
Planarity

1 Introduction

A notion of drawing a graph in the plane has led to some of the most deep results in graph theory. Vaguely
speaking by a drawing or embedding of a graph G in the plane we mean a topological realization of G in the
plane such that no two edges intersect except at their endpoints. A graph in the plane that has this property
is called a plane graphs and abstract graphs that can be embedded in the plane as a plane graph are called
planar graphs. The question whether G has a planar embedding is thus a topological one, and was one
of the first results that used basic tools from topology. Some of the fundamental results in this area are:
Euler’s invariant for plane graphs, Kuratowski’s result showing the fundamental nature of K5 and K3,3 in
non-planar graphs, Whitney’s duality characterization of planar graphs, and algorithms for efficiently testing
planarity. In these notes, we will study these results.

The study of planarity originated from puzzles, and one such puzzle is by Möbius: Suppose we are given
five cities and ten roads and we want to connect every pair of cities using the ten roads without using any
bridge or tunnel and such that no two roads intersect. Can we do this? In graph theoretic terms, does K5

have a planar embedding? Another puzzle involving planarity was included in a book of Amusements in
mathematics compiled by H.E. Dudeney and published in 1917: given a water, gas and electricity station,
and three houses, is there a way to lay pipes from each station to all the three houses such that no pipe
crosses another. Again, in graph theoretic terms the puzzle is asking whether K3,3 is a planar graph or not.
The answer to both these problems is no, and these two graphs play a fundamental nature in some of the
first characterizations of planarity.1

We start with basic topological results required for formalizing the notion of planar embedding, the most
fundamental result being Jordan’s curve theorem. Then we study the structural properties of plane graphs,
followed by characterizations of planarity and duality results, and ending with algorithms for planarity
testing.

2 Topological Results

¶1. Basic Definitions:

i A Jordan arc or simply an arc is a continuous injective map of the unit interval [0, 1] into R2.

ii A Jordan curve or simply curve is a continuous injective map of the unit circle into R2.

iii A region in R2 is a set such that any pair of points is connected by an arc contained in the set.

iv The frontier of a set X ∈ R2 is the set of points y such that every neighbourhood of y intersects both
X and R2 \X.

It is easy to see that a graph without cycles is planar since it is a tree. So the interesting graphs from
the viewpoint of planarity are those that have cycles. Embedding these cycles in the plane naturally leads
us to the following fundamental result from topology.

1We can further ask if it is possible to embed these two graphs on a sphere in R3? It turns out that this is also not possible.
But both graphs can be embedded on a torus. However, for K3,3 we can even embed it on the Möbius strip, a non-orientable
surface unlike the torus. The embedding of graphs on surfaces is a very rich topic and underlies the fundamental results of
Robertson-Seymour. In general, any graph can be embedded in R3. The number of “loops” or “handles” in a surface in R3 that
embeds a graph is the genus of the graph. Surfaces can be characterized by the graphs embeddable on them. Euler’s formula
then gives an invariant for the surface. Two orientable closed surfaces can thus be distinguished based upon this invariant.
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Theorem 1 (Jordan’s Curve Theorem). For every curve C ∈ R2, the set R2 \C has exactly two regions, of
which exactly one is unbounded. Each region has the entire curve as its frontier.

A computational formulation of the above theorem is as follows: Given a Jordan curve C and three points
in R2 \ C, two of them can be connected by a path not intersecting C.

As an immediate application of Jordan’s theorem we have:

Theorem 2. K5 and K3,3 are not planar.

Proof. Let’s show the proof for K5. We know that K5 contains a triangle. Consider an embedding of this
triangle on the plane. There are two cases to consider depending upon whether the fourth vertex v is either
inside or outside the triangle.

1. Suppose v is inside 4. Connecting it to each of the vertices of 4 partitions 4 into three faces. If the
fifth vertex w is outside 4, then clearly any v−w arc has to cross 4. If, however, w is one of the faces
in the partition of 4 formed by the arcs connecting v to the vertices of 4, then the arc from w to the
vertex of 4 not contained in the face containing w crosses the edges of the face.

2. The case when v is outside the 4 is similar to the argument above.

Q.E.D.

3 Plane Graphs

Now that we have the tools, a plane graph G is a pair (V,E) of finite sets such that

i the vertex set V ⊆ R2,

ii every edge is an arc between two vertices,

iii there are no multiedges, and

iv the interior of an edge contains no vertex and no point from any other edge.

Strictly speaking, such a graph is a simple plane graph as we have disallowed multiedges. The faces of G
are the regions in the set R2 \ G. Since G is bounded ( i.e., is contained inside a sufficiently large disc D)
exactly one of its faces is unbounded. We call this face the outer face and the remaining faces as the inner
faces. The set of faces of G is denoted by F (G). If H ⊆ G is a subgraph of G then for every face f ∈ F (G)
there is a face f ′ ∈ F (H) s.t. f ⊆ f ′. The frontier of a face f will be denoted by ∂f .

The following claims are intuitively clear:

Lemma 3. Let e be an edge in a plane graph G.

1. The frontier ∂f of a face f of G either e ∈ ∂f or the interior of e does not intersect ∂f .

2. If e lies on a cycle C ⊆ G then e lies on the frontier of exactly two faces of G and these are contained
in the two distinct faces of C.

