
Pigeonhole Principle and Ramsey Theory

The Pigeonhole Principle (PP) has often been termed as one of the most fundamental principles in
combinatorics. The familiar statement is that if we have n pigeonholes and more than n pigeons, then there
must be a pigeonhole with more than one pigeon.1. More formally, a function f that maps a set X, |X| = m,
to a set Y , |Y | = n, where m > n, cannot be injective, i.e., there is a y ∈ Y such that |f−1(y)| > 1. But
this is not the complete picture. The stronger implication is that there are two elements y, z such that
|f−1(y)| ≥ m/n ≥ |f−1(z)|.

Though the principle is very simple to state, proofs involving the principle are usually considered in-
genious, since finding the “pigeonholes” and the “pigeons” is non-trivial. In this lecture, we give some
interesting applications of the principle.

The principle is a special case of the more general theory is that was developed by Ramsey, namely a
large structure should satisfy some property. For instance, for any given n, if we pick sufficiently many points
in the plane (no three collinear) then there will be a subset amongst them that form a convex polygon with
n vertices (5 points for a quadrilateral, 9 for a pentagon). Or, given two numbers a, b there is a number
n such that a two-coloring of Kn either contains a monochromatic Ka or a monochromatic Kb. We will
subsequently study some results from the general theory, where the existence of such numbers and bounds
on them are derived.2

¶1. Initiating Examples: Given the numbers 1, . . . , 2n, let f(n) be the number such that any subset
of [2n] of size f(n) contains two numbers that are relatively prime. Formulated in this way the solution is
not evident. But if we find two numbers that are consecutive, then we know that they are relatively prime.
Clearly, f(n) > n, since we can pick the n even numbers. So we guess f(n) = n+ 1, and indeed that is the
case, since in any subset of n + 1 numbers two must be consecutive. To formulate in terms of pigeonhole
principle, let x1, . . . , xn+1 be the numbers; x0 := 1. Let gi, i = 1, . . . , n, be the number of elements remaining
between xi and xi+1. Then

∑n
i=1 gi = n− 1. Thus there must be a gi that is zero, i.e., two elements xi and

xi+1 must be consecutive.
Now let’s consider the complement property: let f(n) be the number such that any subset of [2n] of size

f(n) contains two numbers such that one divides the other. Again f(n) > n, since in the set {n+ 1, . . . , 2n}
no number divides another. What is surprising is f(n) = n + 1 again, i.e., any subset of size n + 1 has
two numbers that are relatively prime and two numbers such that one divides the other. The proof via
pigeonhole principle is tricky and is based upon the observation that any number in [2n] can be expressed
in the form 2km, where m is an odd number. Since there are only n odd numbers in [2n], in any subset of
size n + 1 there must be two numbers that have the same odd part, and hence one divides the other. This
result already shows the ingenuity needed to apply pigeonhole principle.

1 Dirichlet’s Application

One of the earliest non-trivial applications of pigeonhole principle was by Dirichlet in Diophantine Approxi-
mation, and basically says that every irrational real number can be approximated quite well with rationals.

1Dijkstra’s remarks: The Strange Case of the Pigeonhole Principle
2The complement problem is, How large can a structure be such that it avoids a certain property. For instance, how many

edges can a graph on n vertices have have such that we do not have a cycle of length 4? Such problems are called extremal
problems.
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More precisely, let α be an irrational number, then for all N ∈ N, there exists p, q, 1 ≤ q ≤ N , such that∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q2
. (1)

This implies that there are infinitely many rationals p/q for which the above holds. Also, there is at most
one rational with a fixed denominator q that satisfies this inequality (any two rationals with the same
denominator q differ by 1/q).

