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Overview

The aim of the talk is to describe the ubiquitous Perron-Frobenius theorem (PF
in the sequel), and discuss some connections with diverse areas, such as:

1 topology (Brouwer fixed-point theorem)

2 Graph theory

3 probability theory (finite-state Markov chains)

4 von Neumann algebras (subfactors)
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The Perron theorem

We first state a simpler1 special case of the theorem, due to Perron. In the
sequel, we shall find it convenient to use the non-standard notation B > 0
(resp., B ≥ 0) for any (possibly even rectangular) matrix with positive (resp.,
non-negative) entries.

Theorem

Let A = ((ai
j)) > 0 be a square matrix, and let

λ∗(A) = r(A) = sup{|λ| : λ an eigenvalue of A}. Then

1 λ∗(A) is an eigenvalue of A of (algebraic, hence also geometric)
multiplicity one, and (a suitably scaled version v∗ of) the corresponding
eigenvector has strictly positive entries;

2 |λ| < λ∗(A) for all eigenvalues of A.

Proof: Let ∆ = {(x1, · · · , xn) ∈ Rn : xj ≥ 0∀j and
Pn

j=1 xj = 1} be the
standard simplex in Rn.

1Actually, he proved the theorem under the weaker assumption that An > 0.
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One proof rests on the observation that

λ∗(A) = inf{λ > 0 : ∃0 6= v ≥ 0 such that Av ≤ λv}
= inf{λ > 0 : ∃v ∈ ∆ such that Av ≤ λv} ,

- where v ∈ ∆⇒ Av > 0 - and some simple compactness arguments.

Incidentally, one also has the dual characterisation

λ∗(a) = sup{λ > 0 : ∃v ∈ ∆ such that Av ≥ λv} .

2

The Frobenius extension of the theorem relaxes the strict positivity assumption
on A. Call A irreducibile if it satisfies either of the following equivalent
conditions:

1 there does not exist a permutation matrix P such that PAP ′ has the form
A1 ⊕ A2 for some matrices Ai of strictly smaller size;

2 ∀ 1 ≤ i , j ≤ n, there exists some m > 0 such that (Am)i
j > 0.

A good example to bear in mind is the cyclic permutation matrix U with

ui
j =


1 if i = j + 1(mod n)
0 otherwise
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The Perron-Frobenius Theorem

Theorem

Suppose A ≥ 0 is an irreducible square matrix. Then

1 λ∗(A) is an eigenvalue of A of (algebraic, hence also geometric)
multiplicity one, and (a suitably scaled version v∗ of) the corresponding
eigenvector has strictly positive entries;

2 The only non-negative eigenvectors of A are multiples of v∗;

3 If

|{λ ∈ C : λis an eigenvalue of A such that |λ| = λ∗(A)}| = k ,

then the set of eigenvalues of A is invariant under a rotation about the
origin by 2πi

k
.

The following re-formulation of irreducibility is instructive and useful (especially
in applications to graphs and their adjacency matrices): A is irreducible
precisely if for all i , j ≤ n, there exists some m ≥ 0 such that (Am)i

j > 0.
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The Brouwer fixed point theorem

In lieu of a proof of the PF-theorem, we shall deduce the the existence of the
Perron-Frobenius eigenvector from the Brouwer fixed point theorem. This
latter fundamental result from topology asserts that any continuous self-map of
the unit ball Bn (or equivalently, any compact convex set in Rn) admits a fixed
point.

If A ≥ 0 is irreducible, and if v ∈ ∆, then Av 6= 0. (Reason: If vj 6= 0, and if
(Am)i

j > 0, then it is clear that Amv 6= 0.) Hence ‖Av‖1 =
Pn

j=1(Av)j > 0.

Define f : ∆→ ∆ by f (v) = (‖Av‖1)−1Av . Let v∗ denote the fixed point
guaranteed by Brouwer.

Actually, there is an interesting proof of the Brouwer fixed point theorem using
the PF theorem, which may be found in an article by the economist Scarf.
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Graph theory

A graph G = (V ,E) consists of a finite set V of edges and a finite set E of
edges connecting pairs of vertices. If V = {v1, · · · , vn}, the so-called adjacency
matrix A(G) is obtained by decreeing that ai

j is the number of edges joining vi

and vj . By definition, it is seen that A(G) is an n × n symmetric matrix with
non-negative integer entries.

