. If e(dδ + 1)(1 − 1/k)δ < 1 then D contains a directed simple cycle of length a
multiple of k.

Proof.
We will prove the theorem for the subgraph of G where the outdegree is exactly δ. Clearly, if the theorem

holds for such a subgraph then it holds for G (WHY?).
To capture the periodicity of k, we use k-colors. The idea is to randomly k-color G and show that there

is a cycle, where all the k colors appear in the cycle in a “consecutive manner” repeatedly.
Let c : V → Zk := {0, . . . , k−1} be a random coloring of G, where each vertex v ∈ V is colored uniformly

at random with one of the k-colors 0, . . . , k − 1. Let Bv be the even that there is no u, (v, u) ∈ E, s.t.
c(u) ≡ c(v) + 1 mod k.
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1. Pr(Av) ≤ (1− 1/k)δ, since the outdegree is at least δ and (1− 1/k) is the probability that a neighbor
of v doesn’t have the color c(v) + 1 mod k.

2. How many events Au can be dependent with Av? Two events Av, Au are dependent if the directed
neighbourhood of v and u intersect. For each of the δ neighbors of v there are d vertices that point to
it. Thus there are at most dδ events dependent with Av.

3. By assumption, it follows that we can apply symmetric-LLL to get that there is a positive probability
that none of the events happen, i.e., there is a coloring c such that for all v ∈ V there is a u, (v, u) ∈ E,
such that c(u) ≡ c(v) + 1 mod k.

4. Pick any vertex v0 and form the sequence v0, v1, v2, . . . such that

c(vj+1) ≡ c(vj) + 1 mod k.

Suppose j is the smallest integer such that there exists an ` < j s.t. v` = vj . Then the cycle v`, . . . , vj
is a simple cycle, and since the colors repeat at every kth. vertex, the length of the cycle is a multiple
of k.

Q.E.D.

¶3. Frugal Colorings: A proper coloring of a graph G is a coloring of its vertices where neighbors get
different colors. A proper coloring of G is said to be a β-frugal coloring if no color appears more than β
times in the neighborhood of any vertex of G. When can we say that a graph has a β-frugal coloring?

We show the following result: If G has maximum degree ∆ ≥ ββ then it has a β-frugal coloring with
roughly c∆1+1/β colors, for some constant c ≥ 2.

For β = 1, the statement above says that we need c∆2 colors to get a 1-frugal coloring, i.e., a coloring
where every color appears at most once in the neighborhood of any vertex. One way to see this is to consider
the square G2 of G, i.e., the graph obtained by adding edges between vertices at distance at most two in
G. Clearly, maximum degree of G2 is smaller than ∆2; moreover, every vertex in the neighborhood of G in
G2 is connected to every other vertex in the neighborhood. From Brook’s theorem we know that a proper
coloring of G2 requires ∆2 + 1 colors, and since c ≥ 2, we have sufficient colors.

For β ≥ 2, we pick a random (not necessarily proper) coloring of G with c∆1+1/β colors, where every
color is picked with uniform probability p := 1/c∆1+1/β . There are two types of events that prevent our
coloring to be a proper β-frugal coloring:

Type-1. For each (u, v) ∈ E, let Buv be the event that both u and v have the same color.

Type-2. For each set of β + 1 neighbors u0, . . . , uβ of some vertex, let Bu0,...,uβ be the event that all these
vertices have the same color.

What is the probability of these events taking place? What is the probability that some k vertices have the
same color? It is pk−1, since the probability is conditioned that one of the vertices gets a certain color, and
the remaining get the same color.

Let’s now look at the dependency digraph of these events. How many events is a type-1 event dependent
upon? The vertices u, v are incident to at most 2∆ edges, and hence the same number of type-1 events.
For type-2 events, suppose both u, v belong to the neighborhood N(w) of a vertex w; then the type-2 event
Bu0,...,uβ where {u0, . . . , uβ}∩{u, v} 6= ∅ is dependent on Buv; there are 2

(
∆
β

)
such sets (there is some double

counting here), and at most ∆ choices for w (which happens when the neighborhood of both u and v are
the same). How many events is a type-2 event dependent upon? Let Bu0,...,uβ be a type-2 event. Then it is
dependent on any type-1 event that has an endpoint in u0, . . . , uβ . Since maximum degree is ∆, there are
(β+1)∆ type-1 events that Bu0,...,uβ is dependent upon. The event Bu0,...,uβ is dependent on another type-2
event Bv0,...,vβ if {u0, . . . , uβ} ∩ {v0, . . . , vβ} 6= ∅; for every ui, i = 0, . . . , β, there are ∆ neighbors and for

each neighbor there are
(

∆
β

)
sets that contain ui; thus Bu0,...,uβ is dependent on (β + 1)∆

(
∆
β

)
type-2 events.

Since the dependencies of type-2 events are larger, we will use those dependency bounds even for the type-1
events.
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We now want to apply Corollary 6. In particular, we want to show that given some event B, the
probability that one of the events dependent on B takes place is ≤ 1/4. From the argument above, we know
that B is dependent upon at most (β + 1)∆ type-1 events and (β + 1)∆

(
∆
β

)
type-2 events. Therfore, the

probability that some bad event in the neighborhood of B happens is bounded by

(β + 1)∆p+ (β + 1)∆

(
∆

β

)
pβ ≤ (β + 1)∆p+ (β + 1)

∆β+1

β!
pβ

≤ (β + 1)∆

c∆1+1/β
+ (β + 1)

∆β+1

β!cβ∆β+1

≤ 1/4,

where the last step follows if we choose c ≥ 16.
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