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Motivation

Two basic questions about nature are:

Can events in space-time be localized with arbitrary
precision ?
Is there a fundamental and elementary length scale
in nature ?

These issues are related to the space-time structure at
the Planck scale.

Noncommutative Geometry is one of the candidates for
describing physics at that regime.
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Space-time UR

Heisenberg’s Principle
+ =⇒ Space-time uncertainty relations

Einstein’s Theory

A measurement involving space-time coordinates with
an accuracy δ causes and uncertainty in the momentum
∼ 1

δ .

In this process, an energy of the order 1

δ is transmitted
to the system and concentrated for some time in the
localization region. The associated energy-momentum
tensor generates a gravitational field.

The smaller the uncertainties in the measurement of
coordinates, the stronger will be the gravitational field
generated by the measurement.
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Space-time UR

To probe physics at Planck Scale lp, the Compton
wavelength 1

M of the probe must be less than lp, hence
M > 1

lp
, i.e. Planck mass.

When this field becomes so strong as to prevent light or
other signals from leaving the region in question, the
concept of localization becomes fuzzy.

Similarly, observations of very short time scales also
require very high energies. Such observations can also
form black holes and limit spatial resolutions leading to
a relation of the form

∆t∆x ≥ L2, L = fundamental length

.
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Space-time UR

Based on similar arguments, Doplicher, Fredenhagen and
Roberts (1994) arrived at uncertainty relations between
the coordinates, which they showed could be deduced
from a commutation relation of the type

[qµ, qν ] = iQµν

where qµ are self-adjoint coordinate operators, µ, ν run
over space-time coordinates and Qµν is an antisymmetric
tensor, with the simplest possibility that it commutes with
the coordinate operators.
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Noncommutative geometry

An example of noncommutative geometry is provided by
the d-dimensional Groenewold-Moyal spacetime or GM
plane, which is an algebra Aθ(R

N ) generated by elements
x̂µ (µ ∈ [0, 1, 2, · · · , N − 1]) with the commutation relation

[x̂µ , x̂ν ] = iθµν1 ,

θµν being real, constant and antisymmetric in its indices.
This algebra can be represented by functions of commuting
variables with a twisted product

f ∗ g = fei/2
←−

∂ µθµν−→∂ νg = Fθfg.

The ∗ product defines the associative but noncommutative
algebra Aθ(R

N ). The twist element is denoted by Fθ.
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NCG

In the commutative case, we know that general relativity
is a theory invariant under the symmetry group of
diffeomorphisms. Assuming this continues to hold at the
Planck scale where noncommutative geometry is
supposed to be relevant, we must address the issue of
how diffeomorphism symmetry acts on the algebra
Aθ(R

N).

For that, we first discuss how a symmetry group acts on a
general algebra.
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Symmetry on algebra

Let A be an algebra. A comes with a rule for multiplying
its elements. For f, g ∈ A there exists the multiplication
map µ such that

µ : A⊗A → A ,

f ⊗ g → µ(f ⊗ g) .

Now let G be the group of symmetries acting on A by a
given representation D : α → D(α) for α ∈ G. We can
denote this action by

f −→ D(α)f .
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Symmetry on algebra

The action of G on A⊗A is formally implemented by the
coproduct ∆

∆ : G −→ G ⊗ G

The action is compatible with µ only if a certain compatibility
condition between ∆(α) and µ is satisfied. This action is

f ⊗ g −→ (D ⊗ D)∆(α)f ⊗ g ,

and the compatibility condition requires that

µ ((D ⊗ D)∆(α)f ⊗ g) = D(α) µ(f ⊗ g) .
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Symmetry on algebra

The compatibility condition can be expressed in terms of the
following commutative diagram :

f ⊗ g
∆

- (D ⊗ D)∆(α)f ⊗ g

µ(f ⊗ g)

µ

?

- D(α)µ(f ⊗ g)

µ

?