A little thought reveals that the (i , j)-th entry of Ak counts the number of
paths of length k between vi and vj . Hence, it is a consequence of our earlier
reformulation of irreducibility of an A ≥ 0, that A(G) is irreducible precisely
when the graph G is connected.

Since the eigenvalues of a symmetric matrix are real, we find that the
Perron-Frobenius eigenvalue of A(G), for a connected graph G , is the largest
eigenvalue of A(G) as well as its largest singular value; this is an important
isomorphism invariant of G . For instance:

the PF eigenvalue of A(G) less than 2 if and only if

G ∈ {Am,Dn,Ek : m ≥ 2, n ≥ 3, k = 6, 7, 8} .
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Markov chains

An n-state Markov chain is described by an n × n matrix P = ((pi
j )). Here we

are modeling a particle which can be in any one of n possible states at any
given day, with the probability that the particle making a transition from site i
to site j on any given day being given by pi

j ; thus, we write

pi
j = Prob(XN+1 = j |XN = i) ∀1 ≤ i , j ≤ n,N ≥ 0 ,

where XN denotes the state of the randomly moving particle on day N.

If P is to have an interpretation as a transition probability matrix, it must
clearly satisfy

Pn
j=1 pi

j = 1 ∀i , or equivalently, Pv = v where v is the vector
with all coordinates equal to 1. In particular, v is the PF-eigenvector of P.
Since P and P ′ have the same eigenvalues, we see that also λ∗(P ′) = 1.

Let π denote the PF eigenvector of P ′, so normalised that
Pn

i=1 πi = 1. This π
has the interpretation of a stationery distribution for the process {XN : N ≥ 0},
meaning that Prob(XN = i) = πi ∀i ≤ n,N ≥ 0.

It must be noticed that the above use of the Perron-Frobenius theorem is not
really vald if P is not irreducible. Not surprisingly, the best behaved Markov
chains are the ones with irreducible transition probability matrices.
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Fusion algebras

Definition

A fusion algebra is a (usually finite-dimensional, for us) complex, associative,
involutive algebra CG equipped with a distinguished basis G = {αi : 0 ≤ i < n}
which satisfies:

α0 is the multiplicative identity of CG.

The ‘structure constants’ given by αiαj =
Pn−1

k=0 Nk
ijαk are required to be

non-negative integers.

G is closed under the involution, and satisfies

Nk
ij = N j

īk
, (1)

where αī = α∗i .

It is a consequence of the axioms that we also have

Nk
ij = N i

k j̄ (2)
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Examples of fusion algebras

1 The complex group algebra CG is a fusion algebra, for any finite group G ,
with g∗ = g−1.

2 If G is any finite group, the set G = Ĝ of equivalence classes of irreducile
unitary representations of G is the distinguished basis of a fusion algebra
CG if we define πρ =

P
κ∈Ĝ 〈π ⊗ ρ, κ〉κ where we write 〈π ⊗ ρ, κ〉 for the

‘multiplicity with which κ occurs in π ⊗ ρ’. Here the role of the ‘1’ in G is
played by the trivial representation of G and π∗ is the contragredient
representation; and equation (1), in this case, is better known as
Frobenius reciprocity.

3 If K is a compact group, then CK̂ is an example of a fusion algebra which
is not finite dimensional.

4 The raison d’etre for our interest in this notion lies in another family of
typically infinite-dimensional fusion algebras, but often with many
interesting finite-dimensional ‘sub-fusion algebras’, which arises in the
theory of II1 factors; we shall now briefly pause for a digression into these
beautiful objects.
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theory of II1 factors; we shall now briefly pause for a digression into these
beautiful objects.
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von Neumann algebras

A von Neumann algebra is a Banach ∗-algebra (in fact a C∗-algebra), which
happens to be the Banach dual space of a canonically determined separable
Banach space. Much of the rich structure of von Neumann algebras stems from
this canonically inherited (so-called σ-weak) topology in which its norm-unit
ball is compact, thanks to Alaoglu.

