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Abstract

This note contains the announcement, and a description, but wi-

hout any proofs, of results that will go into the doctoral thesis written

by the first author under the guidance of the second author. The goal

is to describe the planar algebra of the asymptotic inclusion of the

subfactor of fixed points under an outer action of a finite-dimensional

Kaç algebra on the hyperfinite II1 factor.

When it was suggested recently that the second author might con-
tribute an article to the special issue being brought out to commemorate
(Varada)Raja(n)’s turning seventy, he did not immediately have anything
handy, but did not want to miss out on the opportunity of raising a toast
to one who has been a source of inspiration for many an aspiring Indian
mathematician, and has been a dear friend for decades now. As a compro-
mise solution, we submit something in the nature of a note one may find
in Comptes Rendus, where we announce what will be the backbone of the
doctoral thesis being written by the first author under the guidance of the
second, with the interested reader being referred to the thesis (which now
exists only in preprint form) for proofs of most facts stated here.

1 Introduction

The raison d’être for this investigation lies in the following three facts:

1. (Ocneanu-Szymanski)(cf. [Oc],[Sz])

Finite-dimensional Kaç algebras (=Hopf C∗-algebras) are in bijective
correspondence with a certain class of subfactors (specifically, those
of depth two).
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2. (Ocneanu)(cf. [EK])

The subfactor analogue of the quantum double construction is the
asymptotic inclusion.

3. (Jones)(cf. [Jon])

‘Good’ subfactors are determined by their planar algebras.

Our goal is to describe the planar algebra of the asymptotic inclusion of
a Kaç algebra subfactor. This paper is organised as follows: after a prelimi-
nary section (§2) devoted to recalling some basic definitions and facts about
subfactors and planar algebras (and slightly expanding on what exactly the
three facts above say), we devote the next section (§3) to describing a model
for the outer action of a Kaç algebra on the hyperfinite II1 factor which
makes transparent the nature of the higher relative commutants; the next
section (§4) uses the model developed in §3 of the Kaç algebra subfactor
N ⊂ M to obtain an explicit description of the members Mn of the ba-
sic construction tower of its asymptotic inclusion subfactor N ⊂ M. The
final section (§5) reinterprets the slightly clumsy description (Lemma 4.1)
obtained in §4 via the planar algebra formalism to obtain an aesthetically
much more satisfactory description (Theorem 5.1) of the planar algebra
P(H) of the asymptotic inclusion.

2 On subfactors

To every subfactor N ⊂ M - by which we always mean a unital inclusion of
II1 factors - which has finite index, Jones showed how a basic construction
led to a to a canonical tower

M−1 = N ⊂ M0 = M ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mn ⊂ · · · (2.1)

of II1 factors, which yielded a grid

C = N ′ ∩ N ⊂ N ′ ∩ M ⊂ N ′ ∩ M1 ⊂ N ′ ∩ M2 · · ·
∪ ∪ ∪

M ′ ∩ M ⊂ M ′ ∩ M1 ⊂ M ′ ∩ M2 · · ·
(2.2)

of finite-dimensional C∗-algebras, that comes equipped with a canonical
consistent trace; and this ‘traced grid’ is referred to as the standard invari-
ant of the subfactor N ⊂ M . A less cryptic formulation of the first fact
of the introduction is: if N ′ ∩ M2 is isomorphic to a full matrix algebra
Mn(C) then (and only then) there exists an n-dimensional Kaç algebra H

admitting an ‘outer action’ on M such that N = MH is the ‘fixed point
subalgebra’. (Definitions and more explanation can be found in the next
section.) In case the factor M is hyperfinite, the (isomorphism class of the)
subfactor MH ⊂ M depends only on the Kaç algebra H , and we shall call
it the Kaç algebra subfactor associated to H .

The two rows of the above grid can be completely described, in view of a
certain ‘reflection symmetry’ possessed by the associated Bratteli diagrams,
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by a pair of bipartite graphs (usually called the principal graphs). The
subfactor is said to have finite depth if either (equivalently both) of these
graphs is finite. (A Kaç algebra subfactor has finite depth - and diameter
two, in fact.)

