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Abstract

We show that if the adjacency matrices of the two principal
graphs of a finite index subfactor are regarded as (necessarily
bounded, self-adjoint) operators on the `2 spaces over their ver-
tex sets, then their spectral measures, when restricted to the
complement of {0}, are mutually absolutely continuous. In par-
ticular, for a finite-depth subfactor, the two matrices have the
same sets of non-zero eigenvalues.



1 Introduction

We gather together the notation and terminology that we will
need, in order to prove the result stated in the abstract. In the
sequel, we shall follow standard notation from subfactor theory
- as in [JS], say.

Suppose R0 ⊂ R1 is a subfactor of finite Jones index; i.e.,
this is an inclusion of II1 factors such that dim R0

L2(R1) <
∞. For i = 0, 1, let us write αi,1−i to denote the bimodule

Ri
L2(R1)R1−i

which has finite left- and right- dimensions under
the assumption of finite index. (In fact, this can be taken as the
definition of finiteness of index.) Then the so-called contragre-
dient bimodule of α01 is nothing but α10; i.e., α01 = α10.

For i, j ∈ {0, 1}, let us write Bij for the set of isomorphism
classes of irreducible Ri − Rj bimodules contained in tensor
products of the form αi,1−i ⊗R1−i

α1−i,i ⊗Ri
· · · ⊗R1−j

α1−j,j,
where the above string of bimodules must start with αi,1−i and
end with α1−j,j, but is allowed to be arbitrarily long provided
its length is of the same parity as (j − i).

The so-called pair of principal graphs of the subfactor is
(Γ0, Γ1), where, for p = 0, 1, the graph Γp is the bipartite graph
with vertex set B0p

∐

B1p, with the number of edges joining
γ0p and γ1p being given by the multiplicity 〈α10 ⊗R0

γ0p, γ1p〉
with which the bimodule γ1p features in the tensor product
α10 ⊗R0

γ0p. (Above, and in the sequel, we shall use the symbol
∐

to indicate ‘disjoint union’. And we shall adopt the ‘subscript
convention’ whereby a symbol such as γij will always denote an
element of Bij; the only possible exception to this rule stems
from the possibility that in case our subfactor is not irreducible,
then αi,1−i is not one element in Bi,1−i, but a direct sum of
finitely many members of Bi,1−i. Further, all subscripts, such
as i, j, p will run over the set {0, 1}.)

To any graph Γ, with vertex set V = V (Γ), is associated
its adjacency matrix A = A(Γ), which has rows and columns in-
dexed by V (Γ), and is the symmetric matrix (with non-negative
integral entries), given by A(u, v) equal to the number of edges
joining u and v.

The subfactor R0 ⊂ R1 is said to have finite depth precisely
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when each Bij is a finite set, i.e, if the graphs Γp are both
finite. (In fact, the finiteness of either one of them implies that
of the other.) Even in the infinite-depth case, it is true - see
Remark 2.2(c) - that the matrix Ap = A(Γp) defines a bounded
(self-adjoint) operator on L(`2(V (Γp))).

Henceforth the symbol ∆ will denote a Borel set in R such
that 0 /∈ ∆.

Definition 1.1 If A and B are self-adjoint operators on Hilbert
space, we shall write A ∼0 B if the following condition is satis-
fied:

1∆(A) 6= 0 ⇔ 1∆(B) 6= 0 ∀∆ .

Above, and elsewhere, the symbol 1∆(A) denotes the spec-
tral projection for the self-adjoint operator corresponding to the
set ∆; the notation is natural, in the sense of the measurable
functional calculus for self-adjoint operators. It should be obvi-
ous that ∼0 is an equivalence relation. Notice that if the defini-
tion above is relaxed to only considering open sets not contain-
ing 0, then the corresponding equivalence relation would just
be: sp(A)\{0} = sp(B)\{0}, where the symbol sp denotes
‘spectrum’.

This paper is devoted to the proof of the following theorem:

Theorem 1.2 With the foregoing notation, we have:

A0 ∼0 A1 .

