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IQHE

Vorume 45, NuMBER 6 PHYSICAL REVIEW LETTERS 11 August 1980

New Method for High-Accuracy Determination of the Fine-Structure Constant
Based on Quantized Hall Resistance

K. v. Klitzing
Institut dev it Wiivzh D-8700 Wiirzburg, Fedeval Republic of Gevmany, and
hfeld. des P fiir [F-38042 Grenoble, France
and

G. Dorda
Forschungsiaboratorien der Siemens AG, D-8000 Miinchen, Federal Republic of Germany

and

Cavendish Laboratory, Cﬂmbl'Mu CB&HHE United Kingdom
(Received 30 May 1980)
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FQHE

Vorume 48, Numser 22 PHYSICAL REVIEW LETTERS 31 May 1982

Two-D ional M in the Extreme Quantum Limit

D. C. Tsui,'™ ™ H. L. Stormer,'® and A. C. Gossard
Bell Labovatories, Murvay Hill, New Jersey 07974
(Received 5 March 1982)

A quantized Hall plateau of p,, =3k/e?, «compnmm by & minimum in py,, was observed

at T<5 K in of high-mobilit electrons, when the low-
est-energy, spin-pelarized Landau level is l llod. The formation of a Wigner solid or

8 ¥ state with triangular symmetry Is suggested as a possible explana=
tion.
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on=Chern Invariant

VoLuME 49, NUMBER 6 PHYSICAL REVIEW LETTERS 9 Aucust 1982

Quantized Hall Conductance in a Two-Di ional Periodic P i

D. J. Thouless, M. Kohmoto,®’ M. P. Nightingale, and M. den Nijs
Department of Physics, Uni ity of Seattle, Washi 98195
(Received 30 April 1982)

The Hall conductance of a two-dimensional electron gas has been studied in a uniform
magnetic field and a periodic substrate potential /. The Kubo formula is written in a
form that makes apparent the quantization when the Fermi energy lies in a gap. Explicit
expressions have been obtained for the Hall conductance for both large and small U7/Aw, .

PACS numbers: 72.15.Gd, 72,20, Mg, 73.90.+b
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oy=No. of edge channels

VOLUME 71, NUMBER 22 PHYSICAL REVIEW LETTERS 29 NOVEMBER 1993

Chern Number and Edge States in the Integer Quantum Hall Effect

Yasuhiro Hatsu.ga:
Department of Physics, Massach Institute of Technol. h Avenue, Cambridge, Massachusetts 02199
and Institute for Solid State Physics, University of Tokya, 7-22-1 Roppongi Minato-ku, Tokyo 106, Japan
(Received 12 July 1993)

We consider the integer quantum Hall effect on a square lattice in a uniform rational magnetic
field. The relation between two different interp ions of the Hall |
invariants is clarified. One is the Thouless-Kohmoto-Nightingale-den Nijs (TKNN) mtqgc‘r in the
infinite system and the other is a winding number of the edge state. In the TKNN form of the Hall
conductance, a phase of the Bloch wave function defines U(1) vortices on the magnetic Brillouin
zone and the total vorticity gives ozy. We find that these vortices are given by the edge states when
they are degenerate with the bulk states.

PACS numbers: 73.40.Hm, 02.40.-k

and that at the band bottom is =I(Cj-1). Therefore the
Hall conductance of the filled jth band is

Ty

ol Jbulk _ §[ I(Cy) = I(Cj-1) | = ,;;.;dxﬂ. (15)




Non-interacting fermions on a lattice

d
H = [ goya O (K (h(R) — <) C(K):
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h(K)as = U(K)aye(k), U (k)5

The ground state depends only on U(k). Many hamiltonians
will share the ground state with H. In particular if the Fermi
level lies in a gap,
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k) — U(k)<61(()k) Ez?k)>uf(k)
a) = v (5 % ) Uitk
— Ak)-7

Thus q(k) defines a map from the 2-torus to the 2-sphere. This
map breaks up into topological sectors characterised by the
integer valued Chern invariant.
TKNN work showed that a physical property shared by all
ground states in a topological sector is,
eZ
oy = — X v (v = Chern Invariant)
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d = 2, Ng bands, Ng occupied

