
Primes

1 Infinity of Primes – Five Proofs
In this section we collect various proofs of the infinity of primes. Most of the material is from PTB. The proofs are
more or less in the chronological order of discovery.

¶1. Euclid: Let p1, . . . , pk be the finite set of primes. Consider the number N := p1 . . . pk + 1. None of the primes
p1, . . . , pk divide it. So either N is a prime, or it is divisible by a prime number distinct from p1, . . . , pk.

Remakr: Kummer simplified the argument slightly as follows: Let N := p1 . . . pk; then N and N + 1 share a
prime p; thus p divides their difference, which is one, giving us a contradiction.

¶2. Goldbach: His idea was to show the existence of infinitely many relatively prime numbers: two numbers a, b
are relatively prime if they don’t have a common factor. We will show that the Fermat numbers, Fn := 22

n

+ 1,
n = 0, 1, 2, . . . , are relatively prime. To do that we first derive a recursive definition. Let’s consider

Fn − 2 = (22
n−1

)2 − 1 = (22
n−1

+ 1)(22
n−1

− 1) = Fn−1(Fn−1 − 2) = Fn−1Fn−2 . . . F0.

SupposeFn had a non-trivial common factor withFk, k < n, then this common factor must divideFn−
∏

0 ≤ i < nFi =
2. Thus this common factor is 2, which means that Fn is an even number, a contradiction.

¶3. Folklore: Given a prime p, the idea is to show that all the primes q dividing Mersenne number 2p − 1 are
greater than p; in fact, we will show something stronger, namely p divides q − 1.

Let’s consider the set Z′q := {1, . . . , q − 1}; clearly 2 is an element of this set. Since q divides 2p − 1, 2p ≡ 1

mod q. Also, p is the smallest power of 2 that has this property; since if there was a k < p such that 2k ≡ 1 mod q
then p must be a multiple of k, so either k = 1 (which can’t be) or k = p. Our claim will thus follow if we show that
2q−1 ≡ 1 mod q.

Let S := {1, 2, . . . , 2p−1}. For each a ∈ Z′q , define the coset Sa := aS; as a2k 6= a2j , for 1 ≤ k < j < p, the
size of all the cosets is p. But not all the cosets are different. In fact, we can show that for a, b ∈ Z′q , Sa = Sb iff
a−1b ∈ S (note a is relatively prime to q so the inverse is well define). Since a−1b = 2k, we have b = a2k ∈ Sa, and
a = b2p−k ∈ Sb. Thus we cosets form a partitioning of Z′q , and each has size p, so p must divide q − 1.1

¶4. Euler: Define the function π(x) as the number of primes not exceeding x. Then there are infinitely many primes
iff π(x) is not a decreasing function. We thus need to derive a lower bound on π(x) that does not decrease.

Let us number the primes p1, p2, p3, . . . so on. Given some number n, let n ≤ x < n+ 1. Then by comparing the
area under the ln function and the Harmonic function Hn, we know that

lnx ≤ Hn =

n∑
k=1

1

k
<
∑
k

1

k

where the last sum is over all numbers k whose prime divisors are less than or equal to x. Every k can be expressed
as a product of primes p ≤ x, thus k =

∏
p≤x p

ep , where ep ≥ 0. But as k is varying over all numbers whose prime
divisors are ≤ x, we get

lnx =
∏
p≤x

∑
e≥0

1

pe
=
∏
p≤x

1

1− 1/p
=
∏
p≤x

p

p− 1
. =

∏
p≤x

(1 +
1

p− 1
) =

π(x)∏
i=1

(1 +
1

pi − 1
).

1This is just a statement of Lagrange’s theorem in the case of cyclic groups.
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But clearly pi − 1 ≥ i, thus

lnx ≤
π(x)∏
i=1

i+ 1

i
= π(x) + 1.

As we very well know lnx is an increasing function, and so is π(x).