3. If e is a bridge then e lies on the frontier of exactly the outer face of G.

As a consequence it follows that the frontier of a face f of G is a subgraph of G, and is called the
boundary b[f ] of f ; thus b[f ] ⊆ G is said to bound f . The degree of a face d(f) is the number of edges in
∂f , where every bridge is counted twice.

Lemma 4. A tree has exactly one face.

Proof. Since every edge in a tree is a bridge, deleting it does not change the number of faces. Q.E.D.

Lemma 5. If a plane graph has two distinct faces with the same boundary then the graph is a cycle.
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Proof. Let f1, f2 be the two distinct faces and H ⊆ G be their boundary. Since f1, f2 are faces of H, we
know that H must have a cycle C. Moreover, from Lemma 3(2) it follows that the two faces must belong
to the two distinct faces of C . Also, H = C, because any further edge or vertex in H \C must be in one of
the two faces of C and hence cannot belong to both f1, f2. Thus f1 and f2 are the distinct faces of C, i.e.,
f1 ∪ f2 ∪ C = R2 , and hence G = C. Q.E.D.

Another way to interpret the result above is that two distinct internal faces cannot have the same
boundary; if two faces have the same boundary then they are resp. the internal and external faces of a cycle.

A plane graph is called maximally plane, or just maximal, if we cannot add a new edge, while main-
taining the vertex set, to form a plane graph. Examples are the triangle graph, tetrahedral graph, octahedral
graph and so on. Observe that in all these graphs the faces are bounded by triangles. Is this is a way to
characterize maximally plane graphs? It turns out yes. We call G a plane triangulation if every face of G
(including the outer face) is bounded by a triangle. The following proposition gives shows the equivalence
of the two concepts.

Proposition 6. A plane graph with at least three vertices is maximally plane iff it is a plane triangulation.

Proof. The easier direction is to verify that every plane triangulation is maximal. If not, then the extra
edge starts from a vertex on the boundary ∂f of a face f and ends on ∂f . But as the faces are all triangular
the starting and ending vertices are already adjacent, and what we’ve constructed is a multiedge; however,
our definition of plane graphs is simple, so we’ve a contradiction.

The converse intuitively follows from the observation that if any face of a maximal plane graph is not a
triangle, but a polygon with more than three vertices then we can triangulate the interior and the exterior.
Let’s be more precise. Suppose f is a non-triangular face of G and H ⊆ G is its boundary; thus |H| ≥ 4.

We first show that H contains a cycle C. If H is a tree, then f must be the outer face of G; but this
would imply G is a tree, which cannot be since it is a maximal plane graph. Since C ⊆ H, f is either in the
interior or exterior of C; basically, H is a cycle C with possibly smaller cycles or trees hanging from vertices
in C. Suppose v1, . . . , v4 are four vertices on C, as shown in Figure 1. Since G is maximal the edges (v1, v3)
and (v2, v4) are in the outer face wrt C; but this means that the edges intersect in their interiors, which
cannot be. Therefore, f must be bounded by a triangle. Q.E.D.

v2

v1 f v3

v4

Figure 1: A face with more than four vertices in a maximal plane graph

Theorem 7 (Euler’s Formula). Let G be a connected plane graph with n vertices, m edges and ` faces. Then

n−m+ ` = 2.

Euler’s original result was for convex polyhedron: he mapped such a polyhedron to the plane by removing
a face of the polyhedron and stretching the remaining polyhedron onto the plane in a bijective manner; the
embedding gives a plane graph that is in bijection with the original polyhedron; the outer face of the plane
graph is in bijection with the removed face. Hence the formula for planar graphs above translates immediately
to a formula for vertices, edges and faces of a convex polyhedron.
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There are various proofs for this formula (Eppstein has collected nineteen such proofs). The most basic
proofs are by induction on vertices, edges and faces. We give one such proof by induction on edges.

Proof. Base case: If there are no edges then we have a single vertex, and one face and hence the theorem
holds.

Otherwise, we pick an edge and contract it. The resulting graph has n − 1 vertices, m − 1 edges, but
still has ` faces. By the induction hypothesis (n− 1)− (m− 1) + ` = 2, and so we’ve the desired result. If
the edge is part of a triangle, the contracting it will yield multiedges, which we avoid; in this situation, it is
better to delete the edge, which reduces edges by one and number of faces by one. Q.E.D.

As a consequence of Euler’s formula, a plane graph cannot have many edges.

Corollary 8. 1. A plane graph with n > 3 vertices has at most 3n− 6 edges, equality being obtained for
planar triangulations.

2. A planar graph with n > 3 vertices has a vertex with degree ≤ 5.

Proof.

1. Since planar triangulations are maximally planar, we only show the second part. Any face in a tri-
angulation is bounded by exactly three edges. We also know that every edge lies on the boundary of
exactly two faces. Thus by a counting argument it follows that 2m = 3`. Substituting this in Euler’s
formula we obtain ` ≤ 3(n− 2).

2. Suppose all vertices have degree ≥ 6. Then the number of edges is
∑

v∈V dv/2 ≥ 3|V |. However, from
the first part we know that |E| < 3|V |.

Q.E.D.

