
Lecture 2 – Sums

Sources: Chap. 2 and 9, Concrete Maths.
We often want to estimate sums of the form: Sn :=

∑n
k=0 ak; for instance, estimating n! is the same as

estimating the sum
∑n

i=1 log k. Often it happens that we cannot get a closed form for the summation, or
that the closed form does not give us insight into the magnitude of the quantity. In such cases, and even as
a first policy, one should try to get an asymptotic estimate to the summation, and further on try to make it
as tight (in the sense of Θ) as one can. E.g., we do not know a closed form for the sum of the first n primes,
however, we do know good asymptotic estimates to the sum. In this lecture, we will first see few techniques
that help us to get closed forms for Sn, and in the instances where we fail to do so, we will see some basic
techniques that help us get good estimates.

Let’s look at the familiar sum of the numbers from 1 to n, namely A1 :=
∑n

k=1 k. We all know, or
remember, that A1 = n(n + 1)/2. The usual proofs for this statement are based upon induction. But
inductive proofs need a good guess in the first place. So, how do we derive this formula from first principles?
We can use a trick by Gauß 1. By reversing the order of summation, we know that A1 = n+(n−1)+ · · ·+1.
Thus 2A1 = n(n + 1), which gives us the desired formula. In general, if we have want to sum the terms
of an arithmetic progression Sn =

∑n
k=1(a + bk), then applying Gauß’s trick, i.e. reversing the order of

summation and adding the two sums, we get Sn = n(2a+ bn)/2. Another way to interpret this sum is that
the kth and (n − k)th term add to twice the mean (2a + bn)/2; since there are n/2 such pairs we get the
desired formula for Sn. Thus Gauß’s trick works well for such “linear” sums. What if we are interested in
the sum A2 :=

∑n
k=1 k

2? Applying the the trick we get

2A2 =

n∑
k=1

(k2 + (n+ 1− k)2) = 2A2 + n(n+ 1)2 − 2(n+ 1)A1.

Though we don’t get an expression for A2, we do get an expression for A1. So perhaps we should apply the
trick to A3:

2A3 =

n∑
k=1

(k3 + (n+ 1− k)3) = n(n+ 1)3 − 3(n+ 1)2A1 + 3(n+ 1)A2.

Since A3 does not cancel out, we are stuck.
Let’s try the perturbation method. Suppose we want to find closed form for Sn, then we express Sn+1

in two different ways. Thus

Sn+1 = Sn + an+1 = a0 +

n+1∑
k=1

ak = a0 +

n∑
k=0

ak+1.

Now if we can express
∑n

k=0 ak+1 in terms of Sn then we can hope to have an equation in terms of Sn and
solve for it. Let’s try this method for summing the geometric series Sn :=

∑n
k=0 x

k. Now from the equation
above we obtain

Sn + xn+1 = 1 +

n∑
k=0

xk+1 = 1 + x

n∑
k=0

xk = 1 + xSn,

which gives us the standard closed form formula

Sn =
xn+1 − 1

x− 1
.

1mention the story...
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Let’s see if the perturbation method works for A2. Applying the method, we get

A2 + (n+ 1)2 =

n∑
k=0

(k + 1)2 =
∑
k

(k2 + 2k + 1) = A2 + 2
∑
k

k + n+ 1.

But this does not lead us to a solution as A2 cancels on both sides. However, all is not lost, since after
canceling A2, we get a closed form for A1. This means that to get to A2, we should apply the method to A3:

A3 + (n+ 1)3 =

n∑
k=0

(k3 + 3k2 + 3k + 1) = A3 + 3A2 + 3A1 + n+ 1;

canceling A3 on both sides, we get the desired formula for A2.
A more general approach that uses the elements of calculus but in a discrete setting is based upon finite

calculus, or calculus of finite differences.

1 Finite Calculus

As we had seen above, the continuous analogue of A2 is the integral
∫ n

0
x2dx, which we know from the

Fundamental Theorem of Calculus has a nice closed form n3/3. Can we obtain something analogous for
summation? Since the concept of derivative is necessary to get to the integral, let’s explore that first.

In the continuos domain the derivative operator D for a function f is

Df(x) := lim
h→0

f(x+ h)− f(x)

h
.