U(Ng)
U(NF) x U(Ng — NF)

P 817r/d2k6;jtr(CI[8IQ>8/q])
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The Haldane model

VOLUME 61, NUMBER 18 PHYSICAL REVIEW LETTERS 31 OCTOBER 1988

Model for a Quantum Hall Effect without Landau Levels:
Cond d-Matter Realization of the “Parity Anomaly”

F. D. M. Haldane

Department of Physics, University of California, San Diego, La Jolla, California 92093
(Received 16 September 1987)

A two-dimensional condensed-matter lattice model is presented which exhibits a nonzero quantization
of the Hall conductance o in the absence of an external magnetic field. Massless fermions without
spectral doubling occur at critical values of the model parameters, and exhibit the so-called “parity
anomaly” of (2+1)-dimensional field theories.

Hi(k) =2i2c080 [Z. cos(k—b,)]nn {2, [cos(k-a;) o' +sin(k-a;)o?] ] + [M— 213sing [Z,-sin(kv bi) ] } o, )




Non-zero Chern number without a magnetic field

h(k) = o px(k)+ o’py(k)+ BM(k)
px(k) = t(1+ cosky+ coskp)
py(k) = t(sinky —sinky)
M(k) = M+ A(sinky +sinky + sin(—ky — kz))

» M>> A, v=0,M<< A, v=+1. Topological transition
fromrv =0tov =41 phase at M = 3@.
» Magnetic field not necessary for non-zero Chern number.

Other time reversal symmetry breaking terms can also
induce it.




Degeneracy on a torus

PHYSICAL REVIEW
LETTERS

VoLume 55 11 NOVEMBER 1985 Numser 20

Many-Particle Translational Symmetries of Two-Dimensional Electrons
at Rational Landau-Level Filling

F. D. M. Haldane'®

Depariment of Physics, University of Southern California, Los Angeles, California 90089
(Received 11 February 1985)

In contrast to previous treatments, a new analysis of two-dimensional many-clectron systems

subject 1o periodic y i ina ic field leads to a fully two-dimensional struc-
ture of the qunmum numh:rs at rational Landau-level filling. The structure of the new symmetry
analysis has an i particle ch Full between numerical studies of

quantized-Hall-effect systems in periodic and spherical geometries is achieved, and the problem of
ground-state degeneracy is clarified.

It should be emphasized that this g-fold c.m. degen-
eracy is a purely group-theoretical consequence of the
imposition of PBC’s on a translationally invariant sys-
tem, and quite without physical significance. 1t is a de-
generacy common to every eigenvalue of the Hamil-
tonian belonging to a given subspace % (6, 6;), and
related to the degeneracy between subspaces. It is
present independent of the physical nature of the ground
state of H™, whether it is of the fluid type and exhibits
the QHE, or a solid type and does not.




Magnetic tranlations

TaToT, ' T, [)n = €27

» If v = £, then lowest unitary irreducible representation is
g-dimensional.

» If system is translationally invariant, then all eigenstates
are atleast g-fold degenerate




Chern invariant for interacting systems

PHYSICAL REVIEW B VOLUME 31, NUMBER 6 15 MARCH 1985

Quantized Hall d asa logical invariant

Qian Niu, D. J. Thouless,” and Yong-Shi wu'
Depariment of Physics FM-15, University of Seattle, ington 98195
(Received 21 September 1984)

Whenever the Fermi level lies in a gap (or mobility gap) the bulk Hall conductance can be ex-
pressed in a topologically invariant form showing the quantization explicitly. The new formulation
generalizes the earlier result by Thouless, Kohmoto, Nightingale, and den Nijs to the situation
where many-body interaction and substrate disorder are also present. When applying to the frac-
tional quantized Hall effect, we draw the conclusion that there must be a symmetry breaking in the
many-body ground state. The pomb.my of writing the fracti ized Hall asa

pological invariant is also di:

Consequently we can equate o with its average over all
the phases (0<0<2m, 0<@<27) that specify different
boundary conditions, i.e.,
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where d is the degree of the degeneracy, and [dg] is an