It is clear that that K5 and K3,3 cannot occur as a subgraph of a plane graph. However, the inductive
proof Theorem 7 suggests more. A subdivision of a graph G is a graph G′ obtained by adding vertices on
the edges of G, i.e., • • is replaced with • • • . Another way to state subdivision is that an
edge vw in G is replaced by an independent path between v and w with a new set of vertices. The converse
operation of subdividing an edge is smoothing an edge: pick a vertex with degree two, remove the vertex
and connect its neighbours to each other. The crucial observation is that subdivision maintains planarity and
non-planarity, whereas smoothing maintains planarity (non-planarity?). The proof suggests that a planar
graph cannot contain subdivisions of K5 and K3,3. What is surprising is that the converse also holds: every
non-planar graph contains a subdivisions of K5 or K3,3. This is Kuratowski’s result, which we study next.
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4 Characterizations of Planarity

In this section we give various ways to characterize planar graphs. We start with some basic definitions. A
combinatorial minor, or just minor, of a graph G is a graph X that can be obtained from G by deleting
certain vertices and edges, and performing edge contractions (where while contracting we delete any self
loops and multiedges). We usually represent this as X � G. Clearly, the relation � is transitive and forms
a partial ordering on graphs.2

A topological minor of a graph G is a graph obtained from G after deleting some vertices and edges,
and performing some smoothing operations. The following proposition gives the relation between a minor
and a topological minor:

Proposition 9. A topological minor is always a combinatorial minor. Conversely, a combinatorial minor
with degree at most three is a topological minor.

Proof. The first claim is straightforward: clearly, smoothing is a special case of contracting an edge.
The second claim: Q.E.D.

4.1 Kuratowski’s Result

Assume that the graph is connected throughout.

Theorem 10 (Kuratowski 1930). A graph G is planar iff it does not contain a subdivision of K5 or K3,3.

Remark: Since both K5 and K3,3 have degree at most three, the notion of minor and topological minor
is the same, and we could have equally stated: A graph G is planar iff K5 and K3,3 are not its minor. This
formulation is by Wagner (1937). We have already shown the necessary condition. Here we will show that
it is also sufficient.

Let G be a non-planar graph. We know that it must contain a cycle C. Consider the components in
G \ C. We call these components bridges3. See Figure 2 for examples. The study of bridges is crucial
because it is how they interact with each other that determines the non-planarity of G.

¶2. Bridges:

1. A bridge B intersects C at certain vertices called the vertices of attachment. The set of these
vertices will be denoted by A(B), and B is called a type-|A(B)| bridge; so B1 in Figure 2 is a type-3
bridge. Every bridge has at least one vertex of attachment, in a connected graph; in a 2-connected
graph, there are at least two vertices of attachment. We will only be interested in the vertices of
attachment of B, and so we can collapse the edges and vertices in V (B) \A(B), i.e., the non-attached
vertices, into a single vertex and connect it to all the vertices in A(B). Thus a bridge can be viewed
either as a star-shaped graph, or a chord of C; this especially applies in plane graphs, where collapsing
edges does not affect planarity; for instance, in Figure 2, the bridges B1, B3, B6 are in the simplified
form, and the bridge B11 could be simplified to a single vertex connected to C with three edges.

2. Two bridges with same vertices of attachment are called equivalent; e.g., B1 and B2 in Figure 2. How
can equivalent bridges connect with C? If B1, B2 are equivalent and have one vertex of attachment
then they can be in the same face of C; this is valid even when B1, B2 have two vertices of attachment
(e.g., B9, B10 in Figure 2); however, if they share three or more vertices then they cannot be in the
same face without their edges intersecting. Also, since our graph is simple, two chords cannot be
equivalent to each other.

2One fundamental breakthrough result in the study of minors was by Robertson-Seymour showing that the ordering is a
well-quasi-ordering, i.e., in any infinite sequence of graphs there are always two graphs such that one is a minor of the other.
Thus the set of non-planar graphs under the ordering � have a finite set. This set characterizes planar graph, and is precisely
{K5,K3,3}.

3An unfortunate clash with notation from connectivity
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B1

B2

B3

B4

B5

B6

B7B8

B9

B10

B11

C

Figure 2: Bridges in a graph

3. We observe that the vertices of attachment of a bridge partition C into disjoint segments; strictly
speaking we should mention whether a segment is closed, open, or half-open, however, in the statements
below it should be understood that there is a way to choose the segments as a combination of these
three types and satisfy the claim of the statement. Two bridges avoid one another if the attachment
vertices of one is contained in exactly one segment of the other; otherwise, they overlap; note that the
definition is independent of the which face of C the bridges are. For instance, B9 and B10 avoid one
another in Figure 2, where the segment considered could either be the closed and the smaller one, or
the closed and the longer one; B11 avoids all the bridges; both the pairs (B7, B8) and (B5, B6) overlap,
though the first pair doesn’t intersect.

4. Two bridges B1, B2 are skew if there are four vertices u, v, u′, v′ of C such that u, v ∈ A(B1),
u′, v′ ∈ A(B2), and they appear in the cyclic order u, u′, v, v′ in C. For example, the following pairs
are skew in Figure 2: (B3, B4), (B5, B6), and (B7, B8).

The following lemma is immediate:

Lemma 11. Two bridges overlap iff they are either skew or they are equivalent 3-bridges.

Proof. The sufficient condition is clear, so we only show the necessary part. If B and B′ overlap they
must have at least two vertices of attachment. If both are type-2 bridges then they must be skew (as in B3,
B4 in Figure 2). So assume that both B and B′ have at least three vertices of attachment. Two cases to
consider:

1. B and B′ are not equivalent. Since they overlap there must be two distinct vertices of B in two distinct
segments of B′, and hence they are skew.