We will show the stronger claim: ∣∣∣∣α− p

q

∣∣∣∣ < 1

q(N + 1)
,

or equivalently

|qα− p| < 1

(N + 1)
. (2)

The above inequality suggests that p must be the integer nearest to qα, and since 1 ≤ q ≤ N , it makes sense to
define αi := iα− biαc, i = 1, . . . , N . Then αi ∈ (0, 1), and αi are irrationals (otherwise α will be a rational).
Consider the partition of (0, 1) into N + 1 open intervals of the form Ij := (j/(N + 1), (j + 1)/(N + 1)),
j = 0, . . . , N . There are three cases to consider. In all the cases, we will show that there exists p, q s.t.
q ≤ N and they satisfy (2).

1. If there is an i s.t. αi ∈ I0. Then

0 < iα− biαc < 1

N + 1
,

and so we can choose p := biαc and q := i.

2. If there is an i s.t. αi ∈ IN+1. Then

N

N + 1
< iα− biαc < 1.

Subtracting one from the inequality we get

−1

N + 1
< iα− biαc − 1 < 0,

which implies

|iα− biαc − 1| < 1

N + 1
.

Thus in this case we choose p := biαc+ 1 and q := i.

3. If there is no i falling in the first two cases, then the N numbers αi must be contained in N−1 intervals
I1, . . . , IN−1. Thus by pigeonhole principle there are two indices i, j (say i < j) s.t. αi and αj are in
the same interval Ik, k = 1, . . . , N − 1, i.e.,

k

N + 1
< iα− biαc < (k + 1)

N + 1

and
k

N + 1
< jα− bjαc < (k + 1)

N + 1
.

Therefore,

|jα− bjαc − (iα− biαc)| < 1

N + 1
,

which implies

|(j − i)α− bjαc+ biαc)| < 1

N + 1
.

So we can choose q := (j − i) and p := bjαc − biαc.
Thue-Siegel-Roth theorem states that there are numbers for which (1) is in some sense the best, namely

irrational algebraic numbers cannot be approximated by infinitely many rationals better than what (1)
suggests, i.e., with 2 replaced by 2+ε, for some ε > 0. This property is very useful in numerical computations
with algebraic numbers.

2



2 Erdös-Szekeres: Monotone Sequences

Given N numbers a1, . . . , aN , an increasing subsequence of length k is a set of k indices, i1 < · · · < ik , such
that ai1 < · · · < aik ; similarly define a decreasing subsequence.

Theorem 1. Any set of mn+ 1 distinct real numbers a0, . . . , amn either contains an increasing subsequence
of length m+ 1 or a decreasing subsequence of length n+ 1.

Proof 1 (PTB): Let ti, i = 0, . . . ,mn + 1, be the length of a longest increasing subsequence starting
from ai, and let f be this map, i.e., f(ai) = ti. If there is a ti ≥ m + 1 then we are done. So assume all
ti ≤ m. Since there are only m possible values of ti and mn+ 1 numbers are mapped to these values, there
must be a value, say t ≤ m, and n+ 1 numbers ai0 , . . . , ain such that f(ai0) = f(ai1) = · · · = f(ain) = t. We
claim that these n+ 1 numbers form a decreasing subsequece; if aij < aij+1

, for some j ∈ [0, . . . , n− 1], then
we have an increasing subsequence of length t + 1 starting from aij , namely the one obtained by prefixing
aij to the increasing subsequence starting from aij+1

, which is a contradiction.
Proof 2 (Seiderling): The fact that there are mn+ 1 numbers suggests us that we should try to map

then into a matrix of size mn. Instead of assigning a single number, we assign a pair with each number:
Let si be the length of a longest decreasing subsequence starting from ai, and ti be the length of a longest
increasing subsequence starting from ai. Let f be this map. If there exists an i, for which either ti > m or
si > n then we are done. So suppose for all i, 1 ≤ ti, si ≤ m. Thus f maps mn+ 1 numbers into mn pairs,
thus by pigeonhole principle two numbers must have the same pair associated with them. But this cannot
be, since if ai < aj then ti > tj , and if ai ≥ aj then si > sj , giving us a contradiction.