In finite calculus, we have the corresponding difference operator ∆:

∆f(x) := f(x+ 1)− f(x), (1)

which is the same as D but the limit tends to one, as that is the closest natural numbers can get to each
other. We will call ∆f as the discrete derivative of f . From the definition, we have two following algebraic
properties of the discrete derivative:

Distributivity: ∆(f + g) = ∆f + ∆g

Scalar Multiplication: ∆cf = c∆f.
(2)

We know that D(xm) = mxm−1. Can we derive something analogous for ∆? Does the same formula
work? Let’s start with m = 1: ∆x = (x + 1) − x = 1. So that’s correct; for m = 2, ∆x2 = 2x + 1 doesn’t
work; but that is not hopeless since it implies ∆x2 −∆x = 2x, or equivalently ∆(x2 − x) = 2x (where we
use the distributivity of ∆). Guessing further, let’s define x3 :=x(x − 1)(x − 2), then it’s easy to see that
∆x3 = 3x2. And so with an educated guess we define the falling factorial for a positive integer m

xm :=x(x− 1) . . . (x−m+ 1). (3)

When m = 0, let x0 = 1. It is not hard to verify that

∆xm = mxm−1. (4)

The above development works for positive powers, i.e., km, where m is a positive integer. What about
negative powers? How should we define x−1? In going from x3 to x2 we divide by x − 2, from x2 to x1 by
x − 1, from x1 to x0 by x, so it seems natural to divide by x + 1 to go from x0 to x−1; continuing in this
manner we define for m > 0

x−m :=
1

(x+ 1)(x+ 2) . . . (x+m)
.

And what is ∆x−m? Well it is what we expect it to be, −mx−m−1. Thus, in general, we can state for all
integers m except −1

b∑
a

xmδx =
xm+1

m+ 1

∣∣∣∣b
a

.
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But what happens when m = −1? In the continuous case we know that
∫

1/x = lnx. So what is the
discrete analogue of the ln function? What function f has the property that ∆f(x) = x−1 = 1/(x+ 1)? We
know from the definition of summation that the function Hx :=

∑
k<x+1 1/k will work. This is our familiar

Harmonic function, and it makes sense that Hx is the discrete analogue of lnx since their values differs by at
most one (more precisely, the Euler-Mascheroni constant 0.57721...) as x increases. So we now understand∑b

a x
mδx for all integers m.

We can further ask, what function corresponds to the exponential? That is ∆f(x) = f(x). The equality

gives us the recurrence f(x + 1) = 2f(x), so we can take f(x) = 2x. Thus
∑b

a 2xδx = 2b − 2a. In general,
∆cx = cx/(c− 1).

Now that we have the analogue of D, we want the analogue for
∫

. Naturally, it is the summation operator∑
. Define

∑
g(x)δx as the class of functions f s.t. ∆f = g(x); similar to the big-O notation we will write∑

g(x)δx = f(x) rather than the set-membership operation. The δx in this definition can be replaced with
one; however, we will soon see that the “indefinite summation” has a slightly different upper limit than the
usual summation; moreover, we also keep it to continue our analogy with standard calculus where a similar
“dx” term appears in the integral. What functions equal to

∑
g(x)δx? One such function is

∑
k<x g(k), since

the difference operator yields
∑

k<x+1 g(k)−
∑

k<x g(k) = g(x). In fact, let’s define∑
g(x)δx :=

∑
k<x

g(k);

note that the summation is strictly smaller than x, which was one of the justifications for introducing δx
in our summation notation above to distinguish it from the summation

∑x
. We then have the following

theorem:

Theorem 1 (Fundamental Theorem of Finite Calculus). Given two functions g, f

g(x) = ∆f(x) ⇐⇒
∑

g(x)δx = f(x) + C(x),

where C is a function such that C(x+ 1) = C(x).

Proof. Since ∑
g(x)δx =

∑
k<x

g(k) =
∑
k<x

(f(k + 1)− f(k)) = f(x) + C(x).

Q.E.D.

As an immediate consequence we have the definite integral: for b ≥ a,

b∑
a

g(x) = f(b)− f(a).

Once we have this, it immediately follows that
∑b

a g(x)δx+
∑c

b g(x)δx =
∑c

a δx and
∑b

a g(x)δx = −
∑a

b δx;
the order of a and b is irrelevant here.