2. They are equivalent type-k bridges , k ≥ 3. If k ≥ 4 then they are skew, otherwise they are equivalent.

6



Q.E.D.

Now let’s look at bridges in plane graphs. The bridges in a plane graph are contained in exactly one face
of C. If they are in the interior we call them inner brides; otherwise we call them outer bridges.

Lemma 12. Inner (resp. outer) bridges of a plane graph G avoid one another.

Proof. If two inner bridges overlap, then they are either skew or equivalent type-3 bridges. Since bridges
are connected components and are edge independent, it follows that in either case the two bridges must
intersect. Q.E.D.

An inner bridge B w.r.t. C is said to be transferable if there exists a planar embedding G̃ of G that is
identical to G in every respect except B is an outer bridge of C in G̃; so B11 in Figure 2 is transferable, as
shown in Figure 3.

B1

B2

B3

B4

B5

B6

B7B8

B9

B10

C

B11

Figure 3: Transferring an inner bridge to an outer bridge. Note the reflection of B11 across C.

Lemma 13. An inner bridge that avoids every outer bridge is transferable.
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The proof is straightforward: we can move the non-attached vertices of the bridge to the exterior face
of C, and since the bridge avoids all outer bridges, we can connect them to the attached vertices without
overlapping any outer bridge. Note that, as show in Figure 3, it is important to reflect the bridge across C
when transferring it outside, to be able to connect without intersecting

¶3. Proof of Kuratowski’s result: Given a non-planar graph G we will show that it contains a subdi-
vision of either K5 or K3,3. The proof is by a contradiction and is an extremal proof, i.e., we can assume
that G is edge-minimal graph such that deleting any further edge makes it planar.

Step 1: From G we construct a graph G′ by deleting edges while maintaining non-planarity. Clearly,
if G′ contains a subdivision of K5 or K3,3 then so does G. So from now on we focus on G′. How does a
edge-minimal non-planar graph G′ look like? The following step shows that it must be a simple block.

Step 2: A graph H is planar iff all its blocks are planar. This follows from the fact that if we construct
a graph H ′ from H where the vertices in H ′ correspond to maximal blocks of H, and two vertices in H ′ are
adjacent iff the corresponding maximum blocks in H are connected by exactly one edge. Since the resulting
graph H ′ is a tree, it is planar. So if all the blocks of H are planar then H is planar. This implies that if
a graph is non-planar then their is a block in the graph that witnesses this non-planarity. Hence a minimal
nonplanar graph is a simple block, i.e., G′ in step one is a simple block.

Step 3: If a non-planar simple block G′ contains subdivision of K5 or K3,3 then we are done. However,
if a non-planar simple block G′ does not contain a subdivision of K5 or K3,3, then we claim it is a simple
3-connected graph. Suppose G′ is not 3-connected; let {u, v} be a 2-vertex cut for G′ (since it is 2-connected
there must be two such vertices). Thus there are at least two components in G′−{u, v}, and the components
are all edge-disjoint. From these components we can form two subgraphs G1, G2 ⊆ G such that their common
vertices are only u, v, and the edge uv, if present in G′, is in one of them, say G1. Then it is clear that
G1 ∪ G2 = G′. In G1 and G2 join u, v by a new edge e to get graphs H1 and H2 resp. Then one of H1 or
H2 has to be non-planar, otherwise H1 ∪H2 − e is a planar embedding for G′; say H1 is non-planar. Since
u, v are connected by at least two edges to G2 in G′, H1 has at least one fewer edge than G′; moreover, as it
is non-planar, by the edge-minimality of G′ it follows that H1 must contain a subdivision K of K5 or K3,3.
By assumption, K cannot be a subgraph of G′, so e ∈ K. However, we know that in H2 there is a path P
connecting u and v. So if we replace e in K by P then we get a subgraph of G′ that is a subdivision of either
K5 or K3,3, which is a contradiction. Hence G′ is 3-connected.

Step 4: We now claim that a non-planar 3-connected graph G′ must contain a subdivision of K5 or
K3,3. The proof is by contradiction. Suppose G′ does not contain a subdivision of K5 or K3,3. Since G′ is
edge-minimal, we can delete an edge uv from G′ to get a planar subgraph H. Since G′ is 3-connected, H is
at least 2-connected, and hence u, v are contained in a cycle C in H. Let C be a cycle of H that contains
u, v and whose interior contains the largest number of edges. We will now consider the bridges of H w.r.t.
C. The edge uv is a type-2 bridge w.r.t. C, and in the following steps we will use it in that sense as well.

Step 5: SinceH is simple and 2-connected, each bridge of C must have at least two vertices of attachment.
Moreover, we claim that all outer bridges of C must be type-2 bridges that are skew with uv, since otherwise
if a type-k bridge, k ≥ 2, avoided [u, v] then we can form a cycle C ′ containing u, v and having more edges
in its interior compared to C, which is a contradiction; Figure 4 illustrates these two situations, where the
larger circle containing C is drawn with a fat-line. Thus every outer bridge is a type-2 bridge. Moreover, it
is a chord, since if it contained a vertex besides the two vertices of attachment then G′ will have a 2-vertex
cut, but G′ is 3-connected.

