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Abstract

I overview how to reduce the index pairing for a suspension ΣA of algebra
A to the index pairing for A itself.
This is applied to quantum instanton bundles of arbitrary charges over non-
commutative deformations of the sphere.
Based on arXiv:math/0702001 with T. Hadfield, P. M. Hajac, R. Matthes.



I’ll review and put in general context a number of recent index computations for noncom-

mutative instanton bundles.

Classically: vector bundle→ conection→ curvature→ Ch→ #

that depends only on the equivalence class of the bundle, i.e. its K0 class†.
In NCG a topological space, as motivated by Gelfand-Naimark, corresponds to a C*-algebra,

while a topological vector bundle, as motivated by Serre-Swan, corresponds to a finitely-

generated projective module (over C*-algebra of the underlying noncommutative space).

The kind of C*-algrebras discussed here is suspension ΣA of another C*-algebra A.

The K0-classes of are certain equiv. classes of projectors (idempotents suffice).

I’ll focus on computing appropriate index pairings.

† no fear, cf. string th.



For that, employ the Mayer-Vietoris 6-term exact sequences for K-theory and K-homology

and take advantage of the compatibility of the index pairing < , > with the connecting

maps [HR, BM]

∂ : K1(A) −→ K0(ΣA) and δ : K0(ΣA) −→ K1(A).

This considerably simplifies computations by reducing them from ΣA to A.

Now K1(A) consists of (equiv. classes of) unitaries u ∈MN(A) (invertible suffice).

I’ll give ∂ [Ba, GH04] by an explicit expression for an idempotent p in the matrix algebra

M2N(ΣA) in terms of u.



Of particular interest is the case K1(A) = Z. Then I take u whose class generates

K1(A), and consider idempotents pn (n ∈ Z) entering the definition of ∂[un].

(ΣA)2Npn is a finitely-generated projective left ΣA-module (of sections) of our non-

commutative vector bundle.

For A = C(S3), ΣA = C(S4) this yields the module of continuous sections of the

classical instanton vector bundle of charge n over S4 = ΣS3 [At, pp. 14-27].

This formalism serves as a common denominator for both the SUq(2) and θ-deformed

instanton bundles, and computes the index pairings for all instanton idempotents pn.

The former construction [Pfl, DLM] is based on the non-reduced suspension of the quantum

SU(2) group [Wo87], whereas the latter [CL] is based on the non-reduced suspension of

the θ-deformation of S3 [Mat].



The (non-reduced) suspension

ΣA := { f ∈ C([0,1], A) | f(0), f(1) ∈ C }

can be identified with the fiber product (glueing) over A of cones of A

B0 = { f ∈ C([0,
1

2
], A) | f(0) ∈ C }, B1 = { f ∈ C([

1

2
,1], A) | f(1) ∈ C }

via

ΣA 3 f 7→ (f |
[0,12]

, f |
[1
2,1]

) ∈ B0 ×A B1 ⊂ B0 ⊕B1 . (.1)

Fig.



K-theory of ΣA can be described by the Mayer-Vietoris 6-term exact cyclic sequence, but

since cones are contractible,

K0(Bi) = Z, K1(Bi) = 0

it reduces to the exact sequence

0 //K1(A) ∂ //K0(ΣA)
r0∗⊕r1∗// Z⊕ Zπ1∗−π0∗// K0(A) //K1(ΣA) // 0 ,

where ri : ΣA→ Bi are the restrictions and πi : Bi → A are both given by f 7→ f(1
2).



Assume that K0(A) = Z with generator [1], where 1 is the unit of A, and that

K1(A) = Z with generator denoted by [u]. It follows that

K0(B0)⊕K0(B1)
π1∗−π0∗// K0(A)

is surjective, and thus K1(ΣA) = 0.

Moreover K0(ΣA) = Z2, with one generator given by [I], where I(t) = 1.

Next, the map ∂ : K1(A)→ K0(ΣA) is injective and [I] /∈ Im(∂).

Thus the class ∂[u] is the second generator of K0(ΣA).

The map ∂ can be given explicitly.



Let u ∈ GLN(A) (invertible matrix).

Let ψ ∈ C([1/2,1]) s.t. ψ(1/2) = 1 and ψ(1) = 0. (Later further restricted).