Well, now that we have developed this machinery, where do we apply it? Since we started with wanting
an analogy for

∫
x2dx, given the above what can we say about the sum

∑<n
k=0 k

m? From definition we know
that this sum is equal to

∑n
0 x

mδx, and since xm = ∆xm+1/(m+ 1), we get

<n∑
k=0

km =
xm+1

(m+ 1)

∣∣∣∣n
0

=
nm+1

m+ 1
.

So for m = 1 we have
∑<n

k=0 k = n2/2 = n(n− 1)/2. But what about our sum A2? Well, if we can express
ordinary powers in terms of falling powers then our approach will work. Since k2 = k2 + k1, we have

<n∑
k=0

k2 =
n3

3
+
n2

2
=

1

3
n(n− 1

2
)(n− 1);
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replacing n by (n+ 1) gives us the result for A2. We can similarly work with k3. In general we can express
ordinary powers as linear combinations of falling powers, but we won’t see this relation until later.

Finite Calculus, even though it has astounding similarities to infinite calculus, has its limitations. For
instance the chain rule of differentiation of compositions of functions (Df(g) = f ′(g)g′) does not carry over
to the finite setting. The product rule, however, does:

∆uv = u∆v + Sv∆u,

where S is the shift operator, Sv = v(x+ 1). Summing both sides and rearranging terms we get∑
u∆v = uv −

∑
Sv∆u,

which is useful when computing the RHS is easier than the LHS. Let’s apply it to the sum
∑<n

k=0 kHk. What
should u and ∆v be? Taking the latter to be Hk seems to complicate matters, so let’s choose u :=Hx and
∆v :=x = x1; thus v = x2/2. So we have∑

Hxx = Hx
x2

2
−
∑ (x+ 1)2

2
x−1

= Hx
x2

2
− 1

2

∑
x1

= Hx
x2

2
− x2

4
.

Attaching limits we get that
∑<n

k=0 kHk = n2

2 (Hn − 1
2 ).

Just as calculus can be carried out formally, once we have the appropriate setup, the same ease carries
over to computing sums (though not as powerfully as calculus). Nevertheless, we must remember that for
any function g if we can find an f such that ∆f = g then we can sum g conveniently.

We have seen that
∑
g(x) is closely related to

∫
g(x)dx. We next see a very general approach that gives

a precise meaning to this relation.

2 Euler-Maclaurin Formula

Again consider the sum A2 =
∑n

i=0 i
2. The continuous version of A2 is the integral

∫ n

0
x2dx. What is the

relation between the integral and A2? Clearly, the area underneath the parabola in the range 0, . . . , n falls
short of covering the area corresponding to A2. So if we can form a closed expression for the error term
A2 −

∫ n

0
x2dx then we have an expression for A2. Let’s try

n∑
k=0

k2 −
∫ n

0

x2dx =

n∑
k=1

k2 −
n∑

k=1

∫ k

k−1
x2dx

=

n∑
k=1

(
k2 − k3 − (k − 1)3

3

)

=

n∑
k=1

(k − 1

3
).

Thus

A2 =
n3

3
+
n(n+ 1)

2
− n

3

as desired. The benefit of working with the integral, which is the “continuous sum”, as compared to the
discrete sum is that we know how to manipulate integrals; reducing the discrete sum to the integral helps
us bear down the powerful machinery of calculus on our sums. In the example above, we were able to give
a closed form to the error term. This may not be possible always. But if we can bound the error term,
or derive a form for it which can be bounded, then we are in good shape. The Euler-Maclaurin formula
developed independently by Euler and Maclaurin helps us achieve this goal.
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How is the sum Hn−1 =
∑n−1

i=1 1/n and the integral
∫ n

1
1/xdx related? Let f(x) := 1/x; it will be

convenient to use this notation, since later on we want to talk of a general function; then we want the
relation between Hn−1 =

∑n−1
k=1 f(k) and

∫ n

1
f(x)dx. Pictorially, the relation between the two is as shown in

Figure ??(a): Hn is the sum under the rectangles with base [k, k + 1] and height f(k), whereas the integral
is the area under the graph of the function f(x). Clearly, the area covered by the rectangles is greater than
that covered by the integral. However, if we shift the rectangles one unit to the left, then the area covered
by the rectangles is smaller than the integral

∫ n

0
f(x)dx. Thus we have shown that∫ n

1

f(x)dx <

n−1∑
k=1

f(k) and

n∑
k=1

f(k) ≤
∫ n

0

f(x)dx.