.
Step 6: Since H is planar, no two inner bridges of H overlap. Now some inner bridge B must be skew

with [uv] and must overlap some outer bridge; otherwise, by Lemma 13 we know that we can transfer all the
inner bridges to outer bridges and then draw the edge uv in H to get a planar embedding of G′, which is a
contradiction. Therefore, there exists a bridge B that is both skew to uv and to some outer bridge xy; note
that all outer bridges are type-2 bridges, so overlap is tantamount to being skew. We now have two cases to
consider depending upon whether B has a vertex of attachment different from u, v, x, and y. In all cases,
we will show that either K3,3 or K5 has a subdivision inside G, which will be a contradiction.

Step 7: Suppose B has a vertex of attachment different from u, v, x, and y. Let’s assume that one of
its vertices of attachment v1 is in the segment (xu). There must be another vertex of attachment v2 either
in the segment (yv) or in (uy). All the remaining cases, are symmetric to these two sub-cases.
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u

v

C

Figure 4: All outer bridges in H are chords

1. If v2 ∈ (yv), then it is clear that the subgraph C ∪ {v1v2} ∪ {uv} ∪ {xy} is a subdivision of K3,3 in G,
which is a contradiction. See Figure 5(a).

2. If v2 6∈ (yv) but in (uy] then for B to be skew with xy it must have a third vertex of attachment in
v3 ∈ [vx). Let vB be the star-vertex of B. In this case the subgraph

C ∪ {vBv1} ∪ {vBv2} ∪ {vBv3} ∪ {uv} ∪ {xy} ∪ {v − v3 − v1 − v2 − y}

is a subdivision of K3,3 contained in G (smoothen out y and v), which is a contradiction. Figure 5(b)
shows the subgraph containing that is a subdivision of K3,3 in bold.

Strictly speaking, we should not work with the star-graph for B. However, it is easy to see that in the first
subcase there is a path P between v1 and v2 in B that is disjoint from C and so we should replace the edge
v1v2 by P ; the subdivision property still holds. In the second subcase, we can construct three mutually
edge-disjoint paths in B from a vertex vB to v1, v2, v3, and replace the three edges in the subgraph with
these three paths; again the subdivision property holds.

Step 8: If u, v, x, and y are all vertices of attachment for B. In this case, than looking at just the
star-graph of B is slightly misleading. But it is easy to show that there is a u − v path P ∈ B and x − y
path Q in B, such that |V (P ) ∩ V (Q)| ≥ 1. We consider two cases, depending on whether P and Q share
exactly one vertex or not.

1. If |V (P ) ∩ V (Q)| = 1, and let this vertex be vB , then the subgraph

C ∪ {vBPv} ∪ {vBPu} ∪ {vBQx} ∪ {vBQy} ∪ {uv} ∪ {xy}

is a subdivision of K5 contained in G, which is a contradiction. If we had considered B as a star-graph
then we would have only considered this case. See Figure 5(c).

2. If |V (P ) ∩ V (Q)| > 1 then let u′, v′ be the first and last vertices of P on Q when going from u to v.
Then the subgraph

C ∪ {uPu′} ∪ {v′Pv} ∪Q ∪ {uv} ∪ {xy}
is a subdivision of K3,3, which is a contradiction; this subgraph has been illustrated in Figure 5(d) in
bold.

4.2 Mac Lane’s Cycle Space Basis

The characterization is an algebraic one, i.e., we associate a certain vector space with the graph G and the
graph is planar iff a subspace of the vector space has a nice basis. To formulate this more precisely, we need
to view our graph in terms of tools from linear algebra, so we first develop these notions.
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Figure 5: The four subcases showing the subdivision of either K5 or K3,3 in G′

4.2.1 Graphs and Vector Spaces

Given a finite set S, its power set 2S can be viewed as a vector space V(S) over the field F2: with each subset
A ⊆ S the vector associated vA is the indicator vector/function corresponding to A (i.e., the vector that
has zero for all elements in S \ A and one otherwise). For two subsets A,B ⊆ S, vA ⊕ vB := vA⊕B , where
A ⊕ B is the symmetric difference of A and B; another way to think of vA ⊕ vB is that it is the standard
vector addition, except that the coordinate-wise sum is done in F2. With this notation, it follows that for all
A ⊆ S, the inverse of vA is vA itself, and v∅ is the all zeros vector. For convenience, however, we will often
use A instead of vA. The dimension of a subspace of V(S) is the size of its basis. The vectors corresponding
to the elements of S form a standard basis for V(S), and dim(V(S)) = |S| = n. Two vectors A, B are
linearly independent iff vA ⊕ vB 6= 0, i.e., at least one of them contains an element not present in the
other.

Given two vectors A,B ∈ V(S), let vA := (λ1, . . . , λn) and vB := (λ′1, . . . , λ
′
n) be their representation in

the standard basis. Then we can define the inner-product operator

〈A,B〉 :=λ1λ
′
1 + λ2λ

′
2 + · · ·+ λnλ

′
n (1)

where the addition is done in F2. Thus V(S) is an inner-product space, i.e., it satisfies, symmetry, linearity,
and positive semi-definiteness; note that 〈A,A〉 can be zero even though A 6= 0, e.g., for A = (1, 1, 0).
Another way to characterize orthogonality is the following equivalence:

〈A,B〉 = 0 ⇐⇒ |A ∩B| is an even number. (2)
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Given a subspace X ⊆ V(S), define the orthogonal space

X⊥ := {Y ∈ V(S)|〈F, Y 〉 = 0 for all F ∈ X}.

By the linearity of the inner-product, it follows that X⊥ is itself a subspace. Moreover,

dim(X ) + dim(X⊥) = |S|.