Some immediate consequences of this theorem are listed in
the following corollary, whose proof is disscussed after the proof
of the theorem.

Corollary 1.3 With A0 and A1 as above, we have:
(i) with the only possible exception of 0, the operators Ap

have the same spectrum;
(ii) when restricted to R\{0}, the spectral measures of the

Ap’s are mutually absolutely continuous;
(iii) with the only possible exception of 0 and isolated non-

zero eigenvalues of infinite multplicity, the operators Ap have
the same essential spectrum.
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Finally, in the case of Haagerup’s 5+
√

13
2

subfactor - see [H]

and [AH] - both the numbers ±
√

2 are eigenvalues of multiplic-
ity 1 for one of the operators and multiplicity 2 for the other,
thereby showing that the two self-adjoint operators can have
different spectral multiplicity functions.

2 Proof of the main result

The possibility of forming tensor-products and contragredients
of bimodules endows the structure of an an involutive algebra
on the C-vector space A with basis given by

∐

i,j=0,1 Bij. We
shall need this M2-graded fusion algebra in what follows, so we
spell out the desired facts as a proposition for convenience of
future reference. We omit the proof of this well-known fact; the
interested reader might wish to consult [EK], for instance.

Proposition 2.1 Let A be the C-vector space with basis
∐

i,j=0,1 Bij.
Define

γijγkl =

{

0 if j 6= k
∑

γil
〈γij ⊗Rj

γjl, γil〉γil if j = k ;

and define γij to be that unique γji ∈ Bji which is isomorphic
to the contragredient of the bimodule γij. Then,

(i) A is an associative involutive algebra;

(ii) 〈γij ⊗Rj
γjl, γil〉 = 〈γij ⊗Ri

γil, γjl〉 ; and

(iii) there exist elements 1i ∈ Bii, i = 0, 1, such that

1iγij = γij = γij1j ∀γij ;

and in particular, the element 1 = 10 + 11 is a multiplicative
identity for A.

When convenient, we shall (i) write B =
∐

i,j=0,1 Bij; (ii)
denote the typical elements of B by the symbols X,Y, Z; and
(iii) for X,Y, Z ∈ B, write NZ

XY for the ‘fusion coefficients’
defined by the equation XY =

∑

Z∈B NZ
XY Z (in A).

We first list some easy consequences of Proposition 2.1.
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Remark 2.2 (a)

1
∑

p=0

N
1p

XY =
1

∑

p=0

NY
X̄1p

= δX̄,Y , ∀X,Y ∈ B . (2.1)

(b) We shall write A 3 x 7→ Lx ∈ EndC(A) to denote the
left regular representation (defined by Lx(y) = xy). The map
L is one-to-one since A has an identity.

Equip A with an inner product so that B is an orthonormal
set. Then the Hilbert space completion of A with respect to
this inner product is naturally identified with the space `2(B) of
square-summable functions on the set B. We shall write Hij for
the Hilbert subspace which has Bij as an orthonormal basis.

Notice that EndC(A) is naturally identified with ‘column-
finite’ matrices (with rows and columns indexed by B) - whereby
T ∈ EndC(A) corresponds to the matrix ((tY Z))Y,Z∈B given by
tY Z = 〈T (Z), Y 〉 ∀Y, Z ∈ B.

(c) Observe that if X ∈ B, then

(LX̄)Y Z = 〈X̄Z, Y 〉
= NY

X̄Z

= NZ
XY (by Proposition 2.1(ii)

= 〈XY,Z〉
= (LX)ZY .

Thus if X ∈ B, then the matrix of LX̄ is the transpose of the
matrix of LX ; and so, if x ∈ A, it follows that the matrix of Lx̄

is the adjoint (= conjugate-transpose) of the matrix of Lx. In
particular, each Lx, x ∈ A is represented by a matrix which is
both row-finite and column-finite.