If a ∆ satisfying the above compatibility condition exists, then
G is an automorphism of A. If such a ∆ cannot be found, then
G does not act on A.
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Commutative Diffeos

Diffeos are generated by vector fields defined by

ξ = ξµ ∂

∂xµ

Denote the space of vector fields by V . Commutator of
two vector fields ξ, η ∈ V is another vector field in V given
by by

[ξ, η] = (ηµ(∂µξ
ρ) − ξµ(∂µη

ρ))
∂

∂xρ
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Leibnitz Rule

The Leibniz rule for the diffeos is given by

(ξ(f.g)) = (ξf).g + f.(ξg)

where f, g ∈ A0(R
N ) and are multiplied by the usual

commutative pointwise multiplication rule.

Leibniz rule is equivalent to the coproduct for the diffeos

∆0 : V −→ V ⊗ V, ∆0(ξ) = ξ ⊗ 1 + 1 ⊗ ξ

This coproduct or the Leibnitz rule is compatible with the
multiplication map on the algebra of vector fields

[∆0(ξ),∆0(η)] = ∆0([ξ, η])
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NC Diffeos

In the noncommutative case, we have the algebra Aθ(R
N )

with the multiplication map µθ. Various works, based mainly
on ideas of Drinfeld have shown that

The coproduct ∆0 is not compatible with the multiplication
map µθ.

One can define a new twisted coproduct

∆θ = F−1
θ ∆0Fθ

which is compatible with µθ.

This implies that the Leibniz rule is modified when θ 6= 0.
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Remarks

The diffeomorphism symmetry can be implemented in the
presence of space-time noncommutativity, one possible
way is by using twisted coproducts.

A formulation of NC GR has been proposed by Wess at al
and NC analogue of Einstein’s equations have been
obtained.

However, the solutions of the NC gravity equations are
very hard to find. Only a few exact solutions in lower
dimensions are known.
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Remarks

In our approach, we start with a commutative solution of
Einstein’s equations, and then find the Poisson brackets
of the space-time variables which are consistent with the
geometry of the solution.

The noncommutative gravity solutions is then obtained by
representation of the algebra as operators, or by
“quantization”.

We shall do this for BTZ black holes in 2+1 dimensions.
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BTZ

The metric for the BTZ black hole in terms of Schwarzschild-like coordinates (r, t, φ) is
given by

ds2 =

„

M −
r2

ℓ2
−

J2

4r2

«

dt2 +

„

−M +
r2

ℓ2
+

J2

4r2

«−1

dr2 + r2

„

dφ −
J

2r2
dt

«2

,

0 ≤ r < ∞ , −∞ < t < ∞ , 0 ≤ φ < 2π ,

where M and J are the mass and spin, respectively, and Λ = −1/ℓ2 is the
cosmological constant.

For 0 < |J | < Mℓ, there are two horizons, the outer and inner horizons, corresponding
respectively to r = r+ and r = r−, where

r2
± =

Mℓ2

2



1 ±

»

1 −

„

J

Mℓ

«2– 1
2

ff

The metric is diagonal in the coordinates (χ+, χ−, r), where

χ± =
r±

ℓ
t − r∓φ ,
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BTZ

The manifold of the BTZ black hole solution is the
quotient space of the universal covering space of AdS3 by
some elements of the group of isometries of AdS3.

Let AdS3 be spanned by coordinates (t1, t2, x1, x2)

satisfying

−t21 − t22 + x2
1 + x2

2 = −ℓ2

Alternatively, one can introduce 2 × 2 real matrices

g =
1

ℓ





t1 + x1 t2 + x2

−t2 + x2 t1 − x1



 detg = 1 ,

belonging to the defining representation of SL(2, R).
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BTZ

The isometries correspond to the left and right actions on
g,

g → hLghR , hL, hR ∈ SL(2, R)

Since (hL, hR) and (−hL,−hR) give the same action, the
connected component of the isometry group for AdS3 is

SL(2, R) × SL(2, R)/Z2 ≈ SO(2, 2)