Gapless edge states for interacting systems

PHYSICAL REVIEW B 74, 045125 (2006)

General theorem relating the bulk topological number to edge states in two-dimensional
insulators

Xiao-Liang Qi,'? Yong-Shi Wu,* and Shou-Cheng Zhang®!
Center for Advanced Swdy, Tinghua University, Beifing, 100084, China
2Department of Physics, McCdlough Building, Stanford University, Stanford, California 94305-4045, USA
3Department of Physics, University of Utah, Salt Lake City, Utah 84112-0830, USA
(Received 7 April 2006; published 26 July 2006)
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If N>0, then gapless edge states at r<1




Topological order

PHYSICAL REVIEW B VOLUME 41, NUMBER 13
Ground-state y of the fractional Hall states in the presence
of a random potential and on high-genus Riemann surfaces
X.G. Wen*
Insiitute for Theoretical Physics, University of California-Santa Barbara, Santa Barbara, California 93106
Q. Niu
Dep of Physics, University of California-Santa Barbara, Santa Barbara, California 93106

(Received 17 October 1989

The fractional quantum Hall (FQH) states are shown to have g -fold ground-state degeneracy on
a Riemann surface of genus g, where g is the ground-state degeneracy in a torus topology. The
ground-state degeneracies are directly related to the statistics of the quasiparticles given by
@=pw/g. The ground-state degeneracy is shown to be invariant against weak but otherwise arbi-
trary perturbations. Therefore the ground-state degeneracy provides a new quantum number, in ad-
dition to the Hall conductance, characterizing different phases of the FQH systems. The phases
with different g d-s d ies are idered to have different topological orders. For a
finite system of size L, the ground-state degeneracy is lifted. The energy splitting is shown to be at
most of order ¢ ©’%, We also show that the Ginzburg-Landau theory of the FQH states (in the
low-energy limit) is a dual theory of the U(1) Chern-Simons topological theory.

The FQH states and chiral spin states are very special
in the sense that their ground-state properties are not
characterized by the symmetries in their ground states.
The transition from one FQH state (or chiral spin state)
to another is not associated with a charge in the sym-
metries of the states. In this paper we will demonstrate
that the FQH states and chiral spin states contain non-
trivial topological structures. The different FQH states
and chiral spin states may be classified by topological or-
ders.
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Topological order

» Systems with topological order are characterised by
quasi-particles with fractional quantum numbers and
statistics.

» Their universal properties ( quasi-particle quantum
numbers and statistics) are described by topological field
theories.

» Quantum number frationisation occurs in strongly
correlated fermion systems (Hubbard models): Spinons
and Holons of RVB theory. Can be understood in the
framework of emergent gauge fields.

G. Baskaran and P.W. Anderson, Phys. Rev. B 37, 580 (1988)

T. Senthil and Fisher, Phys. Rev. B 62, 7850 (2000)
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Topological Insulators




Topological Insulators: Theory

Prediction of Insulating materials with metallic surfaces

k endi
PRL 95, 146802 (2005) PHXSICAL, REVIEW LETIERS 30 SEPTEMBER 2005

Z, Topological Order and the Quantum Spin Hall Effect

C.L. Kane and E.J. Mele

RAPID COMMUN
PHYSICAL REVIEW B 75, 121306(R) (2007)
Topological invariants of time-reversal-invariant band structures

J. E. Moore'? and L. Balents®

Three dimensional topological invariants for time reversal invariant Hamiltonians and
the three dimensional quantum spin Hall effect

Rahul Roy

arXiv:cond-mat/0607531v3 [cond-mat.mes-hall] 21 Jul 2006

k end
PRL 98, 106803 (2007) PHYSICAL REVIEW LETTERS s

Topological Insul s in Three Di

Liang Fu, C.L. Kane, and E.J. Mele




Topological Insulators: Real materials

nature

physics

ARTICLES

PUBLISHED ONLINE: 10 MAY 2009 | DOI: 10:1038/NPHYS1270

Topological insulators in Bi,Ses, Bi,Te; and Sb,Tes
with a single Dirac cone on the surface