Theorem .1. The connecting homomorphism ∂ : K1(A)→ K0(ΣA) reads

∂[u] = [p]− [1N ] , (.2)

where the idempotent p ∈M2N(ΣA) is the product p = X Y of a column × row, of

A-valued functions of t ∈ [0,1]

X =



[
1N
0N

]
if t ∈ [0,1/2][

ψ(2− ψ2) 1N
(1− ψ2)u−1

]
if t ∈ [1/2,1]

,

Y =

{
[1N ,0N ] if t ∈ [0,1/2]

[ψ 1N , (1− ψ2)u] if t ∈ [1/2,1]
.

It can be seen that the components of X and Y are not in ΣA but those of p are (!)

Moreover, Y X = I (constant function I(t) = 1), and so p2 = p.



I mention that for the (reduced) suspension of A,

SA := { f ∈ C([0,1], A) | f(0) = f(1) = 0} (.3)

there is another method of constructing a projection q ∈M2N(SA) in terms of a unitary

u ∈MN(A) [W-O] p.139.

It works as well for the non-reduced suspension ΣA of A and yields

q = TT †, where T =

[
cos2(πt/2)− sin2(πt/2)u

cos(πt/2) sin(πt/2)(u† − 1)

]
(.4)

(† = t ◦ ∗).

This projection (for N = 2) was related to the (complex) Bott projector in [W-O] p.145.



But the Milnor-Bass projection is much more suitable for us:

• It works equally well for both the algebraic [Ba] and C*-algebraic K1 (e.g., see [GH04]).

• More importantly, it is compatible (!) with the pairing < ·, · > of K• with K•,
i.e the connecting maps ∂ and δ are transposed one of the other.

Now, by ’universal coefficient theorem’, if the K-groups Kj are free, then Kj ∼= Kj.

Thus, in our situation

K0(A) = Z, K0(Bi) = Z, K0(ΣA) = Z2 ,

K1(A) = Z, K1(Bi) = 0, K1(ΣA) = 0

and δ : K0(ΣA)→ K1(A) is surjective.



Now, use the Milnor formula the n-th power of the generator [u] of K1(A) = Z, and

obtain an explicit idempotent pn over ΣA.

The compatibility of < ·, · > with (.2), means that the pairing of pn with a preimage

w ∈ K0(B) of the generator 1 of K1(A) ∼= Z under the surjective map δ is

< [pn],w >=< ∂[vn],w >=< [vn], δ(w) >= n < [v],1 > .

(Actually also < [1],w >= 0 used here).



Now, use the Milnor formula the n-th power of the generator [u] of K1(A) = Z, and

obtain an explicit idempotent pn over ΣA.

The compatibility of < ·, · > with (.2), means that the pairing of pn with a preimage

w ∈ K0(B) of the generator z of K1(A) ∼= Z under the surjective map δ is

< [pn],w >=< ∂[vn],w >=< [vn], δ(w) >= n < [v], z > . (.5)

(Actually < [1],w >= 0 also used here).

Thus we reduce the work of Jack (LHS), Jane (RHS) and Jim (=), to just 1 task of 3!

Recall that K1(A) consists of (equivalence classes of) Fredholm modules (A,F,H).

In the rest of my talk the task will be, for certain concrete and natural C*-algebras, to find

and analyze unitaries u and Fredholm modules z, s.t. z = [z].



The classical instanton vector bundle En with charge n ∈ Z.

The base manifold is S4 with a covering consisting of two open 4-discs U0 and U1.

Since U0 ∩U1 is homotopic to S3, we can replace U0 and U1 by the closed 4-discs D4

(cones of S3), and view S4 as twoD4 glued along their boundary 3-spheres: D4 ∐
S3 D4.

In the dual language: the fiber product of algebras of continuous functions.

The bundle En is obtained by glueing U0 × C2 and U1 × C2 over U0 ∩ U1 using

the transition function vn with winding number n ∈ π3(S3) ∼= Z (see [At, p. 15]).

Explicitly, vn : S3 → SU(2) can be described as follows. Let

x = (x0, x1, x2, x3) 7−→
[
α −β∗
β α∗

]
, (.6)

where α = x0 + ix3, β = x1 + ix2, be the well known identification of R4 as a

subalgebra of M2(C), and (after a restriction) of S3 with SU(2). Then, vn is the n-th

(matrix) power of (.6). Clearly vn can be also viewed as a unitary element inM2(C(S3)).