.
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BTZ

The BTZ black-hole is obtained by discrete identification of points on the universal covering
space of AdS3. This ensures periodicity in φ, φ ∼ φ + 2π. The condition is

g ∼ h̃Lgh̃R , h̃L, h̃R ∈ SO(2, 2)

where

h̃L =

0

@

eπ(r+−r
−

)/ℓ 0

0 e−π(r+−r
−

)/ℓ

1

A , h̃R =

0

@

eπ(r++r
−

)/ℓ 0

0 e−π(r++r
−

)/ℓ

1

A

Thus,

BTZ =
AdS3

< (h̃L, h̃R) >

where < (h̃L, h̃R) > denotes the group generated by (h̃L, h̃R).
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BTZ

The identification breaks the SO(2, 2) group of isometries
to a two-dimensional subgroup GBTZ , consisting of only
the diagonal matrices in {hL} and {hR}.

GBTZ is the isometry group of the BTZ black hole.

We shall now discuss the deformation of this solution.
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NC BTZ

For generic spin, 0 < |J | < Mℓ (and M > 0), we shall search for Poisson brackets for the
matrix elements of g which are polynomial of lowest order. They should be consistent with
the quotienting, as well as the unimodularity condition and the Jacobi identity.
Writing the SL(2, R) matrix as

g =

0

@

α β

γ δ

1

A αδ − βγ = 1 ,

Under the quotienting, we get

α ∼ e 2πr+/ℓ α

β ∼ e−2πr
−

/ℓ β

γ ∼ e 2πr
−

/ℓ γ

δ ∼ e−2πr+/ℓ δ

All quadratic combinations of matrix elements scale differently, except for αδ and βγ, which
are invariant under the quotienting.
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NC BTZ

Lowest order polynomial expressions for the Poisson brackets of α, β, γ and δ which are
preserved under the quotienting are quadratic and have the form

{α, β} = c1αβ {α, γ} = c2αγ {α, δ} = f1(αδ, βγ)

{β, δ} = c3βδ {γ, δ} = c4γδ {β, γ} = f2(αδ, βγ)

where c1−4 are constants and f1,2 are functions.
They are constrained by

c1 + c2 = c3 + c4

f1(αδ, βγ) = (c1 + c2)βγ

f2(αδ, βγ) = (c2 − c4)αδ ,

after demanding that detg is a Casimir of the algebra. There are three independent
constants c1−4.
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NC BTZ

Further restrictions on the constants come from the Jacobi
identity, which leads to the following two possibilities:

A. c2 = c4 and B. c2 = −c1

Both cases define two-parameter families of Poisson
brackets. Say we call c2 and c3 the two independent
parameters. The two cases are connected by an SO(2, 2)

transformation.
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NC BTZ

We can write the Poisson brackets for the various cases in terms of the Schwarzschild-like
coordinates (r, t, φ). For the two-parameter families A and B we get
A.

{φ, t} =
ℓ3

2

c3 − c2

r2
+ − r2

−

{r, φ} = −
ℓr+(c3 + c2)

2r

r2 − r2
+

r2
+ − r2

−

{r, t} = −
ℓ2r−(c3 + c2)

2r

r2 − r2
+

r2
+ − r2

−

B.

{φ, t} =
ℓ3

2

c3 − c2

r2
+ − r2

−

{r, φ} = −
ℓr−(c2 + c3)

2r

r2 − r2
−

r2
+ − r2

−

{r, t} = −
ℓ2r+(c2 + c3)

2r

r2 − r2
−

r2
+ − r2

−
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NC BTZ

These Poisson brackets are invariant under the action of the isometry group GBT Z of the
BTZ black hole. A central element of the Poisson algebra can be constructed out of the
Schwarzschild coordinates for both cases. It is given by

ρ± = (r2 − r2
±) exp



−
2κχ±

ℓ

ff

, c2 6= c3 ,

where the upper and lower sign correspond to case A and B, respectively,

κ =
c3 + c2

c3 − c2
,

The ρ± =constant surfaces define symplectic leaves, which are topologically R
2 for generic

values of the parameters (more specifically, c2 6= ±c3). We can coordinatize them by χ+

and χ−. One then has a trivial Poisson algebra in the coordinates (χ+, χ−, ρ±):

{χ+, χ−} =
ℓ2

2
(c3 − c2) {ρ±, χ+} = {ρ±, χ−} = 0

The action of the GBT Z transforms one symplectic leaf to another, except for the case
c2 = −c3, on which we focus from now on.
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NC BTZ

For c2 = −c3, the radial coordinate is in the center of the
algebra.

r =constant define R × S1 symplectic leaves, and they
are invariant under the action of GBTZ .

