
The Problème des Ménages

The problème des Ménages, or the married couples problem, is the following: How many ways Mn there are to
seat n couples around a circular table with 2n chairs such that no couple sits next to each other, i.e., no husband and
wife sit adjacent to each other.

Let’s first fix the positions of either the wives or the husband, say for courtesy’s sake wives. The number of ways
to do this is 2 × n!, since the wives may either choose the even or odd numbered seats, and given this choice has
been made there are n! ways of seating them. Let’s number the seats such that the seats on either side of the first wife
is 1 and 2, on either side of the second wife 2 and 3, and so on. Now, we have to seat the husbands such that the
first husband does not sit in seats numbered 1 and 2, the second husband 2 and 3 and so on the nth husband in seats
numberd n and 1. Let un be the number of ways to do this. Then the answer to the ménage problem is Mn = 2n!un.
Let’s see how to get un.

We start with a recurrence for un. Let’s consider a matrix representation for the husbands, where the in the ith row
we write hi in all the places except i− 1, i mod n, and a • in these places; the modulo ensure that h1 is not placed in
positions 1 and n. The matrix looks as follows.

un :=



• h1 h1 · · · h1 •
• • h2 · · · h2 h2
h3 • • · · · h3 h3
h4 h4 • • · · · h4
...

...
... · · ·

...
...

hn hn hn · · · • •


. (1)

The diagonal and the subdiagonal entries always contain •. What are the number of valid ways to assign the husbands?
For h1 we can choose any of the positions in the first row, except the “bullet” positions 1 and n; similarly, for h2 we
can choose any of the positions except 1, 2 the position for h1; so on, hi has to avoid the positions i − 1, i and all
the positions chosen earlier by h1, . . . , hi−1. The way we seem to make these choices suggests an resemblance to
computing the “determinant” of the matrix un where the dotted positions can be thought of as zero, the hi’s as one,
and we do not introduce the signs corresponding to the cofactors. Thus“dots” correspond to zero, and we put a ? for
hi’s to show that the entry is non-zero. Moreover, this interpretation of computing un as a determinant implies that
permuting the rows and columns does not change the number of valid assignments.

Let’s look at the expansion of un along the first row.
The minors are n− 1 dimensional matrices of the form

χ1(n−1) :=


• ? · · · ? ?
? • · · · ? ?
? • • · · · ?
...

... · · ·
...

...
? ? · · · • •

 , χ2(n−1) :=


• ? · · · ? ?
• • · · · ? ?
? ? • · · · ?
...

... · · ·
...

...
? ? · · · • •

 , . . . , χn−2(n−1) :=


• ? · · · ? ?
• • · · · ? ?
? • • · · · ?
...

... · · ·
...

...
? ? · · · ? •

 .
(2)

where χi has a ? in the sub-diagonal entry corresponding to the (i+ 1)th row, i.e., the entry (i+ 1, i). Thus

un = χ1(n− 1) + χ2(n− 1) + · · ·+ χn−2(n− 1). (3)

For the ease of clarity, let’s carry over the definitions of χi to n×n matrices; thus we would have χ1, . . . , χn−1. Now
if we carefully look at χ1 and χn−1 we see that expanding χ1 along the first column is the same as expanding χn−1

along the last row, i.e., they have the same number of terms χ1(n) = χn−1(n). In general, by similar reasoning we
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have χi(n) = χn−i(n). In addition to χi’s, i = 1, . . . , n− 1, it is natural to define χ0 as the matrix that has bullets in
the diagonal and all the sub-digaonal entries, i.e.,

χ0 :=


• ? · · · ? ?
• • · · · ? ?
? • • · · · ?
...

... · · ·
...

...
? ? · · · • •

 .

Since χ0 has one extra zero it is natural to assume that it has fewer terms than the remaining χi’s. This matrix plays
a crucial role: we will reprent un in terms of χ0 and χ0 in terms of un; these two relations would then give us a
recurrence for un. Let’s start with the latter relation. Observe that un has an extra • in position (1, n) when compared
to χ0. Thus χ0 has all the terms in un plus the terms appearing in the minor (1, n), i.e.,

χ0(n) = un +


• • · · · ? ?
? • • · · · ?
...

... · · ·
...

...
? ? · · · ? •

 ,
where the latter matrix has dimension n − 1. The matrix on the RHS is almost like un−1 except the ? in (n − 1, 1).
Again this matrix satisfies

• • · · · ? ?
? • • · · · ?
...

... · · ·
...