¶5. Euler/Erdös: The last proof not only shows that there are an infinitude of primes, but it shows that their inverse
sum is diverging, i.e.,

∑
[p prime]1/p is unbounded. If there were only finitely many primes, this wouldn’t be the case.

This result goes back to Euler, but the proof we present here, a proof by contradiction, is Erdös’s.
Let’s order the primes in increasing order p1, p2, p3, . . . so on. Suppose the sum

∑
i≥1 1/pi converges, then there

must be an index k such that
∑
i>k 1/pi < 1/2. Let us call the primes p1, . . . , pk the small primes and the primes

pk+1, pk+2, . . . the large primes. For an arbitray number N we thus have∑
i>k

N

pi
<

1

2
. (1)

Let Nb be the count of numbers n ≤ N that are divisble by at least one big prime, and Ns be the count of number
n ≤ N that have only small prime divisors. Thus Nb + Ns = N . We will derive a contradiction to this statement.
Given a prime pi, the quantity bN/pic counts the number of n’s smaller than N that are divisble by pi. Thus

Nb ≤
∑
i>k

⌊
N

pi

⌋
≤
∑
i>k

N

pi
< N/2.

So to get to our contradiction, we only need to show that Ns < N/2. Let n ≤ N be a number that has only prime
factors. We can factorize n as n = ab2, where a is the square-free part of n, i.e., a is the product of different small
primes. We will construct an upper bound on how many such n can be there? Since a is the product of different
small primes, and there are only k small primes, there are at most 2k different values of a. How many different values
can b take? We don’t want to apply the same argument that we had for a to b, because we have to account for the
various choices of exponents that the primes can have in b. A straightforward bound on b is b ≤

√
n ≤

√
N . Thus

Ns < 2k
√
N . To get the contradiction we have to find an N , such that 2k

√
N ≤ N/2, or N ≥ 22k+2. Since our

choice of N was arbitrary, we can choose such an N .
We have seen different proofs for the infinity of primes. How about primes modulo 4? Well, there can only be

three types of primes modulo 4: those congruent to two (which is only 2), those of the form 4k + 1 and those of the
form 4k + 3. But can it be that we’ve infinitely many primes of the last two types? Let’s start with the primes of the
form 4k + 3 and try to construct an argument similar to Euclid’s. Suppose there were only finitely such primes, and
let pk be the largest amongst them. Then the number

N := 4 · 3 · 5 · · · pk − 1

is congruent to 3 modulo 4, and hence it has a prime factor p, distinct from 2, 3, 5, . . . , pk that is of the form 4k + 3;
if all prime factors p of N are congruent to 1 modulo 4 then so is their product of powers, which would mean N ≡ 1
mod 4, a contradiction.

Why are there infinitely many primes of the form 4k + 1? Let’s try the same argument as above: Define N :=
4 · 3 · 4 · pk+1, where pk is the largest prime of the form 4k+1. Now N ≡ 1 mod 4, so there must be a prime factor
p distinct from 2, 3, . . . , pk. But why is p ≡ 1 mod 4? The eariler argument fails, because a prime p ≡ 3 mod 4 on
squaring gives us a number equivalent to 1 modulo 4. The proof for the infinity of primes of the form 4k + 1 is a bit
complicated.

The idea is to first show that there is no solution to the equation x2 + 1 ≡ 0 mod p, where p = 4k + 3; then we
show that primes of the form 4k + 3 cannot divide numbers written as sum of two squares; and finally, we construct
such a number one of whose prime factors will be of our desired form. However, the proof of this claim follows from
an answer to a question that Fermat asked: Which numbers can be written as sums of two squares? We present this
argument, and as a corollary we will get an answer to the question that we wanted. We then go on to show Lagrange’s
four square theorem, i.e., every number can be expressed as sum of at most four squares.

Lagrange’s theorem goes beyond Fermat’s and states that every number can be represented as sum of squares of
four integers. If we want to replace integers with natural numbers then the statement would be square of at most four
natural numbers, which is not as neat as the previous formulation. Here we derive a proof using geometry of numbers.
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