The asymptotic inclusion associated to a finite depth subfactor N ⊂ M

is the inclusion given by N ⊂ M where (i) M is the von Neumann closure
of ∪∞

n=1Mn of the image of the ‘GNS representation’ resulting from the
unique consistent trace on this union, and (ii) N = (M ∪ (M ′ ∩ M))′′.
Ocneanu proved (see [Oc], and also, [EK)]) that the inclusion N ⊂ M is
also a subfactor of finite depth, which has reason (see, for instance, [Kaw])
to be likened to the quantum double construction of Drindel’d [Dri].

It turns out (see [Po1]) that the standard invariant is a complete iso-
morphism invariant for finite-depth subfactors. This has been studied and
viewed in manifold equivalent perspectives - as a paragroup by Ocneanu
([Oc]), as a λ-lattice by Popa ([Po2]), and as a subfactor planar algebra
by Jones ([Jon]). We shall say a few words about the last, since we will
be using this version to decribe the asymptotic inclusion of a Kaç algebra
subfactor.

A subfactor planar algebra should be viewed as an algebra over the
coloured operad of planar tangles; thus it is a collecition {Pk : k ≥ 0}
of finite-dimensional C∗-algebras with the property that each planar k-
tangle T with ‘internal boxes’ of colours k1, · · · , kb gives rise to a linear
map ZT : ⊗b

i=1Pki
→ Pk; and the association T 7→ ZT is required to

satisfy some natural conditions. (Among them are the requirments that
P0 = C and that a certain natural 0-tangle with one internal k-box induces
a faithful normal trace on Pk.) For a detailed account of planar algebras,
please see [Jon] or [KS].

For our purposes, it will suffice to look at an example of some tangles:

*

*

*D1

D
0

D2

D D0 0

D1

D2 D1

D2

H H H
3 21

*

*

*

*

*

*

All three tangles have the property that each of their inner boxes is a ‘2-
box’ (ie, has colour 2). Our main theorem depends on a presentation, given
in [KLS], of the subfactor planar algebra associated to a Kaç algebra H ,
which we briefly describe now. Consider the space Un(H) of spanned by
all n-tangles each of whose internal box is a 2-box and is labelled by some
element of H . Then U = {Un : n ≥ 0} is the ‘universal planar algebra’ with
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labelling set given by

Lk =

{
H if k = 2
∅ if k 6= 2

It was shown in [KLS] that the subfactor planar algebra associated to
the Kaç algebra H - which we shall consistently denote by P (H) - is the
quotient of U by the planar ideal generated by the following relations, which
relate to (00) vector space structurein H , and the vector space dimension,
say n, of H , (id) unit 1H , (h) Haar integral h on H∗, (1) co-unit ǫ of H , (2)
Haar integral1φ on H (3) multiplication and co-multiplication on H , and
(4) antipode on H :

+ = ζ + = = n1/ 2(00) ;
* * *
ζa b a b

1
H(id) (h)= h

* *
= n

−1/2

(1) = (2) = n
1/ 2

φ
ε* *a (a)

a (a)

*

*

*
*

1

2a

b
a

a b

Σ= (4)(3) Sa
*

= a

*

3 Kaç algebras

We begin by recalling the notion of an action of a Kac algebra H(= (H, µ, η, ∆, ǫ, S))
on a C∗-algebra A.

Definition 3.1. By a left action of H (or simply, an action) on A, we
mean a linear map α : H → EndC(A) satisfying the following conditions.

1. α1 = IdA

1φ and h are assumed to be so normalised that each is a self-adjoint projection; they
satisfy φ(h) = 1

n
.
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2. αa(1A) = ǫ(a)1A, ∀a ∈ H

3. αab = αa ◦ αb

4. αa(xy) = Σαa1(x)αa2(y)

5. αa(x)∗ = αsa∗(x∗)

For such an action of H on A, the ‘fixed subalgerbra’ is defined by

AH = {x ∈ A : αa(x) = ǫ(a)x ∀a ∈ H}

Example 3.2. H∗ acts on H by the rule αf (a) = f(a2)a1 Interchanging
the roles of f and a we have a similiar action of H on H∗

Definition 3.3 (the * algebra A ⋊ H). The vector space A ⋊ H = A ⊗ H

has algebra structure given by the following multiplication

(x ⋊ a)(y ⋊ b) = xαa1(y) ⋊ a2b.