Proof 3 (Hammersley): This is a constructive proof, and instead of assigning a pair with each number
we try to fit them in a matrix of size mn; clearly, there will either be a row of length n + 1 or a column of
length m + 1; the construction additionally ensures that the rows and columns are ordered subsequences.
Arrange the mn + 1 numbers in a column/stack as follows: place x1 in the first column; if at any given
stage we have place x1, . . . , xi−1 into som columns, then place xi at the top of the first column that has the
topmost entry smaller than xi; if no such column exists then place xi at the starting of a new column. Let k
be the number of columns obtained. The crucial observation is that entries in a column form an increasing
subsequence, and the topmost entries from the first to the kth column form a decreasing subsequence. If
k > n then we have a decreasing subsequence of length n + 1. So suppose k ≤ n. By pigeonhole principle
we know that there is a column that has length at least mn/k + 1. Since k ≤ n, the length of this column
is at least m+ 1, and so we have an increasing subsequence of the desired length.

Proof 4 (Erdös-Szekeres): By induction.
The theorem is tight as shown by the following sequence of mn numbers:

m,m− 1, . . . , 1, 2m, 2m− 1, . . . ,m+ 1, 3m, 3m− 1, . . . , 2m+ 1, . . . , nm, nm− 1, . . . , (n− 1)m+ 1.

Note that in proving Theorem 1 we have not used the fact that the numbers are real numbers. A more
general statement is the following.

Corollary 2. Given an ordered set S containing mn+ 1 elements, and a linear order π on these elements,
there is an ordered subset T of S that is monotone wrt π. Note that T preserves the ordering of S as well
as the ordering imposed by π.

We now given an application of this generalization.
A set of linear orders π1, . . . , πm on [n] is said to realize Kn if for all i, j ∈ [n] and k ∈ [n]− {i, j} there

exists a order πi such that i, j precede k; express this as i, j ≺ k. The order dimension of Kn is the size of
the smallest set of linear orders that realize Kn. So dim(K3) = 3. It is also clear that dim(Kn+1) ≥ dim(Kn),
since in any set of linear orders realizing Kn+1 if we delete n + 1 we get a linear order realizing Kn. Thus
dim(K4) ≥ 3, and it is 3 as the following set shows:

(1, 2, 3, 4), (2, 4, 3, 1), (1, 4, 3, 2).

We claim that dim(Kn) ≥ log log n, and it suffices to verify it for n = 22
m

+ 1, i.e., in this special case
dim(Kn) ≥ m + 1. Suppose not, and let π1, . . . , πm be a set of linear orders over [n] realizing Kn. From

Corollary 2, we know that π1 contains a monotone subset A1 of length 22
m−1

. Consider the set A1 in π2,
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then it contains a monotone subset A2 of length 22
m−2

+ 1 (the indices of the elements of A2 are ordered
wrt the indices in A, therefore, A2 is monotone in π1). Continuing in this manner, we will eventually get

that πn contains an ordered monotone subset Am ⊆ Am−1 of length 22
m−m

+ 1 = 3. Let Am = (xi, xj , xk),
where i < j < k are the indices of the elements in A1. Then what we’ve shown is that xi, xj , xk form a
monotone subsequence in all the linear orders π1, . . . , πm. That is, either xi < xj < xk or xi > xj > xk in
all the linear orders, which implies that there is no linear order in which xi, xk are dominated by xj , which
is a contradiction since π1, . . . , πn realize Kn. J. Spencer showed that this bound is tight, namely

dim(Kn) = log log n+ o(log log log n).
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3 Ramsey Theory

In this section we study a generalization of pigeonhole principle. One way to state pigeonhole principle is
that given n objects and m < n colors, in any coloring of the n objects there will be two objects that have
the same color. Instead of coloring objects, what if we color pairs of objects, i.e., subsets of [n]2? What
will be the analogue of the pigeonhole principle? Let’s start with a standard puzzle: How many people do
we need in a room such that we are sure that either there is a triplet that are mutual friends, or mutual
strangers? We assume that friendship is mutual (or symmetric), but not transitive. If we had asked for a
pair of friends or strangers, then the answer is trivially two. As Figure 1 shows, even five is not sufficient.
However, we next show that six is sufficient. This is the first non-trivial illustration of Ramsey theory.