Haijun Zhang', Chao-Xing Liu?, Xiao-Liang Q#*, Xi Dai', Zhong Fang' and Shou-Cheng Zhang®*

Topological insulators are new states of quantum matter in which surface states residing in the bulk insulating gap of such
systems are protected by time-reversal symmetry. The study of such states was originally inspired by the robustness to
scattering of conducting edge states in quantum Hall systems. Recently, such analogies have resulted in the discovery of
topologically protected states in two-dimensional and three-dimensional band insulators with large spin-orbit coupling. So
far,the only known three-dimensional topological insulator is By, which i an aloy with complex surhm states. Here, we
present the results of first-principles electronic st of the layered, rystals Sb,Te;, SbySes,
Bi,Te; and Bi;Se;. Our calculations predict that su,u;, BizTex and BiySe, are topological insulators, whereas SbaSes i ok
These topological insulat consisting of a single Dirac cone at the I" point. In addition,
we predict that Bi,Se, has a topologically non-trivial energy gap of 0.3eV, which is larger than the energy scale of room
temperature. We further present a simple and unified continuum model that captures the salient topological features of this

class of materials.
ature
physics

Observation of a large-gap topological-insulator
class with a single Dirac cone on the surface

LETTERS

PUBLISHED ONLINE:10 MAY 2009 | DO 103038/NPHYS1274

Y.Xia"?, D. Qian'3, D. Hsieh'?, L. Wray', A. Pal', H.

and M. Z. Hasan'26*

Recent experiments and theories have suggested that strong.
spin-orbit coupling effects in certain band insul

She s to 3 paw phase of quantien matw, the s>

caled opologcal Inuater, which ca roscopic

477 Such systems Jotur two-

rios

to describe interacting quas

¥ topologial st with  single Diec ¢

with a superconductor can form the most elementary unit

for porforming aut-tclrset quantum computaton . Hore we

present an angle-resolved copy stu

that reveals the first observation of such a topological state
of matter featuring a single surface Dirac cone realized in

the naturally occurring BizSe, class of materials. Our results,

, A.Bansil*, D. Grauer®, Y. S. Hor®, R. J. Cava®

work as a matrix material to observe a variety of topological
quantum phenomens.

“The topological-insulator character of BiSb™ led us to inves.
tigate the altcrnative Bi-based compounds (X =S, Te).
The undoped BiySe, i a semiconductor that belongs 1o the class
of themodeatic mateals B, with o rhombobedral crsl

R3m);res 17,18)
e . e Se1 PS4
surements report tha, sthough
gap semiconductor,

Ay depending on

experiments®* nhclt.\\!M\rmul«Jh\\l.mxmn\nmm bewp
tobein the range 0f0.24-03 eV (rcfs 20, 24




Time reversal in Quantum mechanics

U = & My,
If there is an operator 7 such that,

Ty = e ey,
Then the system is time reversal invariant.

Time reversal for Bloch hamiltonians,

Tu(k)e = (6¥ u*(K))a

oY (K)o = h(—k)

Then system is time reversal invariant




Band Pairs

If=




The 2-d Z> invariant

Consider a system with 2 occupied time reversed bands:

» The total Berry flux carried by them will always be zero.

» If the hamiltonian is smoothly perturbed, maintaining time
reversal invariance, and they touch (h(k) becomes
degenerate), it will always happen at pairs of points
(k, —k).

» Time reversal invariance ensures that the flux exchanged
by bands at these two points is always equal.

» The change of flux in each band is always even and hence
the Chern index of each band modulo 2 is invariant under
smooth time reversal symmetric perturbations.

» in general,

is invariant.



The 2-d Z> invariant
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Consequences at the edge

1
L0
0

=]

C.L. Kane and E.J. Mele PRL 95, 146802 (2005)

» Even number of edge pairs (per edge) for § = 0
Odd number of edge pairs (per edge) for § = 1

» No backscattering for a single pair due to time reversal
symmetry.