The continuous sections of En form a projective module C(En) over C(S4), namely

C(En) ' (C(S4))4 pn,

where the projection pn ∈M4(C(S4)) is built [Kar] from the transition functions

φ00 = φ11 = 1, φ10 = vn, φ01 = v†n

and a partition of unity f0, f1, subordinated to the covering U0, U1, as follows

pn =

[
f0

√
f0f1v

†
n√

f0f1vn f1

]
= LL†, where L =

[ √
f0√
f1vn

]
. (.7)



Using another identification of R4 with the quaternions H, S3 becomes identified with

H1 = {g ∈ H | ḡg = 1},

where ¯ is quaternionic conjugation, and vn becomes the map raising h 7→ hn, h ∈ H.

(When composed with the inverse of (.6), S3 becomes identified with SU(2)).

Corresponding to well-known homeomorphisms S4 = ΣS3 = HP1, there are three

‘coordinate systems’:

(τ, h), τ ∈ R, h ∈ H ≡ R4, with τ2 + h̄h = 1 (spherical); (.8)

(t, g), t ∈ [0,1], g ∈ H1 ≡ S3 (suspension); (.9)

z, z ∈ R4 ∪ {∞} ≡ H ∪ {∞} (stereographic). (.10)

They are related to each other as follows:

g =
h√

1− τ2
, t =

1 + τ

2
; (.11)

z =

√
t

1− t
g; z =

h

1− τ
. (.12)



In these coordinates the tautological projection in M4(C(HP1)) (that at [l] ∈ HP1

projects on the quaternionic line l in H2) becomes respectively

1

2

[
1− τ h̄
h 1 + τ

]
= HH†, where H =

1√
2

 √1− τ
h√
1−τ

 , (.13)

 1− t
√
t(1− t)ḡ√

t(1− t)g t

 = GG†, where G =

[ √
(1− t)√
tg

]
, (.14)

1

zz̄

[
1 z̄
z zz̄

]
= ZZ†, where Z =

1√
1 + zz̄

[
1
z

]
. (.15)

Note that when g = vn, GG† = pn = LL† of (.7) (choose f0 = 1− t and f1 = t).

Thus all these are equivalent forms of the instanton projection.

Now I’ll relate them to the projection of Theorem .1.



Proposition .2. Let g ∈ U2(C(S3)) be a unitary matrix and GG† be a projection as

above, with G given in (.14). Let a ∈ GL2(C(S3)) be an invertible matrix and X Y

an idempotent as in Theorem .1. If the K1-class of g equals the K1-class of a−1 (i.e. g

and a−1 are homotopic), then the K0-class of GG† equals the K0-class of X Y .

Pf. W.l.g. choose ψ =
√

1− t in Theorem .1. We exhibit a homotopy between X Y

and GG† as a composition of three homotopies. The first one is just from a−1 to g.

The second one ‘expands’ the interval [1/2,1] to [0,1], i.e. for s ∈ [0,1] define

a family of Xs, Y s as in Theorem .1, with ψ substituted by ψs ∈ C([s2,1]), where

ψs(t) := ψ(t+1−s
2−s ). (Note that ψs(s2) = 1, ψs(1) = 0.) Obviously, ψ1 = ψ.

Due to Y sXs = 1, XsY s is an idempotent ∀s ∈ [0,1], and gives a homotopy between

X Y and X0Y 0.

Next, note that for arbitrary V = [v1, v2]T andW = [w1, w2], with v1, v2, w1, w2 ∈
A, if WV is invertible in A then V (WV )−1W is an idempotent in M2(A). Take

now V = rX0 + (1 − r)G and W = rY 0 + (1 − r)G†, where r ∈ [0,1].

We have WV = κr2 − κr + 1, where κ = t(
√
t − 1)2. Clearly κ ∈ [0,1]. If

κ = 0, WV = 1, and if κ 6= 0, then WV is a second order polynomial in r with the

discriminant κ(κ−4) < 0. Hence, ∀r ∈ [0,1], WV is invertible and V (WV )−1W

defines a homotopy via projections between X0Y 0 and GG†. By the composition of

these homotopies, we get the equivalence of the projections as stated. 2



As a consequence the Milnor, Karoubi, spherical, suspension and stereographic are five

equivalent projections.

