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WHY ARE YM(2), YM(3) IMPORTANT?

Yang-Mills (2) or Yang-Mills (1+1):

• No propagating degrees of freedom

• Exactly solvable on any Riemann surface (WITTEN; GROSS & TAYLOR)

Yang-Mills (3) or Yang-Mills (2+1):

• Super-renormalizable, no difficulties with running coupling constant, dimensional

transmutation

• Has propagating degrees of freedom

• YM(3) describes the high temperature phase of real QCD

• SUSY YM (2+1) and SUSY YM-CS relevant to M2 and D2 branes; e.g., D2 flow to

CFT usesN = 8.

• May give some insights into YM (4)

Yang-Mills (4) or Yang-Mills (3+1):

• Most interesting and physically relevant case, but too difficult
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SEVERAL APPROACHES TO YANG-MILLS

Perturbation theory

• Spectacularly successful, but limited in kinematic regime

Qualitative analyses of nonperturbative structure

• Work in the 70s and early 80s clarified many general features such as confinement,

chiral symmetry breaking (with matter added)

Lattice gauge theory

• Very good numerical results for many quantities (spectrum, some matrix elements,

etc.)

• Physics behind many features unclear

Geometry of configuration space (FEYNMAN, SINGER, etc.)

• This has promise as a complementary approach

• We will explore this approach in this talk for the 2+1 dimensional theory
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A PLAN

Generalities

Feynman’s attempt

Volume forA/G∗

Argument for the wave function

Volume forA/G∗, 3-d considerations

SUSY theories

• N = 1

• N ≥ 2
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DEFINING THE FRAMEWORK FOR YM (2+1)

Consider SU(N) Yang-Mills theory in 2+1 dimensions, i.e., on R2,1.

The gauge potential (connection) A is of the form A = (−ita)Aa
µdxµ where ta are hermitian

N × N matrices forming a basis for the Lie algebra of SU(N)

The action for the theory is

S = −
1

2 e2

∫
d3x Tr(FµνFµν) =

1
4 e2

∫
d3x Fa

µνFaµν

F = dA + A ∧ A =
1
2

(−i ta) Fa
µν dxµ ∧ dxν

e2 is the coupling constant with the dimension of mass.

We use a Hamiltonian analysis. Of the three components A0, Ai, (i = 1, 2), we can set

A0 = 0 as a gauge choice.

The action and the Hamiltonian are then

S =

∫
d3x

1
2

[
e2 ȦaȦa −

BaBa

e2

]
, Ba = Fa

12

H =
1
2

∫
d2x

[
e2E2 +

B2

e2

]
=

∫
d2x

[
−

e2

2
δ2

δAa
i δAa

i
+

B2

2 e2

]
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DEFINING THE FRAMEWORK FOR YM (2+1) (cont’d.)

The statement about mass gap is that the spectrum of this Hamiltonian has a gap; the

lowest excited state is separated from the vacuum by an energy gap.

In perturbation theory (a fair approximation for modes of large momenta compared to e2),

the excitations are ”gluons” with E ∼ p. So a nonzero mass gap can be useful in excluding

gluons from the spectrum.

Define

A = {Space of all smooth gauge potentials (connections) on R2}

G∗ = {g(~x) : R2 → SU(N), g→ 1 as |~x| → ∞}

Gauge transformations act on A as

A→ Ag = g−1 A g + g−1dg, g ∈ G∗

The physical configuration space (or gauge orbit space) is C = A/G∗.

• The kinetic term of the Hamiltonian is to be defined as a Laplacian on C

• Wave functions are functions on C, because of the Gauss law
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THE GAUGE ORBIT SPACE

As a fiber bundle, (A,G∗, C) is nontrivial (∃ Gribov problem)

A is an affine space, but it is easy to see that C has very nontrivial topology and geometry.

For example, Π2[C] = Z. (There are many other nonzero Πn, n > 2 as well.)

Feynman (1981) suggested the reason for the mass gap is that the distance between any

two points in C cannot become arbitrarily large.

The wave functions (on C) on which the Laplacian acts cannot have arbitrarily long

wavelengths, so there should be a gap.

Singer pointed out that this cannot be true.

The physically relevant metric forA is given by the Euclidean distance. For C, we define

s2(A,A′) = −Infg
∫

d2x Tr(A′ − Ag)2
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THE GAUGE ORBIT SPACE (cont’d.)

Consider, as an example, in SU(2) gauge theory

An = (−it3) i n (z z̄)n−1 (z dz̄− z̄ dz)

[1 + (z z̄)n]

Fn = (−it3) (−4 n2)
(z z̄)n−1

[1 + (z z̄)n]2
dx1 ∧ dx2 (Nothing pathological)

where z = x1 − i x2, z̄ = x1 + i x2.