The 3-d 4> invariants

Parameterise the 3-d torus by —w < k< m, i = x,y, z.
» There are many time reversal invariant planes. eg k; = 0, «.

» The 2-d Z invariants of these planes are all topological
invariants.

» Of these, there are 4 independent invariants which can be
chosen to be,

5X = 5kX:7r; 5}/ = 5ky:7r7 52 = 5kz:7r

00 = Ok, =00k, =
» If 6o = —1, then “strong topological insulator".




Consequences at the surface

4]o:(111)

41011

Liang Fu, C.L. Kane, and E.J. Mele PRL 98, 106803 (2007)

» Even number of surface Dirac cones for § =0
Odd number of surface Dirac cones for § = 1

» Gaplessness for odd number of Dirac points protected by
time reversal symmetry.
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Collaborators

Syed R. Hassan
Sandeep Goyal
Archana Mishra

P.V. Sriluckshmy
(IMSc., Chennai)

David Senechal
(University of Sherbrooke)




The Kitaev Honeycomb Model

Alexei Kitaev,“Anyons in an exactly solved model and beyond", Ann. Phys. (N.Y) 321, 2 (2006)

B
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The Kitaev Honeycomb Model

» Simple exact solution. Same degree of difficulty as 1-d
transverse field Ising model.

» Solution is a spin liquid with topological order, spinons and
non-abelian anyons.

Open problem:
What is the ground state wave function in the spin basis ?

1GS) = > V(X1 Xz, .-, XN) X1, X2, -, XN)




A proposal for engineering the model

eck ending
VOLUME 91, NUMBER 9 PHYSICAL REVIEW LETTERS 29 -\UGUQT 7(103

Controlling Spin Exchange Interactions of Ultracold Atoms in Optical Lattices

L.-M. Duan,' E. Demler,” and M. D. Lukin®
Institute for Quantum Information, California Institute of Technology, me 107-81, Pasadena, California 91125, USA

2Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 25 October 2002; published 26 August 2003)
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2 20 e e Hamiltonian is then given by
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N wl |5 H= —;(rwaﬁaa/a +He) ZU”nm(nm -1

23 he 7
" w7 ——|¢I)T> + U nang, M
i

FIG. 2 (color online). (a) The contours with the three poten-  Here (i, j) denotes the near neighbor sites in the direction
n:flls in the form of Eq. (5). The minima are a&.(he centers of the W, iy are bosonic (or fermionic) annihilation operators,
triangles when ¢, = /2. (b) The illustration of the model tively. for b A f oo, t 5
Hamiltonian (4). (c) The schematic atomic level structure and respeF tvely, .Or .OSOHIC (or ermlonlc) atoms of spin o
the laser configuration to induce spin-dependent tunneling, localized on-site i, and n;, = a a;, .
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The Kitaev-Hubbard Model

t+to?
H= ( ( > Cj+ hC) + UZ NipNjy.
i

(if}a

U — oo, Half filling:

22, . 2t?
Heff = Z (US/ ’ Sj U SaSa>
(if)a

(similar to) J. Chaloupka, George Jackeli and Giniyat Khaliullin, Phys. Rev. Lett. 105, 027204 (2010)
» t'=0, Heisenberg Model
» t'=t, Kitaev Model




The spin dependent hopping term

The t' term breaks time reversal symmetry.

/ _a ¢ _a
C,-T<t+t0 )Cj+h.c—> T— C,T<t fo )Cj+h.c

2 2

A time reversal symmetric term,

t+ it'o? t+ it'o?
C,T< 5 )Cj+h.c—>T—>C,-T< 5 >Cj+h.C

Does not give the Kitaev model at large U, half filling.




B 0 (k)

— \Zf(k) O

— t t, z —iky _x iko _y
= Ef(k)+§<g +e MoX e 0')

_ 1+e—ik1 +eikg

12 /
_ i\/e%+ £ 1B(o)
= (1 —t'sinky +cosky + cos k) X
+ (14 cosky — t'sink, + cos k3) y
+ (1 +cosky +cosk, — t'sinks) 2
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=0, =0.1
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0.717

The bands overlap for t' < /7 — /6




=0, =09
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The bands overlap for t' < /7 — /6




U = 0: Chern Numbers
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“Hall conductance" at 1/4 filling
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The Pancharatnam-Berry curvature for each band is given by
oo (1) — S PO ( 1\ 9. 0P (k)
PB™ (K) = 5 (8,(1) (k)9,0P" (k) H.c.)