This proposition (& Pf) remain valid if we substitute C(S3) by any unital C*-algebra.

In particular, for certain noncommutative deformations A of C(S3) and C(S4).

Also what I have said above about different charts etc. remains valid.

I’ll present now such noncommutative examples that satisfiy our assumptions on K-groups,

and a noncommutative deformation of En (in the dual language).

Take A to be the universal unital C*-algebra generated by α, β with relations (c.f. [D])

αβ = qβα , αβ∗ = q̄β∗α , ββ∗ = β∗β , α∗α+ββ∗ = 1 , αα∗+ |q|2ββ∗ = 1 ,

(.16)

where q ∈ C and (without loss of generality) |q| ≤ 1.

The case q = 1 is just (isomorphic to) the commutative unital C*-algebra C(S3).

The case q ∈ R underlies Woronowicz’s quantum group C(SUq(2)) [Wo87].



The quantum SU(2) case

We discuss first the case q ∈ C with 0 < |q| < 1 and denote A by C(S3
q ).

It turns out that all the C*-algebras C(S3
q ) are isomorpic [P. Soltan].

There is a faithful *-representation π of C(S3
q ) on the Hilbert space `2(N × Z), with

basis {em,n}, given by

π(α)em,n = (1− |q|2m)1/2 em−1,n, π(β)em,n = qmem,n+1.

(I identify C(S3
q ) with π(C(S3

q ))).

From [MNW90] it follows that both K-groups of C(S3
q ) are Z and the generator of K0

given by [1] (thus our assumptions are satisfied).

Moreover, K1(C(S3
q )) is generated by the unitary

u em,n =

{
e0,n+1 : m = 0
em,n : m 6= 0

. (.17)

The K1 homology is also Z, generated by the class of the Fredholm module

z = (`2(N× Z), π, F ) , where Fem,n = sign(n)em,n. (.18)



The formulae given in [Co94] express the pairing as

< [u], z >= lim
k→∞

(−)k 2−(2k+1) Tr((u† − 1)[F, u]([F, u†][F, u])k) (.19)

which it is not difficult to compute to be 1.

Instead of this u we want to employ an invertible element of M2(C(S3
q )) that is a

q-deformation of the classical generator (.6)

v =

[
α −q̄β∗
β α∗

]
∈M2(C(S3

q )) . (.20)

That (invertible) v is in fact unitary, follows from (.16).

The class [v] was claimed in [Co] to be nontrivial in K1(C(S3
q )) and its pairing with the

K-homology class of the spectral triple of [CP] was left as an exercise.

In [vSDLSV] the (local) index pairing of v with the unbounded K-cycle (3-summable spec-

tral triple) constructed in [DLSvSV] was computed to be 1.

Since by Connes’ index theorem [Co94] p. 296 this pairing is always integer, so [v] also

must generate K1
∼= Z and in fact [v] = [u].



We show this explicitly in a simpler way by pairing v with the same z ∈ K1 given by (.18)

(F extends to `2(N× Z)⊗ C2 as F̃ = F ⊕ F ). Since [F̃ , α] = 0 = [F̃ , α∗],

[F̃ , v†][F̃ , v] =

[
[F, α∗] [F, β∗]
−q[F, β] [F, α]

] [
[F, α] −q̄[F, β∗]
[F, β] [F, α∗]

]
=

[
f∗f 0
0 −|q|2ff∗

]
where f = [F, β], f∗ = [F, β]∗ = −[F, β∗]. Hence

(v†−1)[F̃ , v]([F̃ , v†][F̃ , v])k = (−)k
[

β∗f(f∗f)k q̄|q|2k(α∗ − 1)f∗(ff∗)k

(α− 1)f(f∗f)k −|q|2k+2βf∗(ff∗)k

]
.

Using

β∗f(f∗f)kem,n = δn,022k+1 |q|2km+2m em,0

−βf∗(ff∗)kem,n = −δn,122k+1|q|2km+2m em,1

it follows that

Tr(v†−1)[F̃ , v]([F̃ , v†][F̃ , v])k =
∞∑
m

(−)k22k+1|q|2km+2m[1−|q|2k+2] = (−)k22k+1 .