...
? ? · · · ? •

 = un−1 +


• · · · · ? ?
• • · ? ?
· · · · ·
? ? · · · • •

 = un−1 + χ0(n− 2).

Thus recursilvey we obtain
χ0(n) = un + un−1 + un−2 + · · ·+ u3; (4)

we terminate at u3 since u2 has zero terms.
The second important relation is of χi’s in terms of χ0, and χi−1. Consider χ1(n). As we had noticed, it has one

fewer zero than χ0, namely in the position (2, 1). Thus the number of terms in χ1 are the terms in χ0(n) and the terms
in the minor corresponding to (2, 1), i.e.,

χ1(n) = χ0(n) +


? ? · · · ? ?
• • ? · · · ?
? • • · · · ?
...

... · · ·
...

...
? ? · · · • •

 .

The matrix on the RHS is of dimension (n− 1) and has all the correct zeros except the star at (1,1). Thus

χ1(n) = χ0(n) + χ0(n− 1) +


• ? · · · ?
• • · · · ?
... · · ·

...
...

? · · · • •

 = χ0(n) + χ0(n− 1) + χ0(n− 2).

Similarly, we can show

χ2(n) = χ0(n)+


• ? · · · ? ?
• ? ? · · · ?
? • • · · · ?
...

... · · ·
...

...
? ? · · · • •

 = χ0(n)+χ0(n−1)+


• ? · ? ?
? • • · ?
...

... · · ·
? ? · · · • •

 = χ0(n)+χ0(n−1)+χ1(n−2).
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In general, we have
χi(n) = χ0(n) + χ0(n− 1) + χi−1(n− 2) (5)

and hence inductively we obtain that

χ1(n) = χ0(n) + χ0(n− 1) + χ0(n− 2)

χ2(n) = χ0(n) + χ0(n− 1) + χ0(n− 2) + χ0(n− 3) + χ0(n− 4)

... =
...

χi(n) = χ0(n) + χ0(n− 1) + χ0(n− 2) + χ0(n− 3) + χ0(n− 4) · · ·+ χ0(n− 2i)

... =
...

χn−2(n) = χ0(n) + χ0(n− 1) + χ0(n− 2) + +χ0(n− 3) + χ0(n− 4)

χn−1(n) = χ0(n) + χ0(n− 1) + χ0(n− 2).

Substituting n− 1 instead of n and summing these equalities along with (3) we obtain

un = χ0(n− 1) + χ0(n− 2) + χ0(n− 3)

+ χ0(n− 1) + χ0(n− 2) + χ0(n− 3) + χ0(n− 4) + χ0(n− 5)

+
...

+ χ0(n− 1) + χ0(n− 2) + χ0(n− 3) + χ0(n− 4) + χ0(n− 5) + · · ·+ χ0(n− 2i− 1)

+
...

+ χ0(n− 1) + χ0(n− 2) + χ0(n− 3) + χ0(n− 4) + χ0(n− 5)

+ χ0(n− 1) + χ0(n− 2) + χ0(n− 3).

Substituting the expression (4) for χ0(n) in terms of ui’s we obtain

un = un−1 + 2un−2 + 3(un−3 + un−4 + · · ·+ u3)

+ un−1 + 2un−2 + 3un−3 + 4un−4 + 5(un−5 + · · ·+ u3)

+ un−1 + 2un−2 + 3un−3 + 4un−4 + 5un−5 + 6un−6 + 7(un−7 + · · ·+ u3)

+
...

+ un−1 + 2un−2 + 3un−3 + 4un−4 + 5(un−5 + · · ·+ u3)

+ un−1 + 2un−2 + 3(un−3 + un−4 + · · ·+ u3)

which implies

un = (n− 2)un−1 + 2(n− 2)un−2 + 3(n− 2)un−3 + (4n− 10)un−4 + (5n− 14)un−5 + · · ·+
1− (−1)n

2
. (6)

Though we have a recurrence, it is not very immediate what the general term is. Also it is quite unwieldy.
The answer above is not quite satisfying. This was the state of affairs in 1875-1888, and it wasn’t until half a

century later that the following direct and simple formula was given without a proof

un = n!− 2n

2n− 1

(
2n− 1

1

)
(n− 1)! +

2n

2n− 2

(
2n− 2

2

)
(n− 2)!− · · · . (7)

Here we present a proof based on PIE. However, a certain initial assumption still makes the proof non-trivial, which
will be removed later on.