We now outline a proof of the fact that Lx extends uniquely
to a bounded operator, for each x ∈ A. It suffices to check
this when x ∈ B. So, suppose x = γ ∈ Bpq. A little thought
reveals that it suffices to verify that the matrix - call it T - of
Lγγ̄ represents a bounded operator. Notice that γγ̄ ∈ Hpp and
that the matrix of T satisfies: tY Z = 0 unless both Y and Z
belong to Bpj for j = 0, 1. So, it suffices to check that if Tj is
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the (principal) submatrix of T obtained by restricting the rows
and columns to Bpj, then Tj is bounded for j = 0, 1. Now,
it is a fact (see [JS], for instance) that if P,Q are II1 factors,
if H1 is a P − Q bimodule and H2 is a left Q-module, then
dimP (H1 ⊗Q H2) = dimP (H1) dimQ(H2). It follows quite easily
from this that if we define the vector vj by vj(Y ) = dimRp

(Y )
for Y ∈ Bpj, then vj is a vector with strictly positive entries
(which is not in `2(Bpj) if Bpj is infinite) such that Tvj = λvj,
where λ = dimRp

(γ ⊗Rq
γ̄). However, a symmetric matrix with

a strictly positive eigenvector is known - see [P] - to define a
bounded operator on the `2 space, with norm at most equal to
the eigenvalue λ. (A formulation of a more general statement,
called the ‘Schur test’, may be found in [HS].)

Thus, we see that x 7→ Lx defines a *-homomorphism from
A into L(`2(B)).

(d) Let M = ({Lx : x ∈ A})′′ denote the von Neumann
algebra completion of A (in L(`2(B))). It is clear that 1 is a
cyclic vector for M , since M1 ⊃ B. On the other hand, we may
argue exactly as in (c) that for each X ∈ B, there exists a unique
operator RX ∈ L(`2(B)) such that RX(Y ) = Y X for all X ∈ B.
It should be obvious that RX ∈ ({Lx : x ∈ A})′ = M ′; and that
hence the vector 1 is also a cyclic vector for M ′; consequently,
(see [JS], for instance) we see that 1 is a cyclic and separating
vector for M . Hence the functional defined by

M 3 x 7→ τ(x) = 〈x(1), 1〉

is seen to be a faithful positive normal linear functional. Actu-
ally, it turns out that 1

2
τ is a faithful normal tracial state on M ,

but we will not need this, and shall say no more about it. 2

In what follows, if V0, V1 are sets and if a V0 × V1 matrix,
say G, represents a bounded operator from `2(V1) to `2(V0),
then, we will use the same symbol to represent this operator as
well. So, the symbol G∗ will represent the conjugate-transpose
matrix as well the adjoint operator of G.

Lemma 2.3 Suppose Γ is a bipartite graph, with the associated
partition of its vertex set being given by V = V0

∐

V1. Then,
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with respect to this decomposition of the vertex set, the adjacency
matrix A = A(Γ) clearly has the decomposition

A =

[

0 G
G∗ 0

]

,

where G is the V0×V1 matrix defined by setting G(v0, v1) equal
to the number of edges joining v0 and v1. Assume that A induces
a bounded (necessarily self-adjoint) operator on `2(V ).

For any 0 /∈ ∆ ∈ BR, we have:

1∆(A) 6= 0 ⇔ 1∆2(GG∗) 6= 0 ⇔ 1∆2(G∗G) 6= 0 , (2.2)

where we write ∆2 for {λ2 : λ ∈ ∆}.

Proof: To start with, if T = W (T ∗T )
1

2 is the (left) po-
lar decomposition of a bounded operator T between Hilbert
spaces, it is then true that (a) the initial and final spaces of
the partial isometry W - call them M and N - satisfy M =
ran(1R\{0}(T ∗T )) and N = ran(1R\{0}(TT ∗)), respectively; and
(b) when regarded as a unitary operator of M onto N , the op-
erator W |M establishes a unitary equivalence between the op-
erators (T ∗T )|M and (TT ∗)|N . In particular, it follows that for
every ∆ ∈ BR,

1∆(G∗G) 6= 0 ⇔ 1∆(GG∗) 6= 0 . (2.3)

The next fact we need is that if T is a self-adjoint operator
on a Hilbert space, if ∆ ⊂ (0,∞), and if we write −∆ = {−λ :
λ ∈ ∆}, then

1−∆
‘

∆(T ) = 1∆2(T 2) . (2.4)

(This is a simple consequence of the spectral theorem and a
‘change of variable’ formula in measure theory, whose proof we
omit.)