It is easy to see that the multiplication is associative and that if A has
an identity 1A, then A ⋊ H has identity given by 1A ⋊ 1H . The ∗ structure
on this associative unital algebra is given by (x ⋊ a)∗ = αa∗

1
(x∗) ⋊ a∗

2. For
instance, the verification that this * is product-reversing is as follows:

{(x ⋊ a)(y ⋊ b)}∗ = [xαa1(y) ⋊ a2b]
∗

= α(a2b)∗1
[xαa1 (y)]∗ ⋊ (a2b)

∗

2

= αb∗1a∗

2

[
αsa∗

1
(y∗)x∗

]
⋊ b∗2a

∗

3

= α∗

b1

[
αa∗

2sa∗

1
(y∗)αa∗

3
(x∗)

]
⋊ b∗2a

∗

4

= α∗

b1

[
αa∗

2sa∗

1
(y∗)αa∗

3
(x∗)

]
⋊ b∗2a

∗

4

= αb∗1

[
y∗αa∗

1
(x∗)

]
⋊ b∗2a

∗

2

= αb∗1
(y∗)αb∗2a∗

1
(x∗) ⋊ b∗3a

∗

2

=
[
αb∗1

(y∗) ⋊ b∗2
] [

αa∗

1
(x∗) ⋊ a∗

2

]

= (y ⋊ b)∗(x ⋊ a)∗

The action of H∗ on H can be promoted to an action - call it f 7→ βf of
H∗ on A ⋊ H by ‘ignoring the A-component thus:

βf (x ⋊ a) = x ⋊ αf (a) ,

and we can define

A ⋊ H ⋊ H∗ = (A ⋊ H) ⋊ H∗ .

If k ≤ l are integers, we shall write

A[k,l] = Hk ⋊ Hk+1 ⋊ ....... ⋊ Hl

where Hi = H or H∗ according as i is odd or even; likewise, we shall write

φi =

{
φ if i is odd
h if i is even

and τi for the faithful tracial state on Hi defined by φi.
To start with, we have the following result:
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Theorem 3.4. 1. For k ≤ l, there exists a unique faithful tracial state
τ[k,l] on A[k,l] satisfying

τ[k,l](xk ⋊ xk+1 ⋊ ....... ⋊ xl) =

l∏

i=k

τi(xi).

2. A[k,l] ⊂ A[k,l+1] ⊂ A[k,l+2] is an instance of Jones’ basic construction,

with a choice of ‘Jones projection’ being given by (φl)
(l+2), where we

write

Hi ∋ x 7→ x(̃i) = 1Hk
⋊ · · · ⋊ 1H(̃i−1)

⋊ x ⋊ 1H(̃i+1)
⋊ · · · 1Hl

(3.3)

for the natural inclusion maps of Hi into A[k,l] whenever k ≤ ĩ ≤ l

and ĩ ≡ i(mod 2).

3. The traces {τ[k,l] : k = · · · , l − 1, l}} patch up to yield a consistently

defined trace τ(−∞,l] on ∪l
k=−∞

A[k,l], and yield a model A(−∞,l](=

(πτ(−∞,l]
(∪l

k=−∞
A[k,l])

′′) of the hyperfinite factor via the GNS con-
struction.

4. If we write Ml = A(−∞,l], for l ≥ −1, then there exists a unique action
α of H on M0 such that αa(· · ·x ⋊ f) = · · ·x ⋊ f2(a)f1, where we
use (our version of) the Sweedler notation whereby ∆(f) = f1 ⊗ f2;
further

(a) (M0)
H = M−1, and

(b) the action α is outer in the sense that M ′

0 ∩ M1 = C.

5.
M−1 ⊂ M0 ⊂ M1 ⊂ · · · ⊂ Mn ⊂ · · ·

is the tower of Jones’ basic construction.