In this case,

s2
C(A, 0) = 8πn

For any value L2, we can find an A, namely, An, with n ≥ (L2/8π), for which s2(A, 0) > L2.

These are the so-called “spikes” on C.

A long wavelength standing wave on such a spike can have arbitrarily low energy,

seemingly vitiating Feynman’s argument.
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THE GAUGE ORBIT SPACE (cont’d.)

May be not ! It could be similar to the 2-dim Schrödinger problem

H = −
∇2

2M
+ λ(x2 + x2y2)

The potential is zero along the y-axis, (x = 0), and one can, a priori, think of long

wavelength wave functions along this direction.

The valley along the y-axis gets narrower as x becomes large. The zero-point energy of

transverse directions (roughly, ω ∼
√

1 + y2 ) lifts the potential.

Something similar could happen for YM, but we need a measure for the transverse

directions.

This can be done as follows
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CALCULATING THE VOLUME ELEMENT ON C

Parametrization of potentials: A0 = 0 and we use complex coordinates z = x1 − ix2 with

1
2 (A1 + iA2) = −∂M M−1, 1

2 (A1 − iA2) = M†−1∂̄M†

M ∈ SL(N,C), for gauge group SU(N). (More generally, G⇒ GC.)

H = M†M ∈ SL(N,C/SU(N) is the basic gauge-invariant variable we need.

The variation of the potentials is given by

δA = −D(δMM−1) δĀ = D̄(M†−1δM†)

We then have

ds2
A =

∫
d2x Tr(δAδĀ) =

∫
Tr
[
(M†−1δM†)(−D̄D)(δMM−1)

]
ds2

SL(N,C) =

∫
Tr(M†−1δM† δMM−1)

dµA = det(−D̄D) dµ(M,M†)︸ ︷︷ ︸
Haar measure for SL(N,C)
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CALCULATING THE VOLUME ELEMENT ON C (cont’d.)

We can split the SL(N,C) volume element as

dµ(M,M†) = dµ(H)︸ ︷︷ ︸ dµ(U)︸ ︷︷ ︸
Haar for SL(N,C)/SU(N) Haar for SU(N)

dµA = det(−D̄D) dµ(H) dµ(U)

For the gauge-orbit space

dµ(C) = det(−D̄D) dµ(H)

= dµ(H) exp [2 cA Swzw(H)]

Swzw(H) is the Wess-Zumino-Witten (WZW) action,

Swzw(H) =
1

2π

∫
Tr(∂H∂̄H−1)−

i
12π

∫
Tr(H−1dH)3

cA δab = famnfbmn = N δab for SU(N).
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CALCULATING THE VOLUME ELEMENT ON C (cont’d.)

The inner product for wave functions is then

〈1|2〉 =

∫
dµ(H) exp[2 cA Swzw(H)] Ψ∗1 Ψ2

Remarks:

• The essential step is an anomaly calculation, so this result is robust, independent of

the regulators used.

• Integration with dµ(C) is equivalent to the calculation of correlators in the hermitian

WZW model, so it can be done unambiguously (GAWEDZKI & KUPIAINEN)

• The same result is obtained by taking a suitable limit in the exact solutions of the

2-dimensional YM theory (WITTEN; GROSS & TAYLOR; SENGUPTA; ASHTEKAR et al)

• In terms of the magnetic field B,

dµ(C) ∼ dµ(H) exp
[
−

cA

2π

∫
B

1
p2

B + ...

]
showing a sharp cutoff for modes of small momenta p. This is the essence of the

mass gap.
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THE HAMILTONIAN FOR YM(2+1)

The Hamiltonian and the wave functions can be expressed as functions of the (scaled

version of the) current J = (cA/π) ∂H H−1.

The Wilson loop operator is given by

W(C) = TrR Pe−
∮

C A = Tr P exp
(
π

cA

∮
C

J
)

All gauge-invariant quantities can be made from J.

The Hamiltonian is given by

H = m
[∫

u
Ja(~u)

δ

δJa(~u)
+

∫
u,v

(
cA

π2

δab

(u− v)2
− i

fabc Jc(~v)

π(u− v)

)
δ

δJa(~u)

δ

δJb(~v)

]
+

π

mcA

∫
u

: ∂̄Ja(u) ∂̄Ja(u) :

where m = e2cA/2π.
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AN ASIDE ON REGULARIZATION

All calculations have to be done with proper regularization.