Can we bound the error term

En :=

n−1∑
k=1

f(k)−
∫ n

1

f(x)dx? (5)

Geometrically, En is the sum of the portions of the rectangale that is above the graph of 1/x over each
interval [k, k + 1] (shaded in Figure ??); the portion of the graph above the interval [k, k + 1] is bounded
by f(k) − f(k + 1). Thus limn→∞En < 1. Since En is increasing and it is bounded from above by one, it
follows that it must converge to a constant C(f) < 1. Moreover,

0 < C(f)− En < f(n).

The lower bound follows from definition of C(f) and the upper bound from the telescoping sum
∑

k≥n(f(k)−
f(k + 1)). Let εf (n) := f(n)− (C(f)− En) then it follows from (5) that

n−1∑
k=1

f(k) =

∫ n

1

f(x)dx+ C(f) + εf (n)− f(n),

or taking f(n) to the left we obtain that

n∑
k=1

f(k) =

∫ n

1

f(x)dx+ C(f) + εf (n). (6)

The constant C(f) for f = 1/x is called Euler’s constant.2 We will later see an explicit estimate for this
constant. Honestly speaking, however, in the equation above we have not obtained anything new – we have
introduced some new terms and are merely saying that with the help of these terms the summation can
be expressed in terms of the integral. The key question is, Can we say anything about these terms? In
particular, can we derive an explicit form for εf (n) in terms of f?

Let us again look at En. We had seen that En is the sum of the portions, I(k), of the rectangle that is
above the graph of f(x) over each interval [k, k + 1]. These portions can be expressed as

I(k) =

∫ k+1

k

(f(k)− f(x))dx. (7)

What is interesting is that the relation above holds for any function f and not just 1/x. Henceforth, f will
be an arbitrary function (not necessarily positive); we will add more assumptions later on, but to begin with
we only assume that

∫ n

1
f(x)dx exists all n ≥ 2. Integrating by parts, we can express

I(k) = [(f(k)− f(x))(x+ c)]|k+1
k −

∫ k+1

k

(x+ c)f ′(x)dx

for some constant c. If we choose c := − (k + 1) then the first term vanishes completely, and we obtain

I(k) =

∫ k+1

k

(x− k − 1)f ′(x)dx.

2The constant e is called Euler’s number and is named in honour of Euler; it is sometimes also called Napier’s constant.
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Note, however, that k = [x], that is, the largest integer smaller than x. Thus

E(n) =

n∑
k=1

I(k)

=

n∑
k=1

∫ k+1

k

(x− [x]− 1)f ′(x)dx

=

∫ n

1

(x− [x])f ′(x)dx−
∫ n

1

f ′(x)dx

=

∫ n

1

(x− [x])f ′(x)dx+ f(1)− f(n).

Substituting this in (5) we obtain

n∑
k=1

f(k) =

∫ n

1

f(x)dx+

∫ n

1

(x− [x])f ′(x)dx+ f(1). (8)

Note that P1(x) :=x− [x] is a periodic function with non-negative sign. The equation above gives us more
insight into the relation between the sum and the integral than (6). The form of the equation above, however,
is not in the form we want, and the reason will become clear soon; form an aesthetic viewpoint, the lone f(1)
on the RHS looks ugly. Our second step naturally is to apply integration by parts to the second integral in
(9), just as we had done for I(k) in (7). Let us again consider the interval [k, k + 1]:∫ k+1

k

P1(x)f ′(x)dx =

∫ 1

0

xf ′(x+ k)dx = P2(x)f ′(x+ k)|10 −
∫ 1

0

P2(x)f ′′(x+ k)dx,

where P2 is a function such that P ′2(x) = P1(x), that is P2(x) =
∫ x

0
P1(t)dt+ c for some contant c. If P2 was

periodic with period one, just as P1 was, then the equation above will be∫ k+1

k

P1(x)f ′(x)dx =

∫ 1

0

xf ′(x+ k)dx = P2(0)(f ′(k + 1)− f(k))−
∫ 1

0

P2(x)f ′′(x+ k)dx.