Hence from (.19) < [v], z >= 1, as stated.



Let now B = C(S4
q ) := ΣC(S3

q ), see also [Pfl], [DLM]. [DL].

Using in Theorem .1 the n-th power vn ∈ M2(C(S3
q )) of v, n ∈ Z, we obtain the

explicit projector pn ∈M4(C(S4
q )).

Its pairing (.5) with a preimage w ∈ K0(C(S4
q )) of z under the surjective map δ is

< [pn],w >= n . (.21)

This justifies the terminology (quantum) “instanton projection of charge n”.

We mention that a q-deformation of HH† given by (.13) (with charge 1) has been con-

structed in [DLM] and [DL], and with arbitrary integer charge in [L] (without computing

their pairing with K-homology). Since the formulae (.11),(.12) for the change of coordi-

nates are well defined in this noncommutative situation (the variables τ and t being central)

we have also the (q-deformed) equivalent projectors GG† and ZZ† which hence have the

same pairing (as well as their higher charge analogues).



The θ-deformed S3 case

Next pass to the case q ∈ C with |q| = 1 and denote q = λ = eiθ, θ ∈ R, and

A = C(S3
θ ), describing virtual θ-deformed 3-sphere.

Actually, I can and will work with ∞-parameter deformation A = C(S3
Θ), described by

Θ ∈ C([0,1],R) [Mat]. Just set in the commutation rules q = λ = eiΘ(β∗β) (in the

sense of continuous functional calculus).

Both K-groups of C(S3
Θ) are isomorphic to Z and the generator of K0 is given by [1]

(so our assumptions are satisfied). Consider the matrix

v =

[
α −λ̄β∗
β α∗

]
∈M2(C(S3

Θ)), (.22)

which is invertible, and in fact unitary. For Θ = θ ∈ R, its pairing with certain spectral

triple (unbounded Fredholm module) on S3
θ was calculated in [L] to be 1 by reducing to

the index pairing of the classical Dirac operator with the matrix (.6).

Preliminary computations indicate that this is the case also for S3
Θ.



Let now B = C(S4
Θ) := ΣC(S3

Θ). For Θ = θ ∈ R, in [CL] a projection pθ ∈
M4(C(S4

θ )) was introduced, (a θ-deformation of HH† given by (.13)), and the pairing

of pθ with certain spectral triple on S4
θ was shown to be 1.

This was achieved by applying the local index theorem of Connes and Moscovici, which

simplifies considerably provided only the top component of the Chern character does not

vanish. That this holds for S4
θ was shown by a direct computation, containing few hundreds

of terms. Next by another long computation the partial (matrix) trace of the local index

formula was shown to be equal to the chirality operator γ5. The task was then completed

due to the fact that the remaining noncommutative integral to be performed involves the

Dirac operator on S4
θ which is isospectral to the classical one.

Similar computations for certain θ-deformed projectors pθn ∈ M4(C(S4
θ )) yield the

value n for the pairing with v [L], which can thus be called “instanton projections of

charge n”. All these computations acquire a particularly simple explanation in view of the

compatibility of the pairing of K• with K• and the equivalence (homotopy) between pθn
and the projector associated by Theorem .1 to the n-th power vn ∈ M2(C(S3

θ )) of v

given by (.22). Moreover, this extends to the new case of C(S3
Θ).



Final comments

The methods presented above apply to a more general situation of pullback (fiber product).

The related problem of constructing the noncommutative analogue of associated princi-

pal fibre bundles, will be treated elsewhere [DHH].

Our results of computations of pairings of K-groups of A and ΣA should be further

elucidated by finding a natural relation between the Fredholm modules and between the

spectral triples on these algebras (smooth structure, metric and Dirac operator).

It should be mentioned that to get actually the “noncommutative instanton”, one should

next find a noncommutative analogue of the Yang-Mills action with critical points given by

connections with (anti) selfdual curvature.

For other approches to noncommutative instanton vector bundles see [LM, HL, BCT, LPR].

Moreover, different types of non isomorphic C*-algebras of quantum spheres appeared e.g.

in [CD-V], but their K-goups have not been computed yet.
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