We start with a regularization of the δ-function

δ(2)(u,w) =⇒ σ(~u, ~w, ε) =
1
πε

exp
(
−
|u− w|2

ε

)
This is equivalent to

Ḡ(~x,~y) =
1

π(x− y)

=⇒ Ḡ(~x,~y) =

∫
u

Ḡ(~x,~u) σ(~u,~y; ε)H(u, ȳ)H−1(y, ȳ)

This simplifies as

Gma(x, y) =
1

π(x− y)

[
δma − e−

(x−y)2

ε [H(x, ȳ)H−1(y, ȳ)]ma

]
All results checked using regularized expressions, with a single regulator from beginning

to end.

V.P. NAIR Gauge Orbit Space March 14, 2012 14 / 32



THE VACUUM WAVE FUNCTION: A INDIRECT ARGUMENT

Absorb exp(2 cASwzw) from the inner product into the wave function by Ψ = e−cASwzw(H)Φ.

The Hamiltonian acting on Φ is

H → e−cASwzw(H) H e−cASwzw(H)

Consider H = etaϕa ≈ 1 + taϕa + · · · , a small ϕ limit appropriate for a (resummed)

perturbation theory. The new Hamiltonian is

H =
1
2

∫ [
−
δ2

δφ2
+ φ(−∇2 + m2)φ+ · · ·

]

where φa(~p) =
√

cA pp̄/(2πm) ϕa(~p).

The vacuum wave function is

Φ0 ≈ exp
[
−

1
2

∫
φa
√

m2 −∇2 φa
]
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THE VACUUM WAVE FUNCTION (cont’d.)

Transforming back to Ψ,

Ψ0 ≈ exp

[
−

cA

πm

∫
(∂̄∂ϕa)

[
1

m +
√

m2 −∇2

]
(∂̄∂ϕa) + · · ·

]

The full wave function must be a functional of J. The only form consistent with the above is

Ψ0 = exp

− 2π2

e2c2
A

∫
∂̄Ja(x)

[
1

m +
√

m2 −∇2

]
x,y

∂̄Ja(y) + · · ·


since J ≈ (cA/π)∂ϕ+O(ϕ2).

This indicates the robustness of the Gaussian term in Ψ0, since this argument only

presumes

1. Existence of a regulator, so that the transformation Ψ⇐⇒ Φ can be carried out

2. The two-dimensional anomaly calculation
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STRING TENSION

For modes of low momenta, this has the form

Ψ0 ≈ exp
[
−
∫

B2

4m e2

]
For the expectation value of the Wilson loop, this gives

〈W(C)〉 = 〈TrR Pe−
∮

C A〉 = exp (−σR Area(C)) , σR = e4 cAcR

4π

This agrees, within 2%, with numerical simulations for SU(2) to SU(6) (12

representations), G2 (8 representations) and to within 1% of the extrapolated large N limit.

(LUCINI & TEPER; BRINGOLTZ & TEPER; HARI DASS & MAJUMDAR; KISKIS & NARAYANAN;

WELLEGHAUSEN et al)

This is nice, but not the main point for today.

We want to relate the measure calculation to three-dimensional covariant Feynman

diagram calculations, motivated by supersymmetric theories.
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dµ(C) BY A DIFFERENT ARGUMENT

For the calculation of the measure, the action is not important, so we can consider the

Chern-Simons theory

SCS = −
k

4π

∫
Tr
[

A dA +
2
3

A3
]

= −
k

4π

∫
d3x εµνα Tr

[(
Aµ∂νAα +

2
3

AµAνAα
)]

We can take the level number k = 0 at the end.

In a Hamiltonian quantization, the wave functions obey the Gauss law[
D

δ

δA
−

k
2π
∂̄A−

∑
r

(−i ta)(r)δ
(2)(x− xr)

]
Ψ = 0

The state with no charges and the state with two (conjugate) charges are given by

Ψ0 = χ0 exp(k Swzw(M))

Ψ2 = χ(z1, z2) M(1) M−1(2) Ψ0
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dµ(C) BY A DIFFERENT ARGUMENT (cont’d.)

The normalizations are determined by

I0 = |χ0|2
∫

dµ(H) exp[k̄ Swzw(H)] = 1

I2 = |χ(z1, z2)|2
∫

dµ(H) exp[k̄ Swzw(H)] H(1) H(2)−1 = 1

We know from previous result that k̄ = k + 2 cA, but for the moment, we will pretend that

it is not known.