Given a graph G, let E(G) :=V(E(G)) be the edge space associated with G; the dimension of this space
is the number of edges m. The subspace of E(G) spanned by all the cycles in G is called cycle space, C(G),
of G. Of special interest are induced cycles, i.e., those cycles in C(G) that are induced subgraphs of G, or
in other words, they do not contain a chord. Induced cycles are interesting because of the following property.

Lemma 14. The induced cycles in a graph G form a basis for C(G).

Proof. By induction on |C|. We show that every cycle C with a chord e is generated by induced cycles.
Consider the two cycles in C + e. Since each of them has cardinality smaller than |C| we can apply the
induction hypothesis to them, and their symmetric difference gives us C.

For cycles C without a chord, but containing a path between two vertices of the cycle, we can replace
the path with a chord and argue as above. Q.E.D.

Lemma 15. An edge set X ⊆ E is in C(G) iff every vertex of the graph (V,X) has even degree.

Proof. By induction on the number of cycles generating X in C(G). If X ∈ C(G), then either it is a cycle
C (in which case the implication is clear) or it is of the form C1 ⊕ C2, for two cycles C1, C2. If C1 ∩ C2 = ∅
then the result again follows, so assume |C1 ∩ C2| ≥ 1. Note that one cycle cannot be a subset of the other
(WHY?). So let e ∈ C1 \ C2. Pick a direction from e and traverse around C1. In this traversal let v be the
first and v′ be the last vertex common to both cycles. Let P1, . . . , Pk ∈ E(G) be the connected components
in C1 ∩ C2 ordered in the direction of the traversal. Then in C1 ⊕ C2 the path between v and v′ contains
cycles connecting v1 to the first vertex of P1 using edge-disjoint paths from C1 and C2; the last vertex of
P1 to the first vertex of P1 again using edge-disjoint paths from C1 and C2; and so on, the last vertex of Pk

with v′ using edge-disjoint paths from C1 and C2. Finally there is the cycle formed by the two edge-disjoint
paths between v and v′ along C1 and C2. From this cycle decomposition of C1 ⊕ C2 it follows that all the
vertices in X have even degree.

Conversely, by induction on the size of X. Construct a path P as follows: start from a vertex v ∈ V and
pick one of its neighbors v′ connected by X; from v′ do the same; continue doing this until we reach the
first vertex w that has already been visited. This implies that there must be a subpath C of P that forms a
cycle; moreover, every vertex on C must have two distinct edges of X incident on it. Delete this edges from
X to get X ′ ⊂ X; the degree of the vertices remains even. By induction, the edges in X ′ are in C(G). Since
the edges in C are disjoint from those in X ′, it follows that X is also in C(G). Q.E.D.

If V1, V2 is a partition of V then the set of all edges E(V1, V2) crossing this partition is called a cut; for
a single vertex v, the set of edges incident on it E(v) is the cut. From the definition it is clear that the cut
is the minimal set of such edges.

Proposition 16. The cuts in G, together with ∅, for a subspace C∗(G) of E(G). Moreover, the sets E(v)
form a simple basis for C∗.

Proof. Let D,D′ be two cuts. We have to show that D ⊕D′ ∈ C∗. Since D ⊕D′ is the union of disjoint
sets, we can assume that D and D′ are disjoint. Let V1, V2 and V ′1 , V ′2 be the corresponding partitions of
V . Then D ⊕D′ contains all the edges which cross one of these partitions but not the other; see Figure 6.
But these are precisely the edges between (V1 ∩ V ′1)∪ (V2 ∩ V ′2) and (V1 ∩ V ′2)∪ (V2 ∩ V ′1), two sets that form
a partition of V . Thus D ⊕D′ ∈ C∗.

To show the second part, we observe that E(V1, V2) = �v∈V1
E(v), where � denotes symmetric difference

of a sequence of sets; note all edges except those between V1 and V2 are counted twice. The simplicity
follows from the fact that an edge vw is shared only by the sets corresponding to its endpoints E(v), E(w).

Q.E.D.

The subspace C∗(G) is called the cut space of the graph.
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Figure 6: Partition corresponding to D ⊕D′

Lemma 17. The cycle space and cut space of a graph are mutually orthogonal spaces.

Proof. We claim that every cycle C is orthogonal to C∗. For any partition V1, V2 of V either C∩E(V1, V2) =
∅ or it contains an even number of edges since C is a cycle. Thus from (2) it follows that C is orthogonal
to all partitions, thus C ⊆ (C∗)⊥. To show equality we show that if X ⊆ E(G) is not in C then X 6∈ (C∗)⊥.
Since X 6∈ C, there exists a vertex v with odd degree in (V,X). Thus 〈E(v), X〉 = 1. But E(v) ∈ C∗, thus
X is not orthogonal to C∗. Q.E.D.

From the lemma above it follows that dim(C) + dim(C∗) = m = |E(G)|. The following theorem gives an
explicit formula for the dimensions of the two subspaces.

Theorem 18. Let G be a connected graph with n vertices and m edges. Then

dim C = m− n+ 1 and dim C∗ = n− 1.

Proof. We will show that there is a basis for both the subspaces of the corresponding sizes. Since the two
dimensions add up to m, neither subspace could have a larger dimension than what is given in the theorem.