The collection L(H) of all bounded operators on a separable Hilbert space is a
von Neumann algebra. A ∗-homomorphism between von Neumann algebras is
said to be normal if it is continuous when domain and range are equipped with
the σ-weak topologies. By a module over a von Neumann algebra is meant a
separable Hilbert space H equipped with a normal homomorphism from M into
L(H). The Gelfand-Naimark theorem ensures that every von Neumann algebra
admits a ‘faithful’ module.
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II1 factors

II1 factors are a class of von Neumann algebras, some of the many appealing
attributes of a II1 factor N being:

N is simple, so any homomorphism is either injective or identically zero.

If H is an N-module, there is associated a number dimN(H) ∈ [0,∞]
which is a complete invariant of the isomorphism class of the N-module.

If dimN(H) <∞, then also HomN(H) (or M ′ as people in the business of
operator algebras like to call it), is a II1-module.

An M − N bimodule MHN , with M,N II1 factors, is said to be bifinite if
dimM−(H) and dim−N(H) are both finite.

If MHN and NHP are bifinite bimodules, there is a canonically associated
bifinite M − P bimodule H⊗N K such that

dimM−(H⊗N K) = dimM−(H)dimN−(K)

dim−P(H⊗N K) = dim−N(H)dim−P(K)

If GN denotes the collection of isomorphism classes of bifinite N − N
bimodules, then CGN is a typically infinite-dimensional fusion algebra.
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dimension function

Theorem

If CG is any finite-dimensional fusion algebra, there exists a unique algebra
homomorphism d : CG → C such that d(G) ⊂ (0,∞).

Proof: Define an inner-product on CG by demanding that G is an orthonormal
basis. For each α ∈ G, let λα be the operator, on CG, of left multiplication by
α. With respect to the ordered basis G = {α0, · · · , αn−1}, we may identify λαk

with the matrix L(k) given by L(k)i
j = 〈αkαj , αi 〉 = N i

kj . (Notice that equation
(1) says that L(i)∗ = L(̄i).)

Similarly, the operator ραk , on CG, of right multiplication by αk , will be
represented by a matrix R(k) of non-negative integral entries; in fact,

R(k)i
j = 〈αjαk , αi 〉 = N i

jk .

(Again equation (2) says that R(j)∗ = R (̄j).)

Assertion: If R =
Pn−1

k=0 R(k), then R > 0 meaning of couse that R i
j > 0 ∀i , j .
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If possible, suppose R i
j = 0 for some i , j . Since R i

j =
P

k R(k)i
j =

P
k N i

jk , the
assumed non-negativity of the structure constants then implies that
N i

jk = 0 ∀k. Hence

αj̄αi =
X

k

Nk
j̄ iαk

=
X

k

N i
jkαk ( by equation(1)

= 0 ;

and so,

0 = αj(αj̄αi )αī

= (αjαj̄)(αiαī ) .

On the other hand, the coefficient of α0 in (αjαj̄)(αiαī ) is seen to beP
k Nk

j̄ jN
k̄
ī i which is at least 1. This contradiction establishes the Assertion.
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Finally, since L(k) clearly commutes with any R(j), we find that L(k)
commutes with R and must consequently leave the eigenspace of R
corresponding to its Perron eigenvalue. This latter space is spanned by the PF
eigenvector, say v , of R; hence L(k)v = dkv for some dk .

Then,

di djv = djL(i)v

= L(i)(djv)

= L(i)L(j)v

= (
X

k

Nk
ij L(k))v

=
X

k

Nk
ij dkv

and it is easy to see that the linear extension of the function
G 3 αi 7→ di ∈ (0,∞) is the desired dimension function.

The proof of uniqueness of the dimension function follows by observing that
the vector with i-th coordinate di - for any potential dimension function - is a
positive eigenvector of R, whose 0-th coordinate is 1. So uniqueness is also a
conswequence of the PF theorem. 2
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Example

The simplest example of a fusion algebra where the dimension function assumes
non-integral values is given by G = {1, α}, where α = α∗ and α2 = 1 + α. The

dimension function must satisfy d(α) = φ, where φ2 = 1 + φ so that φ = 1+
√

5
2

is the golden mean! This fusion algebra is the first of a whole family of fusion
algebras arising from the theory of subfactors, which give meaning to certain
irreducible bimodules having interesting dimension values like φ’ !
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