The correlators are determined by the Schrödinger equation (identical to the

Knizhnik-Zamolochdikov (KZ) equation) and shows that

• χ(z1, z2) obeys the KZ equation for level k SU(N) WZW model, i.e., with parameter

κ = k + cA

• The H-correlators obey the same KZ equation with parameter −k̄ + cA

• The z-dependence of the |χ(z1, z2)|2 must be canceled by the H-correlator, so we get

−(k + cA) = −k̄ + cA, or k̄ = k + 2 cA
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dµ(C) BY A DIFFERENT ARGUMENT (cont’d.)

Finally, we know that we can determine the χ’s and Wilson loop expectation value by a

covariant 3-dim calculation via the effective action for the CS theory.

One-loop calculations (with no further renormalizations) give the shift k→ k + cA going

from SCS to the effective action.

Combining everything, we can find the shift from the Feynman diagrams and then use the

arguments above to fix the volume element.

For supersymmetric theories, the known shifts from the Feynman diagrams are (PISARSKI &

RAO; KAO, LEE & LEE)

k→


k + cA N = 0

k + cA/2 N = 1

k N ≥ 2
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dµ(C) BY A DIFFERENT ARGUMENT (cont’d.)

Correspondingly, the volume elements should be

dµ(C) = dµ(H) exp
(

k̄ Swzw(H)
)

d [Fermions]

k̄ =


2 cA N = 0

cA N = 1

0 N ≥ 2

The expectations for SUSY YM are then:

• We can have mass gap forN = 0, 1, no gap expected forN ≥ 2

• ForN = 1, one has to add a CS term for the YM theory for consistency (because of

the parity anomaly), so there is always a mass gap (WITTEN; ELLIOTT & MOORE)

• ForN = 2, one expects zero gap from other considerations, but a stable

suspersymmetric vacuum may not exist. (SEIBERG & WITTEN; GOMIS & RUSSO; UNSAL;

AHARONY et al)

• ForN = 4, there is no mass term with unbroken supersymmetry (SEIBERG & WITTEN)

• N = 8 is expected to flow to a CFT (SEIBERG; AHARONY et al; HERZOG et al)
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EXPLICIT CALCULATIONS IN THE SUSY THEORY

We can further check these expectations by explicit calculations

Consider a Majorana field Ψ = (ψ,ψ†) in the adjoint representation of SU(N).

There are two ways to go to gauge-invariant variables:

Choice I χa

χa†

 =

(M−1)abψb

(M†)abψb†


Choice II χa

χa†

 =

 (M†)abψb

(M−1)abψb†


where Mab = 2 Tr(ta M tb M−1) is the adjoint representative of M.

Calculate the Jacobian of the transformation to the new variables χ by integrating small

variations in M to obtain

[dψ dψ†] = [dχ dχ†] exp (±cASwzw(H) )

(Upper plus sign for Choice I, lower minus sign for Choice II.)
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THE N = 1 THEORY

The action is

S =

∫ [
−

1
4 e2

Fa
µνFaµν −

i
2e2

Ψ̄a(γµDµΨ)a −
k

4π
Tr
(

Aµ∂νAα −
2
3

AµAνAα
)
εµνα

+i e2Tr Ψ̄Ψ
]

The supercharges are given by

Q† =

∫
(i Ψ†γi δ

δAi +
1
e2
ψ†B), Q =

∫
(i γiΨ

δ

δAi +
1
e2
ψB)

Carrying out the change to H for the gauge fields, the supercharge becomes

Q = i
∫

x
ψa† (x)Mab(x)︸ ︷︷ ︸

χ†b

[∫
y
G(x, y)pb(y) +

k
4cA

J̄b(x)

]
−

1
e2

2π
cA

∫
ψa(M†−1)ab︸ ︷︷ ︸

χb

∂̄Jb

This identifies Choice II as the proper change to gauge invariant variables for the fermions.
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THE N = 1 THEORY (cont’d.)

The wave functions are of the form

Ξ = exp
(

k
2

[
Swzw(M†)− Swzw(M) + Swzw(H)

])
Φ(H, χ, χ†)

Absorbing the exponential factor into the measure, the inner product for Φ’s involves

dµ = dµ(H) exp [(k + (2− n)cA) Swzw(H)]

where we know n = 1 from previous arguments, but leave it as n for now.