• •

•

• •

Figure 1: Five people do not necessarily have 3 friends or strangers; bold edges represent friendship and
dashes represent strangers.

Let A,B,C,D,E, F be the six people. Now A either is friends with three people or stranger to three
people; if neither of this is true, then A is friends with at most two people and stranger to at most two
people, which only accounts for four out of the remaining five, which can’t be. Suppose A is friends with
B,C,D (the argument is similar when A is stranger to them). There are two cases to consider:

1. if amongst B,C,D there are two friends, say B,C, then A,B,C are mutual friends;

2. B,C,D are mutual strangers, in which case we are done.

How many people do we need to ensure that there are four mutual friends or strangers? Perhaps it’s easier
to ask the following question: How many people do we need to ensure that there are either four mutual
friends or three mutual strangers? That is, we can ask mixed questions as well. It can be verified that ten
is sufficient, but this is not tight. The argument is similar to above. A either knows at least 6 or doesn’t
know at least 4 people (WHY?). If he knows 6, then within the six there are either three friends or three
strangers; in the former case, the three friends along with A give us four mutual friends, and in the latter
we have three strangers. If A doesn’t know four people, then there are two cases: if all the four know each
other then we are done, otherwise there is a pair that don’t know each other, and along with A we get three
people that are mutual strangers. The inductive approach in the first case will be useful later on.

In general, we can ask given some ` how many people do we need to ensure that there are ` mutual friends
or strangers. The existence of such a number is not even clear a priori. A special case of Ramsey’s theory
shows that such a number indeed exists for every `. Before we proceed we formalize the setting using graph
theoretic terms. What we have shown is that given a coloring of K6 using two colors there always exists a
monochromatic triangle, or K3. The question on ten people shows that any two-coloring of K10 contains
either a monochromatic K4 or K3.

Given (`1, . . . , `r) ∈ Nr, define the Ramsey function R(`1, . . . , `r) as the smallest number n such that
in all colorings of Kn using at most r colors there will always be a monochromatic K`i , for some color i.
This is usually represented as

n→ (`1, . . . , `r). (3)

If `1 = `2 = · · · = `r = `, then we succinctly write n → (`)r and the Ramsey function as R(`; r). Thus
the puzzles above show that 6 → (3), and 10 → (4, 3). The key result of Ramsey was to show that such a
function is well-defined. Before we proceed further, we show some properties of the function.
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P1. If `′i ≤ `i, i = 1, . . . , r, then n→ (`1, . . . , `r) implies n→ (`′1, . . . , `
′
r). Clearly, if there is a monochromatic

K`i , then all induced subgraphs of it of size `′i are monochromatic as well.

P2. If m ≥ n and n → (`1, . . . , `r) then m → (`1, . . . , `r). This is obvious, since any r-coloring of Km

contains an r-coloring of Kn, which contains a monochromatic K`i .

P3. For any permutation π : [r] → [r], n → (`1, . . . , `r) iff n → (`π(1), . . . , `π(r)). Intuitively, this statement
says that permuting the colors doesn’t matter. More precisely, there is a monochromatic K`i iff there
is a monochromatic K`π(j)

, where j :=π−1(i).

P4. n→ (`1, . . . , `r) iff n→ (`1, . . . , `r, 2). The necessary part follows, since if we use r colors then there is
a monochromatic K`i in Kn still holds when we increase the number of colors, since the additional color
may not be used in the coloring. For the sufficient part, if n→ (`1, . . . , `r, 2) then we know that in any
(r + 1)-coloring, where we only use the first r colors, we must have a monochromatic K`i , for some i,
therefore n→ (`1, . . . , `r). Note that the following is trivially true n→ (2)r, for n ≥ 2, and n→ (n, 2),
for any n; thus R(n, 2) = R(2, n) = n.