6. M ′

k ∩Ml = A[k+2,l] ∀k ≤ l (with the understanding that the right side
is C if k + 2 > l.

4 The asymptotic inclusion

For a general finite index subfactor N ⊂ M , let the tower of Jones’ basic
construction be denoted, as usual, by

N = M−1 ⊂ M = M0 ⊂ M1 ⊂ · · · ⊂ Mn ⊂ · · ·

Since all Mn’s are II1 factors and since the tracial state on a II1 factor
is unique, it follows that there is a consistently defined tracial state tr on
∪∞

n=1Mn, and that the von Neumann closure (πtr(∪∞

n=1Mn)′′ in the GNS
representation yields a II1 factor M = M∞. Ocneanu showed - see [EK],
for instance - that if N ⊂ M has finite depth, then N = (M ∪(M ′∩M∞))′′
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is a subfactor of finite index in M, and in fact, is of finte depth. He termed
this subfactor N ⊂ M the asymptotic inclusion of N ⊂ M .

We shall be interested in the case when N = MH as in the last section.
We shall use the model described in the last section, and adopt the notation

N = M−1 ⊂ M = M0 ⊂ M1 ⊂ · · · ⊂ Mn ⊂ · · ·

for the associated basic construction tower.
The crucial step in getting a handle on the above basic construction

tower is contained in the following Lemma.

Lemma 4.1. 1.

Mn
∼=

{
(A(−∞,0] ∪ A[2,∞))

′′ if n is odd
A(−∞,∞) if n is odd

, (4.4)

2. The inclusions in the tower are best seen via the above identifications
and the following illustrative diagram:

M

M

M

2n−1

2n

2n+1

H * H H * H * H H *

H * H H * H H * H H *

H * H H * H * H H *

−2 −1 0 3 421

This diagram is intended to signify that, once the Mk’s have been
identified as in (4.4), the inclusion of M2n−1 into M2n is the natural
one, while that of M2n into M2n+1 is given - in the notation of (3.3)
- as follows:

(
· · ·x(−1)

⋊ f (0)
⋊ y(1)

⋊ g(2)
⋊ z(3)

⋊ k(4)
⋊ · · ·

)
7→

(
· · ·x(−1) ⋊ (f1)

(0) ⋊ 1
(1)
H ⋊ (f2)

(2) ⋊ y(3) ⋊ g(4) ⋊ z(5) ⋊ k(6) ⋊ · · ·
)

3. Furthermore, with respect to these identifications, the Jones projec-
tions turn out to be given by

Mn ∋ ẽn↔

{
φ(2) if n is odd

h(1) if n is even

7



5 The planar algebra P(H)

With N = MH ⊂ M as in §3, it should be noted that the isomorphism
A[1,3]

∼= P4 is the map which sends a ⋊ f ⋊ b to the labelled tangle given
below, where F : H∗ → H is the ‘Fourier transform’:

a

Ff

b

*
*

* *

We are now in a position to describe the planar algebra P(H).

Theorem 5.1. P(H) may be identified with the planar subalgebra of P (H∗op),
with Pn(H) consisting of those elements g ∈ Pn(H∗op) which satisfy

= (
g

g

f

f
f

ff

1

2
3

n n−1

**

*

* *

*

*

*

*

1)f

for all f ∈ P2(H
∗op) = H∗op. (Recall our ‘Sweedler-like notation’, whereby

∆n(f) = f1 ⊗ · · · ⊗ fn, with ∆n denoting iterated comultiplication.)
It follows that

P2k(H) = P2k(H∗op) ∩ ∆k(H∗op)′ ,

where a k-fold decomposable tensor ⊗xi is thought of as the 2k-box below:

* **
x x

1
x

2 k

*

(Here, of course, we write H∗op to denote the dual H∗ viewed as a Hopf
algebra when equipped with the ‘opposite multiplication’.
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Corollary 5.2. If H∗ is commutative - equivalently, if H = CG for some
finite group G - then the subfactors M ⊂ M1 and N ⊂ M are isomorphic.

(We know of no proof of this fact which does not go through planar
algebras.)
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