Observe next that if

U =

[

id`2(V0) 0
0 −id`2(V1)

]

,

then U is unitary and UAU∗ = −A. Hence A and −A are
unitarily equivalent, and in particular,

1∆(A) 6= 0 ⇔ 1−∆(A) 6= 0 ⇔ 1−∆∪∆(A) 6= 0. (2.5)
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Let us write R
+ = [0,∞), R− = (−∞, 0]; and let ∆± =

∆ ∩ R
±; then ∆ = ∆+

∐

∆− and ∆2 = ∆2
+ ∪ ∆2

−; we see
therefore that

1∆2(T ) ≤ 1∆2
+
(T ) + 1∆2

−

(T ) ≤ 2 1∆2(T ) (2.6)

for any self-adjoint operator T .
Finally conclude that

1∆(A) 6= 0 ⇔ 1∆+
(A) + 1∆

−

(A) 6= 0

⇔ 1∆+
(A) 6= 0 or 1∆

−

(A) 6= 0

⇔ 1−∆+

‘

∆+
(A) 6= 0 or 1−∆

−

‘

∆
−

(A) 6= 0 (by (2.5))

⇔ 1∆2
+
(A2) 6= 0 or 1∆2

−

(A2) 6= 0 (by (2.4))

⇔ 1∆2
+
(A2) + 1∆2

−

(A2) 6= 0

⇔ 1∆2(A2) 6= 0 (by (2.6))

⇔ 1∆2(

[

GG∗ 0
0 G∗G

]

) 6= 0

⇔
[

1∆2(GG∗) 0
0 1∆2(G∗G)

]

6= 0 ;

and the desired conclusion follows now from equation (2.3) and
the above implications. 2

Proof of Theorem 1.2: For convenience, let us simply write
α for what we denoted earlier by α01; then α is what we earlier
denoted by α10; further, for p = 0, 1, if we write Ap for the
(B0p

∐

B1p)× (B0p

∐

B1p) matrix and Gp for the B0p ×B1p ma-
trix which are associated to the bipartite graph Γp as in Lemma
2.3, we see that

Gp(γ0p, γ1p) = 〈α ⊗R0
γ0p, γ1p〉

= 〈α ⊗R0
γ1p, γ0p〉

= 〈Lα(γ1p), γ0p〉 ;

and so Gp is just the restricted operator Lα|H1p
: H1p → H0p;

and so G∗
p = Lα|H0p

: H0p → H1p. Hence, we deduce from
Lemma 2.3 that

1∆(Ap) 6= 0 ⇔ 1∆2(Lᾱα|H1p
) 6= 0 ⇔ 1∆2(Lαᾱ|H0p

) 6= 0 . (2.7)

7



Notice next that Lαα = LαLα leaves each of the subspaces
H10,H11 invariant, and is identically 0 on H00 ⊕ H01. Thus
if we let Pij denote the orthogonal projection onto Hij, then
P00 + P01 ≤ 1{0}(Lαα).

We shall now prove that

Lαα|H11⊕H10
∼0 Lαα|H11

. (2.8)

For typographical convenience, let us write T = Lαα|H11⊕H10
,

and T1 = T |H11
. Thus, we need to show that, for all ∆,

1∆(T ) 6= 0 ⇔ 1∆(T1) 6= 0 .

Fix ∆ ∈ BR such that 0 /∈ ∆. Since 1∆(T1) = (P111∆(T ))|H11
=

(1∆(T )P11)|H11
, we always have:

1∆(T1) 6= 0 ⇒ 1∆(T ) 6= 0 .