Ramsey’s theorem, in its most simplified form, states the following:

Theorem 3 (Ramsey Theorem Weak Form). The Ramsey function is well defined, i.e., given (`1, . . . , `r)
there exists an n satisfying (3).

We start with r = 2 and give two proofs: one an inductive argument, and another an explicit upper
bound on R(`; 2). We want to show that given (`1, `2), R(`1, `2) exists.

Proof 1. From P4 we know that R(`, 2) = R(2, `) = `. Inductively, assume that R(`1−1, `2) and R(`1, `2−1)
are well-defined. We claim that

n :=R(`1, `2 − 1) +R(`1 − 1, `2)→ (`1, `2).

Pick a vertex x ∈ [n], and consider the edges from x to the remaining n − 1 vertices. In any
two-coloring of Kn, say by red and green, one of the following must hold true: either the number
of red edges from x are greater than R(`1 − 1, `2), or the number of green edges are greater than
R(`1, `2 − 1); if either condition does not hold, then we have only accounted for < n− 1 neighbors
of x. In the first case, either there is a green K`2 or a red K`1−1, which along with x gives us a red
K`1 . In the second case, we similarly get either a red K`1 or a green K`2 containing x. Note that
the formula above explains (3, 3) + (4, 2) = 10 → (4, 3). In general for r colors we should choose
n := 2 +

∑r
i=1R(`1, . . . , `i − 1, . . . , `r)− 1.

Proof 2. The second proof derives shows that R(`, `) ≤ n := 22l−1 − 1. Pick an x1 ∈ S1 := [n]. Consider
a two-coloring χ of Kn; let the colors be R and G. Consider the edges from x to the remaining
n − 1 vertices. The set of n − 1 vertices that are connected to x are partitioned into two classes
depending on the color of the connecting edge; let S2 be the larger of these two sets; clearly
|S2| ≥ (|S1| − 1)/2 = 22l−2 − 1. Pick an x2 ∈ S2 arbitrarily, and again look at the edges from x2 to
the remaining elements in S2; let S3 be the larger set in the partitioning of S2 induced by the color
of edges emanating from x2; then |S3| ≥ 22l−3 − 1. Continue in this manner defining Si+1 from
Si always satisfying |Si+1| ≥ (|Si| − 1)/2. In this way we can construct S1, S2, , . . . , S2`−1, since in
general |Si| ≥ 22`−i − 1, and elements x1, . . . , x2`−1, where xi ∈ Si. Note that xi is connected to
xi+1, . . . , x2`−1, i = 1, . . . , 2`− 2, with the same color. Let the dominating color of xi be the color
connecting it to all the vertices in Si+1. Let TR be the set of those xi that have dominating color
R; similarly, define TG. One of TR or TG is of size ≥ `. We claim that this is the monochromatic
set K` that we are looking for. In general for r colors we should choose n := r(`−1)r+1 − 1.

The stronger form of Ramsey’s theorem applies to the k-uniform hypergraph on n vertices, i.e., hyper-
graphs where all edges are sets of size k, i.e., in

(
[n]
k

)
. Given (`1, . . . , `r), the Ramsey function Rk(`1, . . . , `r)

is defined as the smallest number n such that in any r-coloring of the k-uniform hypergraph on [n] there
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exists a subset T of vertices of size `i such that all edges in
(
T
k

)
are monochromatic in color i. This is usually

represented as
n→ (`1, . . . , `r)

k.

The weak form states that R2(`1, . . . , `r) is well-defined, but how about R1(`1, . . . , `r)? Now we are looking
at r-coloring of vertices. How large n should be to ensure than in any r-coloring of [n] some `i vertices have
the same color. We claim that n :=

∑r
i=1(`i − 1) + 1 suffices. This is the pigeonhole principle, and this is

the reason why Ramsey theory is considered a generalization of pigeonhole principle. The stronger form of
Ramsey’s theorem states that

Theorem 4 (Ramsey Theorem Strong Form). Given k, `1, . . . , `r the function Rk(`1, . . . , `r) is well-defined.