We obtain the supercharges (in terms of the gauge-invariant variables) and the

Hamiltonian is given byH = 1
2{Q,Q

†}. The terms relevant for the mass are

H =
e2

4π
(k + 2 cA − n cA)

∫ [
Ja δ

δJa + χa†(H−1)ab χb + · · ·
]

We see equality of boson and fermion masses with a value 1
2 m = (e2cA/4π).
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THE N = 2, 4 THEORIES

The action is

SYM = −
1

4 e2

∫
Fa
µνFaµν −

1
2 e2

∫
Dµφa

ADµφa
A +

1
2 e2

∫
Fa

AFa
A

−
i

2e2

∫
ψ̄a

I γ
µDµ ψa

I −
i

2 e2

∫
ω̄a γµDµ ωa −

i
2 e2

∫
εABC ψ̄

a
A ψ

b
B φ

c
C f abc

+
i

e2

∫
ψ̄a

A ω
b φa

A f abc −
1

4 e2

∫
f abcf amn φb

B φ
c
C φ

m
B φ

n
C

SCS = −
k

4π
εµνρ

∫
Tr (Aµ∂νAρ +

2
3

AµAνAρ)

+
k

8π

∫ (
−i ψ̄a

I ψ
a
I + i ω̄a ωa + 2 Fa

A Φa
A −

1
3

f abcεABC φ
a
A φ

b
B φ

c
C

)

Fermions are ωa and ψa
A, A = 1, 2, 3, corresponding to an SO(3) R-symmetry.

Setting ω, φ1, φ2, ψ3 = 0 =⇒ N = 2 theory
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THE N = 2, 4 THEORIES

The supercharge contains, among other terms,

Q =

∫ [
iψa† δ

δAa + εIJKψ
a
J

(
Πa
φK

+ i
k

4π
φa

K

)
− ωa

(
Πa
φI
− i

k
4π
φa

I

)
+ · · ·

]
The choice of gauge-invariant fermion variables is Choice II for ψa; this follows from the

term connecting it to Aa.

Given this, ωa must go with Choice I.

So we get −2 cA from two of the three φ’s; the contribution of the third φ and ω cancel out.

i.e., n = 2,

dµ = dµ(H) exp [(k + (2− n)cA) Swzw(H)] = dµ(H) exp [k Swzw(H)]→ dµ(H)

Independently, we can check that the SUSY algebra

{Q,Q†} = 2H, [Q,H] = 0

requires n = 2.
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CONCLUSION

The geometry of the gauge orbit space seems to be at the heart of the mass gap question

for Yang-Mills theories

There are direct and indirect ways to get some understanding of the gauge orbit space

The expectations for the mass gap based on the geometry of C are consistent with other

arguments.

Thanks to my collaborators:

DIMITRA KARABALI; CHANJU KIM; ABHISHEK AGARWAL; ALEXANDR YELNIKOV

Thank You
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Additional Slides
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3+1 DIMENSIONS ?

There may be a useful generalization to 3+1 dimensions. Define

dµ(C)3d =
[dA]

vol(G∗)
exp

(
−

1
4µ

∫
F2
)]

µ→∞

This leads to

∫
dµ(C)3d =

∫
[dA]

vol(G∗)
e
(
− 1

4µ
∫

F2
)]
µ→∞

= 〈0| e−βH |0〉
]
β,µ→∞

=

∫
dµ(C)2d Ψ∗0 Ψ0

]
µ→∞

=

∫
dµ(C)2d exp

(
−

π

2µ2cA

∫
F2
)
<∞

V.P. NAIR Gauge Orbit Space March 14, 2012 29 / 32



CALCULATIONS ON THE TORUS, DECONFINEMENT

On the torus, the Hamiltonian has a part which is Laplacian for the zero modes,

Az = M
[

iπ a
Im τ

]
M−1 − ∂zM M−1

As one of the torus directions becomes small, there is an accumulation of the eigenvalues

of the Laplacian for the zero modes.

This could be the signal for deconfinement.
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COMMENT ON GRIBOV PROBLEM

The space of gauge potentials has the bundle structure

G∗ → A

↓

A/G∗

This bundle is nontrivial. In particular, Π2(A/G∗) = Z and Πn(A) = 0. There are

noncontractible 2-spheres inA/G∗

An example of such a configuration is

H = cosh 2 f + J sinh 2 f

f =
1
2

log
(

z z̄ + w w̄ + µ2

z z̄ + w w̄

)
w, w̄ are coordinates of the 2-sphere inA/G∗.
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COMMENT ON GRIBOV PROBLEM (cont’d.)

The matrix J is given by

J =

z z̄− w w̄ 2 w̄ z

2 w z̄ w w̄− z z̄


w = 0, z = 0 is a singular point. Move singularity to another point by

H→ V H V̄, V̄ = exp
[
σ3

(
log

z̄
z̄− ā

)]

Swzw(H) unchanged, finite. The volume element is insensitive to this problem.
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