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IQHE



FQHE



σH=Chern Invariant



σH=No. of edge channels



Non-interacting fermions on a lattice

H =

∫
ddk

(2π)d C†(k)α (h(k)− εF )αβ C(k)β

α, β = 1, · · · ,NB

h(k)αβ = U(k)αγε(k)γU†(k)γβ

The ground state depends only on U(k). Many hamiltonians
will share the ground state with H. In particular if the Fermi
level lies in a gap,

Q =

∫
ddk

(2π)d C†(k)q(k)C(k)

q(k)αβ = U(k)αγΛγγ′U†(k)γ′β

Λγγ′ = sgn(ε(k)γ − εF )δγγ′



d = 2, NB = 2

h(k) = U(k)

(
ε1(k) 0

0 ε2(k)

)
U†(k)

q(k) = U(k)

(
1 0
0 −1

)
U†(k)

= n̂(k) · ~τ

Thus q(k) defines a map from the 2-torus to the 2-sphere. This
map breaks up into topological sectors characterised by the
integer valued Chern invariant.
TKNN work showed that a physical property shared by all
ground states in a topological sector is,

σH =
e2

h
× ν (ν = Chern Invariant)



d = 2, NB bands, NF occupied

q(k) = U(k)ΛU†(k) ∈ U(NB)

U(NF )× U(NB − NF )

ν =
i

8π

∫
d2k εij tr

(
q
[
∂iq, ∂jq

])



The Haldane model



Non-zero Chern number without a magnetic field

h(k) = αxpx (k) + αypy (k) + βM(k)

px (k) = t(1 + cos k1 + cos k2)

py (k) = t(sin k1 − sin k2)

M(k) = M + ∆ (sin k1 + sin k2 + sin(−k1 − k2))

I M >> ∆, ν = 0, M << ∆, ν = ±1. Topological transition
from ν = 0 to ν = ±1 phase at M = 3

√
3

2 .
I Magnetic field not necessary for non-zero Chern number.

Other time reversal symmetry breaking terms can also
induce it.



Degeneracy on a torus



Magnetic tranlations

TaTbT−1
a T−1

b |ψ〉N = ei2πν

I If ν = p
q , then lowest unitary irreducible representation is

q-dimensional.
I If system is translationally invariant, then all eigenstates

are atleast q-fold degenerate



Chern invariant for interacting systems



Gapless edge states for interacting systems



Topological order



Topological order

I Systems with topological order are characterised by
quasi-particles with fractional quantum numbers and
statistics.

I Their universal properties ( quasi-particle quantum
numbers and statistics) are described by topological field
theories.

I Quantum number frationisation occurs in strongly
correlated fermion systems (Hubbard models): Spinons
and Holons of RVB theory. Can be understood in the
framework of emergent gauge fields.
G. Baskaran and P.W. Anderson, Phys. Rev. B 37, 580 (1988)

T. Senthil and Fisher, Phys. Rev. B 62, 7850 (2000)
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Topological Insulators: Theory



Topological Insulators: Real materials



Time reversal in Quantum mechanics

ψ2 = e−iH(t2−t1)ψ1

If there is an operator T such that,

T ψ1 = e−iH(t2−t1)T ψ2

Then the system is time reversal invariant.

Time reversal for Bloch hamiltonians,

T u(k)α = (σy u∗(k))α

if
σyh∗(k)σy = h(−k)

Then system is time reversal invariant



Band Pairs

T un(k) = un̄(−k)

T un̄(k) = −un(−k)

εn(k) = εn̄(−k)

F n
ij (k) = −F n̄

ij (−k)



The 2-d Z2 invariant
Consider a system with 2 occupied time reversed bands:

I The total Berry flux carried by them will always be zero.
I If the hamiltonian is smoothly perturbed, maintaining time

reversal invariance, and they touch (h(k) becomes
degenerate), it will always happen at pairs of points
(k ,−k).

I Time reversal invariance ensures that the flux exchanged
by bands at these two points is always equal.

I The change of flux in each band is always even and hence
the Chern index of each band modulo 2 is invariant under
smooth time reversal symmetric perturbations.

I in general,

δ =

1
2

NB∑
n=1

|νn|

modulo 2

is invariant.



The 2-d Z2 invariant



Consequences at the edge

I Even number of edge pairs (per edge) for δ = 0
Odd number of edge pairs (per edge) for δ = 1

I No backscattering for a single pair due to time reversal
symmetry.



The 3-d Z2 invariants

Parameterise the 3-d torus by −π ≤ ki ≤ π, i = x , y , z.
I There are many time reversal invariant planes. eg ki = 0, π.
I The 2-d Z2 invariants of these planes are all topological

invariants.
I Of these, there are 4 independent invariants which can be

chosen to be,

δx ≡ δkx =π, δy ≡ δky =π, δz ≡ δkz =π

δ0 ≡ δkz =0δkz =π

I If δ0 = −1, then “strong topological insulator".



Consequences at the surface

I Even number of surface Dirac cones for δ = 0
Odd number of surface Dirac cones for δ = 1

I Gaplessness for odd number of Dirac points protected by
time reversal symmetry.
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The Kitaev Honeycomb Model

Alexei Kitaev,“Anyons in an exactly solved model and beyond", Ann. Phys. (N.Y) 321, 2 (2006).

H = Jx
∑
<ij>

σx
i σ

x
j + Jy

∑
<ij>

σy
i σ

y
j + Jz

∑
<ij>

σz
i σ

z
j



The Kitaev Honeycomb Model

I Simple exact solution. Same degree of difficulty as 1-d
transverse field Ising model.