3.1 Applications

¶2. Monotone Subsequences: Given m,n, we claim that there exists a function f(m,n) such that
any sequence x0, . . . , xf(mn) of real numbers contains a either an increasing subsequence of length m+ 1 or
decreasing subsequence of length n + 1. We claim that N := f(m,n) :=R2(m + 1, n + 1) − 1 does the job.
The key question is how do we 2-color the edges of the complete graph on KN? Let’s say the edge between
xi and xj is colored R if xi < xj and B if xi > xj . We know that any 2-coloring of KN+1 contains either
a R Km+1 or a B Kn+1; in particular, this holds for the coloring we introduced; say we have an R Km+1.
What does it mean? Let the vertices be xi0 , . . . , xim , where i0 < · · · < im. Then a red edge between xij and
xij+1 , j = 0, . . . ,m, implies that xi0 < xi1 < · · · < xim as desired; a similar argument shows that a B Kn+1

implies a decreasing subsequence of length n+ 1. The above argument does not give us an explicit value of
the function, as was the case earlier.

¶3. Convex Polygons: 3 Given a k > 2, how many points n(k) do we need in the plane such that we are
sure they contain a convex polygon on k vertices, where points are in general position, i.e., no three points
are collinear? If k = 3 then it is clear that three points suffice, since the three points are not collinear, they
must form a triangle. How about k = 4? Do four points suffice? Claim n(4) = 5.

We start with a characterization of convex k polygons. Given k vertices of a convex polygon, it is clear
that any four must form a quadrilateral; for if a point is contained inside a triangle formed by the remaining
three, then that point cannot occur as a vertex of the k-gon. Is the converse also true, i.e., if k points in the
plane in general position are such that all sets of four points form a convex quadrilateral then the k points
form a k-gon? We show that if a set of k points in general position do not form a k-gon then there must be
a point that is contained in a triangle formed by some other three points. Consider a triangulation of the
convex hull of the k-points. Clearly, one of the k points must be inside some triangle in this triangulation;
moreover, it cannot be on the boundary of the triangle since points are in general position. How do we use
this result to show the existence of n(k)?

We claim that n(k) :=R4(k, 5) points in general position must contain a k convex gon. Consider the

following coloring of
(
[n]
4

)
, i.e., the set of sets of size four of [n]: if a T ∈

(
[n]
4

)
forms a convex quadrilateral

then color T red, otherwise color it blue. By definition of n(k) there is either a subset of size k such that

all sets in
(
[k]
4

)
are colored red, which by our earlier assumption implies that these k points form a convex

polygon; the other case is if all sets in
(
[5]
4

)
are colored blue, i.e., there are five points such that any subset

of four points do not form a convex quadrilateral, but this cannot be the case since n(4) = 5. Therefore,
R4(k, 5) points in general position in the plane must contain k points that form a convex k polygon.

¶4. Schur’s Result: Given r, there exists n(r) ∈ N such that for any r-coloring of 1, . . . , n, there exists
three monochromatic 1 ≤ x, y, z ≤ n such that

x+ y = z.

Claim is n :=R2(3; r)− 1. Given a coloring of 1, . . . , n, we color the edge between the vertices i, j in Kn+1

with the color of 1 ≤ |i−j| ≤ n. Thus we know that in this coloring of Kn+1 there must be a monochromatic

3The Happy Ending problem, since it led to the marriage of Esther Klein and George Szekeres.
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triangle K3, say between the vertices i, j, k. Suppose i < j < k, then x := j − i, y := k − j, and z := k − i.
Since the edges of the triangle have the same color, it follows that x, y, z have the same color and clearly,
x+ y = z.
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