The “Hall conductivity" is

2
/dk Ze — eppr (K))PBPP




Angular momentum

The Orbital magnetization of Bloch electrons of the band pp’ is

d’k
Mpp = Zeh/(zﬂ)g@(ﬂ—epp’(k))

X (OkOPP|(Hi + eppr (K) — 211)| Ok DPP),




Interactions

Is the physics stable against interactions ?
» Does the gap persist ?
» Do the chiral edge states persist ?




Variational Cluster Approximation

Cluster Perturbation Theory:

HeHet T
Glk.w) ~ (G5 () + T(R))*1

Variational Cluster Approximation:
dw d?k
m (2r)2

Minimize the grand potential with respect to the variational
parameters h.

Q(h) ~ Qe(h) + / In det (1 — T(K) Go(k. i)




The cluster

{ a»=d '
3 cz b— ----- g
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Variational parameters: M the total magnetization and ., the
cluster chemical potential.




The gap
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The edge states

PBC




The edge states

estitug,




AFQHE: Warm up problem

v

Haldane model with nearest neigbour interactions,

lnt v Z n; nj

v

Mean field theory:

miny ~ (i€l G+ h.c) — Ixy?

v

We find solutions corresponding to » = 1/3 (one third of
lower band occupied).

Interpretation in terms of composite fermions: Wave
function ?

Generalising to Kitaev-Hubbard using VCPT ?

v

v




' = 0 at half filling

Vol 464]8 Aprl 2010]dok10.1038/ nature08942 nature

ARTICLES

Quantum spin liquid emerging in
two-dimensional correlated Dirac fermions

Z.Y.Meng!, T. C. Lang’, S. Wessel', F. F. Assaad” & A. Muramatsu’

AgglK)/t ’
0.2 0.2
A, (6)
0.1 0.1
SM
oe 5 0
2 2:5

unt

Figure 1| Phase diagram for the Hubbard model on the honeycomb lattice
at half-filling. The semimetal (SM) and the antiferromagnetic Mott
insulator (AFMI) are separated by a gapped spin-liquid (SL) phase in an
intermediate-coupling regime. 4,,(K) denotes the single-particle gap and 4
denotes the spin gap; m, denotes the staggered magnetization, whose
saturation value is 1/2. Error bars, s.e.m. Inset, the honeycomb lattice with




t/

At U = 0, Dirac points persist at all t/
AtU/t >> 1,

H=Hk-2Y 5§
i)

J. Chaloupka, George Jackeli and Giniyat Khaliullin, Phys. Rev. Lett. 105, 027204 (2010)
§ Z 4
H — HK - )\ Si N Sj
(i)

S. Mandal, Subhro Bhattacharjee, K. Sengupta, R. Shankar and G. Baskaran, Physical Review B 84, 155121 (2011)

» The Spin Liquid remains till A ~ 0.1

» From A ~ 0.1 to A = 1, an Antiferromagnetic phase
g = (0, ).

» A > 1, Neel phase g = (0,0).




The question

Semi Metal Top. Spin Liauid

AF Insulator

t'/t
/0.

0.4

0.2

AF INSULATOR

Semi Metal 5 10 15
U/t




Time reversal symmetry

» Kitaev model (U — o) is time reversal symmetric (TRS)
but microscopic theory is not. What happens at
intermediate U ?

» At ' =0, system is time reversal symmetric (TRS). Can
the spin liquid near t' = 0 be continously connected to the
spin liquid near t' =1 ?

» Result: Particle-Hole symmetry in this model implies that
the Mott phase is TRS. Proof to all orders in t/U, t'/U
perturbation theory




The Phase Diagram
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Future work

» Nature of the spin liquid phases at half-filling.
» AFQHE states at less than quarter filling.
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