Let T be a spanning tree for G. We know that it has n−1 edges. Adding any of the remaining m−n+ 1
edges e ∈ E \ E(T ) to T forms a cycle Ce. Moreover, Ce does not contain any edge e′ ∈ E \ E(T ) ∪ {e}.
Thus two such cycles are linearly independent; such cycles are called fundamental cycles w.r.t. T . Thus
C has dimension at least m− n+ 1.

Each of the n − 1 edges e ∈ E(T ) gives rise to a partition (V1, V2) of V in T − e, and the set of edges
De between V1 and V2 is a cut. Since all e′ ∈ E(T ) \ {e} are not contained in De, these cuts are linearly
independent and hence dim C∗ is at least n − 1. The cuts De are called the fundamental cuts w.r.t. T .

Q.E.D.

So far all our statements above apply to planar and non-planar graphs. In order to say something special
about planar graphs, we need the following definition: A subset X ⊆ E(G) is called simple if every edge in
G belongs to at most two sets in X ; the empty set is always considered simple. For instance, the cut space
C∗(G) has a simple basis. What about the cycle space? We now state and prove another characterization of
planar graphs.

Theorem 19 (Mac Lane 1937). A graph is planar iff its cycle space has a simple basis.

Proof. We consider two cases: G is 2-connected or not, i.e., κ(G) ≤ 1 or κ(G) > 1. In both cases, the
proof is by induction on |G|.

Case 1: If κ(G) ≤ 1, let v be a vertex cut of G. Then G can be expressed as union of two subgraphs
G1, G2 where G1 ∩G2 = {v}. By induction hypothesis both C(G1) and C(G2) have a simple basis, and since
C(G) is their union, it also has a simple basis. For the converse, from the induction hypothesis it follows
that since both C(G1) and C(G2) have a simple basis G1 and G2 are planar, and hence G is planar.
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Case 2: If κ(G) > 1, then G is 2-connected. If G is planar, then we claim that the boundaries of the faces
of G form a basis for C(G). That the boundaries of the faces are cycles, follows from the ear-decomposition
theorem for two connected graphs and induction: G = H ∪ P , where P is an H-path and H is 2-connected;
by induction, all faces in H have are bounded by cycles; any f ∈ F (G) is either a face in F (H), in which
case we are done, or is contained in f ′, the outermost face of H; if C is the cycle bounding f ′ then C ∪ P
forms two cycles and f is one of the two new faces in C ∪ P . We will now show that the boundaries of the
faces form a basis for C(G); the basis is simple, because by Lemma 3(b) we know that every edge in a face is
shared by exactly one another face. Let C ∈ C(G). The proof is by induction on |C|. If C is a face-boundary
then we are done. So let e be a chord of C. Then C = C1 ⊕ C2, where |C1|, |C2| < |C|, and by induction
hypothesis they are symmetric difference of the face boundaries, and so is C.

To show the sufficiency, we first show that if cycle space of G has a simple basis, then every subgraph of
G has a cycle space with a simple basis; then we show that the cycle space of any subdivision of K5 or K3,3

is not simple; thus G cannot contain a subdivision of K5 or K3,3 as a subgraph, and, therefore, is planar by
Kuratowski’s theorem.

Let C1, . . . , Ck be a simple basis for C(G). Then for every edge e, C(G − e) is simple as well: if e is a
bridge then deleting it does not affect C(G); if e ∈ Ci, say i = 1, then the basis is C2, . . . , Ck; otherwise, if e
is common to two basis elements, say C1 and C2, then the basis is C1 ⊕C2, C3, . . . , Ck. Since any subgraph
of G can be obtained from G by deleting edges, and isolated vertices, it follows that the cycle space of any
subgraph G has a simple basis. We now show that the cycle space of K5 and K3,3 is not simple.

Consider K5 first. We know from Theorem 18 that dim C(K5) = 6. Let C1, . . . , C6 be a simple basis, and
define C0 :=C1 ⊕ · · · ⊕ C6; from the simplicity of the basis it follows that every edge of C0 is in exactly one
set Ci. Since C1, . . . , C6 are linearly independent, none of the sets C0, . . . , C6 are empty, and hence contain
at least three edges. Thus

|C1|+ |C2|+ · · ·+ |C6| ≥ 6 · 3.
The sum |C1| + |C2| + · · · + |C6| counts all the edges in the interior of C0 twice and the edges in C0 once,
thus

|C1|+ |C2|+ · · ·+ |C6| ≤ 2|E(K5)| − |C0| ≤ 20− 3 = 17

which gives us a contradiction.
Now consider K3,3. Again, from Theorem 18, we know that dim C(K3,3) = 4; let C1, . . . , C4 be a simple

basis for its cycle space, and let C0 :=C1⊕ · · ·⊕C4. Since the smallest cycle in K3,3 has four edges, we have
from the same argument as above, that

4 · 4 ≤ |C1|+ · · ·+ |C4| ≤ 2|E(K3,3)| − |C0| = 14

a contradiction.
Why can’t a subdivision of K5 or K3,3 have a simple basis for their cycle space? The dimension of the

cycle space remains invariant under subdivision, since subdividing an edge increases the number of edges
and vertices by exactly one.

Since subdivision does not change the simplicity of a basis, it follows that any sub Q.E.D.