The coordinates φ and t parametrizing any such surface
are canonically conjugate:

{φ, t} =
c3ℓ

3

r2
+ − r2

−

{φ, r} = {t, r} = 0
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NC BTZ

Upon passing to the “quantum” theory, in terms of the
operators φ̂, t̂ and r̂, we have

[φ̂, t̂] = iθ [φ̂, r̂] = [t̂, r̂] = 0

where the constant θ is linearly related to ℓ3/(r2
+ − r2

−).

Deformation of BTZ provides an example of the general
space-time noncommutativity given by

[x̂0, x̂1] = iθ

.
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NC BTZ

Since the coordinate φ is periodic, it is better to consider
the operators t̂, eiφ̂ and r̂, which satisfy :

[eiφ̂, t̂] = θeiφ̂ [r̂, t̂] = [r̂, eiφ̂] = 0 ,

There are now two central elements in the algebra:

i) r̂ and ii) e−2πit̂/θ.
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NC BTZ

In an irreducible representation, the central element is
proportional to the identity

e−2πit̂/θ = eiχ
1

The spectrum of the time operator t̂ is then discrete

nθ −
χθ

2π
, n ∈ Z

If there is a Hamiltonian description for this analysis, then
the corresponding energy is conserved modulo 2π

θ
.
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QFT in NC BH Background

In standard QFT, the quantization of a field is done by
mode expansion, imposition of suitable commutation
relations on the creation and annihilation operators
depending on the statistics of the field and finally
obtaining a Fock space representation.

In addition, both continuous and discrete symmetries
must act properly on the fields.
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Statistics

Statistics of particles or quantum fields should be frame
independent.
In the commutative case, the Flip Operator τ0, which acts
on a 2-particle Hilbert space must satisfy

[τ0,∆0] = 0.

In the NC case, it turns out that

[τ0,∆θ] 6= 0.

τ0 can no longer be used to define particle/field statistics.
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Twisted Statistics

Can define a Twisted Flip Operator τθ given by

τθ = F−1τ0F

which satisfies

[τθ,∆θ] = 0

Particle statistics will be governed by τθ.

This will lead to a new algebra of the creation and
annihilation operators for the quantum fields in NC BTZ
space-time, which would have novel physical effects.
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Discrete Symmetries

Consider the relation

[x0, x1] = iθ

Under P , x1 → −x1, x0 and iθ unchanged. Hence P is not
an automorphism.

Under T , x0 → −x0, iθ → −iθ, x1 unchanged. Hence T is
an automorphism.

As a result, if C is conserved, P , PT and CPT violated.

Precision measurements can put bounds on the
noncommutativity parameter.
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Continuous Symmetries

We have seen that the deformation quantization in the
BTZ leads to discrete time and hence to discrete time
translations.

This means that the isometry of the classical system is
broken due to the quantization.

This effect can be thought of as a noncommutative
anomaly and any QFT on such a background must take
this effect into account.

Construction of appropriate QFT is in progress.
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Concluding remarks

Noncommutative geometry provides a natural framework
for quantum theory of gravity.

Deformation of the BTZ black hole solutions in 2+1
dimensions which is consistent with the classical
geometry leads to space-time noncommutativity.

The most natural choice for the deformation of the BTZ
leads to a quantum structure of space-time, with time and
time translation quantized.
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Concluding remarks

QFT in such a space-time would be governed by twisted
commutation relations of the creation and annihilation
operators, with the possibility of novel physical effects.

Such a model would lead to violation of P , PT and CPT ,
leading to empirical bounds on the noncommutativity
parameter.

Commutative BTZ is closely related to holography. With
NC BTZ, the idea of noncommutative holography can be
explored.
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