I Solution is a spin liquid with topological order, spinons and
non-abelian anyons.

Open problem:
What is the ground state wave function in the spin basis ?

|GS〉 =
∑

x1,...,xN

Ψ(x1, x2, . . . , xN)|x1, x2, . . . , xN〉



A proposal for engineering the model



The Kitaev-Hubbard Model

H =
∑
〈ij〉a

(
C†i

(
t + t ′σa

2

)
Cj + h.c

)
+ U

∑
i

ni↑ni↓

U →∞, Half filling:

Heff =
∑
〈ij〉a

(
t2 − t ′2

U
~Si · ~Sj −

2t ′2

U
Sa

i Sa
j

)

(similar to) J. Chaloupka, George Jackeli and Giniyat Khaliullin, Phys. Rev. Lett. 105, 027204 (2010)

I t ′=0, Heisenberg Model
I t ′=t, Kitaev Model



The spin dependent hopping term

The t ′ term breaks time reversal symmetry.

C†i

(
t + t ′σa

2

)
Cj + h.c → T → C†i

(
t − t ′σa

2

)
Cj + h.c

A time reversal symmetric term,

C†i

(
t + it ′σa

2

)
Cj + h.c → T → C†i

(
t + it ′σa

2

)
Cj + h.c

Does not give the Kitaev model at large U, half filling.



U = 0

h(k) =

(
0 Σ(k)

Σ†(k) 0

)
Σ(k) =

t
2

f (k) +
t ′

2

(
σz + e−ik1σx + eik2σy

)
f (k) = 1 + e−ik1 + eik2

ε(k) = ±

√
ε20 +

3t ′2

4
+± t ′

2
|~B(k)|

~B =
(
1− t ′ sin k1 + cos k2 + cos k3

)
x̂

+
(
1 + cos k1 − t ′ sin k2 + cos k3

)
ŷ

+
(
1 + cos k1 + cos k2 − t ′ sin k3

)
ẑ



U = 0, t ′ = 0.0



U = 0, t ′ = 0.1

The bands overlap for t ′ <
√

7−
√

6 = 0.717



U = 0, t ′ = 0.9

The bands overlap for t ′ <
√

7−
√

6 = 0.717



U = 0: Chern Numbers



“Hall conductance" at 1/4 filling

The Pancharatnam-Berry curvature for each band is given by

PBpp′
(k) =

εij
8πi

(
∂iΦ

pp′
(k)†∂jΦ

pp′
(k)− H.c.

)
The “Hall conductivity" is

σH =

∫
d2k

(2π)2

∑
pp′

Θ(µ− εpp′(k))PBpp′



Angular momentum

The Orbital magnetization of Bloch electrons of the band pp′ is

Mpp′ =
e
2~

∫
d2k

(2π)2 Θ(µ− εpp′(k))

× 〈∂kΦpp′ |(Hk + εpp′(k)− 2µ)|∂kΦpp′〉,



Interactions

Is the physics stable against interactions ?
I Does the gap persist ?
I Do the chiral edge states persist ?



Variational Cluster Approximation

Cluster Perturbation Theory:

H = Hc + T

G(k̃ , ω) ≈
(

G−1
c (ω) + T (k̃)

)−1

Variational Cluster Approximation:

Ω(h) ≈ Ωc(h) +

∫
dω
π

d2k̃
(2π)2 ln det

(
1− T (k̃)Gc(k̃ , iω)

)
Minimize the grand potential with respect to the variational
parameters h.



The cluster

Variational parameters: M the total magnetization and µc , the
cluster chemical potential.



The gap



The edge states



The edge states



AFQHE: Warm up problem

I Haldane model with nearest neigbour interactions,

Hint = V
∑

ij

ninj

I Mean field theory:

ninj ≈
(
χijC

†
i Cj + h.c

)
− |χij |2

I We find solutions corresponding to ν = 1/3 (one third of
lower band occupied).

I Interpretation in terms of composite fermions: Wave
function ?

I Generalising to Kitaev-Hubbard using VCPT ?



t ′ = 0 at half filling



t ′ = 1

At U = 0, Dirac points persist at all t ′

At U/t >> 1,
H = HK − λ

∑
〈ij〉

~Si · ~Sj

J. Chaloupka, George Jackeli and Giniyat Khaliullin, Phys. Rev. Lett. 105, 027204 (2010)

H = HK − λ
∑
〈ij〉

Sz
i · Sz

j

S. Mandal, Subhro Bhattacharjee, K. Sengupta, R. Shankar and G. Baskaran, Physical Review B 84, 155121 (2011)

I The Spin Liquid remains till λ ≈ 0.1
I From λ ≈ 0.1 to λ ≈ 1, an Antiferromagnetic phase

q = (0, π).
I λ > 1, Neel phase q = (0,0).



The question



Time reversal symmetry

I Kitaev model (U →∞) is time reversal symmetric (TRS)
but microscopic theory is not. What happens at
intermediate U ?

I At t ′ = 0, system is time reversal symmetric (TRS). Can
the spin liquid near t ′ = 0 be continously connected to the
spin liquid near t ′ = 1 ?

I Result: Particle-Hole symmetry in this model implies that
the Mott phase is TRS. Proof to all orders in t/U, t ′/U
perturbation theory



The Phase Diagram



Future work

I Nature of the spin liquid phases at half-filling.
I AFQHE states at less than quarter filling.
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