4.3 Whitney’s Abstract Duality

For a plane graph G, its plane dual G∗ is obtained as follows: each vertex v∗(f) corresponds to a face
f ∈ F (G); two vertices v∗(f1) and v∗(f2) form an edge e∗ iff f1 and f2 share an edge e in G; if an edge e
is shared by one face f , then v∗(f) has a self-loop denoted by the edge e∗. Thus with every edge e in G,
we have associated an edge e∗ in G∗. Note that G∗ is a multigraph; every bridge contributes a self-loop,
and every cycle contributes parallel edges. Also, G∗ is always connected, because any two faces in disjoint
components of G are connected to the outermost face, which implies in G∗ there is a path from the vertex
corresponding to the outermost face to the vertex corresponding to any other face.

The cut space of G∗ and the cycle space of G (with multiedges) has an interesting relation.

Proposition 20. A subset of edges X ⊆ E(G) forms a cycle in G iff X∗ := {e∗|e ∈ X} forms a minimal
cut in G∗.
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Proof. Let X ⊆ E(G) and X∗ be its image in G∗. Two vertices v∗(f1), v∗(f2) in V ∗ are in the same
component of G∗−X∗ iff f1 and f2 are in the same region of R2 \X: every path between the two vertices is
an arc connecting f1 and f2 in R2 \X, and conversely every such arc defines a walk between the two vertices.

Let X form a cycle in G. Then by the Jordan curve theorem and by the correspondence above, G∗−X∗
has exactly two components and X∗ is the minimal number of edges that need to deleted to form the cut.

Conversely, if X∗ is a minimal cut then there are two components in G∗ −X∗; take two vertices, one in
each component, then G −X has two faces that are not in the same region of R2 \X; so X must contain
a cycle, otherwise if X does not contain a cycle then G − X contains a single face. Moreover, since X∗ is
minimal, X cannot contain any edges besides the cycle. Q.E.D.

Just as the cycle space is mapped to the cut space, by the same argument the cut space of G is in bijection
with the cycle space of G∗: If D is a cut in G and D∗ is its image in G∗, then since D shares an even number
of edges with all the cycles in G, D∗ shares an even number of edges with all the cut sets in G∗, and hence
is a cycle in G∗.

Whitney suggested a generalization of the planar dual for planar graphs to a combinatorial dual4: A
graph G∗ is a combinatorial dual of a graph G, if there exists a bijection φ : E(G)→ E(G∗) such that φ is
also a bijection between the cycle space of G and the cut space of G∗, i.e., every cycle in G is mapped to a
cut set of the same size in G∗ and vice versa, every cut set in G∗ has a cycle in G associated with it.

Theorem 21 (Whitney 1932). A graph is planar iff it has a combinatorial dual.

Proof. The lemma above gives us one part of the proof, namely for every planar graph has the plane dual
is its combinatorial dual.

The converse proof proceeds similar to Mac Lane’s proof. We first show that K5 and K3,3 do not have
combinatorial duals; duality is preserved under deletion of edges, and hence if a graph has a dual then so
do all its subgraphs; subdivision also preserves duality; finally, we show that if G has a dual the it cannot
contain a subdivision of either K5 or K3,3, and hence by Kuratowski’s theorem it is planar.

Step 1: Let G∗ be the dual of K3,3. Since K3,3 has 9 edges, no cut sets of size two, and cycles of length
4 and 6 only, the dual G∗ has 9 edges, no cycles of length two, and degree of every vertex is at least 4.
Now G∗ has at least 5 vertices (since K4 has only 6 edges) and hence the number of edges in G∗ is at least
5 ∗ 4/2 > 9, a contradiction.

Suppose K5 had a dual graph G∗. Since K5 has 10 edges, no cycles of length two, and cut-sets of size 4
and 6, the dual graph G∗ has 10 edges, the degree of all vertices is greater than two, and cycles of length 4
and 6. Thus G∗ is a bipartite graph having ten edges. How many vertice does it have? A bipartite graph
with 6 vertice has at most 9 edges, thus G∗ must have at least 7 vertices. Since the degree of every vertex
is at least three, G∗ has at least 7× 3/2 > 10 edges, a contradiction.

Step 2: Deleting an edge e in G preserves duality. Let e∗ be the image of e in G∗. We claim that the
dual graph is obtained by contracting e∗ in G∗. There are two cases to consider:

1. If e is a bridge, then e∗ cannot be part of any cut, which implies that e∗ is a self-loop; hence contracting
e∗ gives us a dual of G− e.

2. If e is part of a cycle C, then e∗ must be part of some cut A,B of G∗. Since the edges in C − e do not
form a cycle, deleting the edges in E(A,B)− e∗ does not form a cut between A and B; contracting the
edge ensures this.

Since any subgraph of G can be obtained from G by edge deletions and removing isolated vertices, if G
has a dual so do all its subgraphs. It can be verified that the duality is maintained.

Step 3: Duality is preserved under subdivision and smoothing. We claim that if we subdivide e, then the
corresponding dual can be obtained by adding a parallel edge to e∗. Again, there are two cases to consider.

1. If e is a bridge, then subdividing it does not change the structure of the cycle space, hence the new
edge intorduced must not yield to a cut in G∗; this can be obtained by adding a self-loop parallel to
e∗ in G∗.

2. If e is part of a cycle.

4Sometimes called an algebraic dual.
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smoothing is tantamount to deleting a parallel edge. Again, we can verify that the duality is maintained.
Step 4: If G has a dual then all its subgraphs have duals, and all their smoothings have duals. Thus

no subdivision of either K5 or K3,3 can occur in G. By Kuratowski’s theorem it follows that G is planar.
Q.E.D.
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