We start with the following lemmas

LEMMA 1. The number of ways of selecting k objects from n objects placed in a row such that no two are consecutive
is
(
n−k+1

k

)
.
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Let f(n, k) be the number of possibilities. Consider the nth item: if we pick it then we have to choose the
remaining k − 1 objects from n − 2 objects, since we cannot pick the (n − 1)th object; if we do not pick it then we
have to choose k objects from n− 1 objects, since there is the possibility of picking (n− 1)th object. So we have the
recursion

f(n, k) = f(n− 2, k − 1) + f(n− 1, k),

where f(n, 1) = n. Multiplying by xn and summing, we obtain

Ak(x) :=
∑
n

f(n, k)xn = x2
∑
n

f(n− 2, k − 1)xn−2 + x
∑
k

f(n− 1, k)xn−1,

which implies
Ak = x2Ak−1 + xAk

or

Ak =
x2

1− x
Ak−1 = (

x2

1− x
)k−1A1.

Moreover, A1 =
∑

n nx
n = −x/(1− x)2. Thus

Ak =
−x2k−1

(1− x)k+1
,

and hence the coefficient of xn on the RHS is (−1)n−2k
( −k−1
n−2k+1

)
=
(
n−k+1

k

)
.

The second lemma asks the same question, but now the objects are arranged in a circle.

LEMMA 2. The number of ways g(n, k) of selecting k objects from n objects placed in a circle such that no two are
consecutive is g(n, k) =

(
n−k
k

)
n

(n−k) .

Given f(n, k), we have to remove all the choices where both the first and the last object were picked. The number
of ways of picking both is f(n− 4, k − 2). Thus the answer is

g(n, k) = f(n, k)− f(n− 4, k − 2) =

(
n− k + 1

k

)
−
(
n− k − 1

k − 2

)
=

(
n− k
k

)
n

(n− k)
.

We now want to compute un using PIE. Let C1 be the constraint that h1 is in position 1, C2 is h2 is in position
1, C3 is h2 is in position 2, so on, C2n−2 is hn is in position n − 1, C2n−1 is hn is in position n, and C2n is 1 is
in position n. Thus we have 2n constraints, and let us array them around a circle. Let νk be the number of ways of
choosing k of the constraints such that no two are adjacent; we say such a choice of constraints is compatible.

Then un is the number of permutations of the husbands such that none of these 2n constraints are satisfied. Let
Ai be the event that the ith constraint is satisfied. Then given I ⊆ [2n], AI means that all the constraints Aj , j ∈ I
are satisfied. How many permutations of h1, . . . , hn satisfy at least k = |I| constraints? It is either (n − k)!, since
the position of k of the husbands is determined by I are the rest can be freely permuted, or zero if the constraints are
not compatible. Thus by PIE, out of the total set of n! permutations of hi’s the ones that do not satisfy any of the
constraints is

un = n!−
n∑

k=1

(−1)kνk(n− k)!.

But from the second lemma above, we know that νk =
(
2n−k

k

)
2n

2n−k , which gives us

un = n!−
n∑

k=1

(−1)k
(
2n− k
k

)
2n

2n− k
(n− k)!

(recallMn = 2n!un). The ingenuity of the proof is in arranging the constraints around the circle, and not the husbands
since permuting the husbands arbitrarily around the table may result in situations where two of them are adjacent to
each other, a possibility that we are not prepared to handle.

The argument needs to be ingenious because we have fixed the position of the wives. If, however, we freely permute
the couples, define our event as a k couple being seated next to each other, and sieve from all the possible ways to seat
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the men and women alternatigly then the PIE gives a much straightforward argument. Removing the gender bias is
the key to simplifying the argument.

Let us develop this argument further. The number of possible arrangements where the men and women alternate
is 2(n!)2, because, as we had argued in the beginning, we can seat the women in 2n! ways, and for each such choice
there are n! ways to seat the men. Given k couples, we may again ask, how many permutations zk are there such that
at least these k couples are seated next to each other, and the remaining men and women alternate? Again, we have to
pick k non-adjacent positions around the table, which can be done in in g(2n, k) ways; there are two possible ways to
seat the men and the women in these k chairs in an alternating fashion; the k couples can permute amongst each other
in these k positions in k! ways; the remaining (n− k) men can sit in men’s chairs in (n− k)! ways and same for the
remaining n− k women. Thus

zk = 2

(
2n− k
k

)
2n

(2n− k)
k!((n− k)!)2,

and by the PIE we obtain

Mn = 2(n!)2 −
∑
k≥1

2

(
n

k

)(
2n− k
k

)
2n

(2n− k)
k!((n− k)!)2.
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