Now P2 is periodic iff

P2(x+ 1)− P2(x) =

∫ x+1

x

P1(t)dt = 0.

But this is not the case since
∫ x+1

x
P1(t)dt = 1. Thus we have to rectify our choice of P1 such that it has

period one and its integral on an interval of unit length is zero. How can we do that? If we shift the range
of P1 by −1/2 then we still get a polynomial with periodicity one with the desired property that the integral
on any interval of unit length is zero. Thus the desired polynomial is B1(x) :=x− [x]− 1/2. To obtain B1

in (9) we add and subtract
∫ n

1
f ′(x)dx/2 on the RHS of (9) to obtain

<n∑
k=1

f(k) =

∫ n

1

f(x)dx+

∫ n

1

(x− [x]− 1

2
)f ′(x)dx+

∫ n

1

1

2
f ′(x)dx+ f(1)

=

∫ n

1

f(x)dx+

∫ n

1

(x− [x]− 1

2
)f ′(x)dx+

1

2
(f(1)− f(n))

=

∫ n

1

f(x)dx+

∫ n

1

B1(x)f ′(x)dx+
1

2
(f(1)− f(n)).

(9)

The polynomial B1(x) is the first of the Bernoulli’s polynomial. Based upon our discussion earlier, we want
to define B2(x) as

∫ x

0
B1(t) + c, however, to ensure that the leading term is monic we define

B2(x) := 2

∫ x

0

B1(t) + c = x2 − x+ c.
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How do we fix the constant c? Notice that our argument is proceeding inductively: to ensure B2 is periodic

we wanted
∫ 1

0
B1(x)dx = 0; similarly, to ensure B3(x) is periodic at the next inductive step, we want∫ 1

0
B2(x)dx = 0, i.e., c = 1/6. Thus∫ n

1

B1(x)f ′(x)dx =
1

2
B2(0)(f ′(n)− f ′(1))− 1

2

∫ n

1

B2(x)f ′′(x)dx.

Substituting this in (9) we obtain

n∑
k=1

f(k) =

∫ n

1

f(x)dx− 1

2

∫ n

1

B2(x)f ′′(x)dx+
B2(0)

2
(f ′(n)− f ′(1)) +

1

2
(f(1) + f(n)), (10)

Again, degin B3(x) such that B′3(x) = 3B2(x); the 3 is to ensure that the leading term after integrating
B2(x) is monic. Thus B3(x) = x3 − 3x2/2 + x/2. Thus we have∫ n

1

B2(x)f ′′(x)dx =
1

3
B3(0)(f ′′(n)− f ′′(1))− 1

3

∫ n

1

B3(x)f ′′′(x)dx.

But note that B3(0) = 0. Thus substituting the above in (10) we obtain

n∑
k=1

f(k) =

∫ n

1

f(x)dx+
1

6

∫ n

1

B3(x)f ′′′(x)dx+
B2(0)

2
(f ′(n)− f ′(1)) +

1

2
(f(1) + f(n)), (11)

Proceeding in this manner, in general we obtain:

<n∑
k=1

f(k) =

∫ n

1

f(x)dx+

m∑
r=1

Br(0)

r!
(f (r−1)(n)− f (r−1)(1)) + (−1)m

∫ n

1

Bm+1

(m+ 1)!
f (m+1)(x)dx. (12)

The polynomials Bk(x) that satisfy the conditions:

B0(x) := 1, B′k(x) = kBk−1(x) and

∫ 1

0

Bk(x)dx = 0 (13)

are called Bernoulli polynomials and the numbers bk :=Bk(0) are called the Bernoulli numbers. From

the second condition it follows that B
(r)
k (x) = r!

(
k
r

)
Bk−r(x); thus B

(r)
k (0) = r!

(
k
r

)
bk−r. From Taylor series

expansion of a polynomial we know that

Bk(x) =

k∑
r=0

B
(r)
k (0)

r!
xr =

∑(
k

r

)
bk−rx

r.

There are many other interesting properties of Bernoulli polynomials.

1. Symmetric: Bn(1− x) = (−1)nBn(x).

2. We can also show that for x ∈ [0, 1]

|B2k(x)| ≤ |b2k| and |B2k+1(x)| ≤ (2k + 1)|b2k|.
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