So we need to verify that if Q = 1∆(T ) 6= 0, then QP11 6= 0,
; we shall show that Q(11) 6= 0. For this, notice first that

0 /∈ ∆ ⇒ ran(1∆(Lαα)) ⊂ H11 ⊕H10 ;

and hence 1∆(Lαα) = Q; further, since 1 = 10 + 11 is a sepa-
rating vector for M - see Remark 2.2(d) - and since 10 ∈ H00 ⊂
ker(Lαα) ⊂ ker(1∆(Lαα)), we find that

Q(11) = 1∆(Lαα)(11 + 10) = 1∆(Lαα)(1) 6= 0 ,

and equation (2.8) is verified.
On the other hand, since we clearly have

1∆(T ) = 1∆(T |H10
) ⊕ 1∆(T |H11

) , (2.9)

we see that

1∆(A0) 6= 0 ⇒ 1∆2(T |H10
) 6= 0 (by (2.7))

⇒ 1∆2(T |H11
) 6= 0 (by (2.9) and (2.8))

⇒ 1∆(A1) 6= 0 (by (2.7)) .

The reverse implication is proved by exactly analogous rea-
soning applied with αα in place of αα (or, by applying the
already proved implication to the dual subfactor). 2
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Proof of Corollary 1.3: The proof of (i) has already been
outlined in the paragraph following Definition 1.1, while (ii) is
just the verbal translation of the statement that A0 ∼0 A1.

For (iii), first observe that if T is a self-adjoint operator, and
if λ ∈ R, then λ ∈ spe(T ) - where we write ‘spe’ for the essential
spectrum - if and only if 1∆(T ) has infinite rank for every open
neighbourhood ∆ of λ. From this, we see that for any λ ∈ R,
the following conditions are equivalent:
(a) λ ∈ spe(T ) and λ is not an isolated eigenvalue of infinite
multipilicity;
(b) every neighbourhood of λ contains infinitely many points of
sp(T );
(c) for every open neighbourhood ∆ of λ, there exists an infinite
collection {∆n} of pairwise disjoint open subsets of ∆ such that
1∆n

(T ) 6= 0 for all n.
It follows that if A,B are self-adjoint operators and if A ∼0 B,
and if λ ∈ R, then λ satisfies condition (c) and hence (a) above
for A if and only if it satisfies condition (c) and hence (a) for B.

2

The fact that the Ap’s have the same norm has been known
for a while. For related results (such as the fact that they even
have the same essential norm), see [P1]. We conclude with a
question suggested by Popa, which we formally state in the fol-
lowing ‘conjecture’.

Conjecture: Let A denote the adjacency matrix of the princi-
pal graph of a finite index subfactor. Then, sp(A) = spe(A) in
the infinite-depth case.

9



References:

[AH] M. Asaeda and U. Haagerup, Exotic subfactors of finite
depth with Jones indices (5 +

√
13)/2 and (5 +

√
17)/2, Com-

mun. Math. Phys., 202, (1999), 1-63.

[EK] D.E. Evans, and Y. Kawahigashi, Quantum symmetry on
operator algebras, Oxford University Press, 1998.

[H] U. Haagerup, Principal graphs of subfactors in the index
range 4 < [M : N ] < 3+

√
3, Subfactors - Proc. of the Taniguchi

Symp., Katata, World-Scientific, pp. 1-38, 1994.

[HS] P.R. Halmos and V.S. Sunder, Bounded Integral operators
on L2-spaces, Ergeb. der Math, 96, Springer-Verlag, Berlin,
1978.

[JS] V. Jones and V.S. Sunder, Introduction to subfactors, Lon-
don Math. Soc. Lecture Note Series, 234, Cambridge University
Press, Cambridge, 1997.

[P] S. Popa, Classification of amenable subfactors of type II,
Acta Math., 172, (1994), 163-255.

[P1] S. Popa, Some ergodic properties of infinite graphs associ-
ated to subfactors, Ergodic Theory and Dyn. Sys., 15, 1995,
993-1003.

10


