Solutions to Home-work 5

1. If dim(V) = n, then the assumption $dim(W_1) + dim(W_2) > n$ is seen to imply that $dim(W_1 \cap W_2) = dim(W_1) + dim(W_2) - dim(W_1 + W_2) > 0$ (since $W_1 + W_2$ being a subspace of V can have dimension at most n), and hence $W_1 \cap W_2 \neq \{0\}$.

If W_1, W_2 are planes through the origin in \mathbb{R}^3 , they are twodimensional subspaces; if they are distinct subspaces, then we may conclude from the last paragraph that $\dim(W_1 \cap W_2) > 0$. On the other hand, if $\{u, v\}$ is a basis for W_1 and if $w \in W_2 \setminus W_1$, it is easy to see that $\{u, v, w\}$ must be linearly independent and hence a basis for \mathbb{R}^3 . We may conclude that $W_1 + W_2 = \mathbb{R}^3$, and that $W_1 \cap W_2$ is one-dimensional. If $\{v\}$ is a basis for $W_1 \cap W_2$, we find that $W_1 \cap W_2 = \mathbb{R}v = \{\alpha v : \alpha \in \mathbb{R}\}$ is the line through the origin, consisting of multiples of v.

2. Let us prove the following

Assertion: The following conditions on subspaces W_1, W_2 of a finite dimensional vector space V are equivalent:

- (a) $dim(W_1) + dim(W_2) = dim(V)$ and $W_1 \cap W_2 = \{0\}$
- (b) If B_i is any basis for W_i , for i = 1, 2, then $B_1 \cup B_2$ is a basis for V.
- (c) Every vector $v \in V$ is uniquely expressible as $v = w_1 + w_2$ with $w_i \in W_i, i = 1, 2$.

Proof of assertion: (a) \Rightarrow (c) : If B_i is a basis for W_i (so $dim(W_i) = |B_i|$), we need to show that $B = B_1 \cup B_2$ is a basis for V. First, notice that $dim(W_1+W_2) = dim(W_1)+dim(W_2)-dim(W_1 \cap W_2) = dim(V)$ so we must have $V = W_1 + W_2$, so every $v \in V$ is indeed expressible as $v = w_1 + w_2$ with $w_i \in W_i, i = 1, 2$. If also $v = \tilde{w}_1 + \tilde{w}_2$ with $\tilde{w}_i \in W_i, i = 1, 2$, then we must have $w_1 - \tilde{w}_1 = \tilde{w}_2 - w_2 \in W_1 \cap W_2 = \{0\}$ and hence $w_i = \tilde{w}_i, i = 1, 2$ and such a decomposition is unique.

 $(c) \Rightarrow (b)$ is a consequence of the fact that each $w_i \in W_i$ is uniquely expressible as a linear combination of vectors in B_i , for both i = 1, 2.

- $(b) \Rightarrow (c)$ and $(c) \Rightarrow (a)$ are obvious.
- 3. This problem is a routine vereification which may be safely left to the reader.

- 4. (a) If $x_i \in W_i, \alpha_i \in \mathbb{R}, i = 1, 2$, then $\alpha_1 x_1 + \alpha_2 x_2 \in W_i$ since the subspace W_i is closed under forming linear combinations, for each i = 1, 2, and thus $\alpha_1 x_1 + \alpha_2 x_2 \in W_1 \cap W_2$. As for the second assertion, the definition of 'intersection' shows that in fact $W_1 \cap W_2$ contains any *subset* which is contained in both $W_i, i = 1, 2$.
 - (b) If $x^{(i)} = w_1^{(i)} + w_2^{(i)} \in W_1 + W_2$, with $w_j^{(i)} \in W_j$, and if $\alpha_i \in \mathbb{R}$ for i, j = 1, 2, then observe that

$$\begin{split} \sum_{i=1}^{2} \alpha_{i} x^{(i)} &= \sum_{i=1}^{2} \alpha_{i} \sum_{j=1}^{2} w_{j}^{(i)} \\ &= \sum_{j=1}^{2} \sum_{i=1}^{2} \alpha_{i} w_{j}^{(i)} \\ &= \sum_{i=1}^{2} \alpha_{i} w_{1}^{(i)} + \sum_{i=1}^{2} \alpha_{i} w_{2}^{(i)} \\ &\in W_{1} + W_{2} , \end{split}$$

thus verifying that $W_1 + W_2$ is closed under forming linear combinations and is hence a subspace. The second assertion is obvious.