Operator algebras - stage for non-commutativity (Panorama Lectures Series) V. The Jones polynomial invariant of knots

> V.S. Sunder Institute of Mathematical Sciences Chennai, India sunder@imsc.res.in

> > IISc, January 31, 2009

Recall that if $N \subset M$ is a subfactor with finite index, say τ^{-1} , and basic construction tower

$$N \subset M \subset^{e_1} M_1 \subset^{e_2} M_2 \subset \cdots \subset M_{n-1} \subset M_n \subset^{e_{n+1}} M_{n+1} \subset \dots$$

and conditional expectations $E_{M_n}: M_{n+1} \rightarrow M_n$, then

nar

1

-

Recall that if $N \subset M$ is a subfactor with finite index, say τ^{-1} , and basic construction tower

$$N \subset M \subset^{e_1} M_1 \subset^{e_2} M_2 \subset \cdots \subset M_{n-1} \subset M_n \subset^{e_{n+1}} M_{n+1} \subset \dots$$

and conditional expectations $E_{M_n}: M_{n+1} \rightarrow M_n$, then

Since $e_k \in M_k$, it follows from the preceding facts that

• e_i and e_j commute for $j \ge i+2$

2
$$e_{n+1}e_ne_{n+1} = \tau e_{n+1}$$

③
$$tr(xe_n) = \tau tr(xe_n) \forall x \in M_{n-1}$$
 (and in particular, if x is a 'word in e_1, \dots, e_{n-1} '

nar

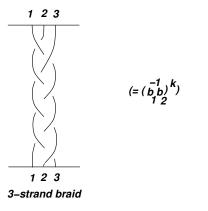
Braids

An unexpected and pleasant offshoot of Jones' work on subfactors was the celebrated connection with knot theory. The initial contact seems to have been made when Pierre de la Harpe, a collaborator of Jones, remarked on the striking similarity between the relations satisfied by the Jones projections on the one hand, and the so-called Braid relations on the other.

Braids

An unexpected and pleasant offshoot of Jones' work on subfactors was the celebrated connection with knot theory. The initial contact seems to have been made when Pierre de la Harpe, a collaborator of Jones, remarked on the striking similarity between the relations satisfied by the Jones projections on the one hand, and the so-called Braid relations on the other.

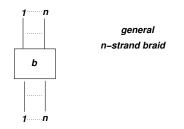
A braid is what you think it is:



The previous example was a '3-strand braid'; an 'n-strand braid' has a natural intuitive definition, and we shall picture it as below:

SOC

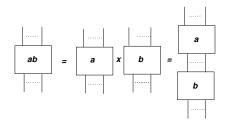
The previous example was a '3-strand braid'; an 'n-strand braid' has a natural intuitive definition, and we shall picture it as below:



where the 'black box b' contains all the knotting/braiding between the different strands.

The Braid groups

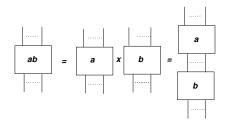
The collection B_n of all *n*-strand braids turns out to be a group with respect to the multiplication defined by:



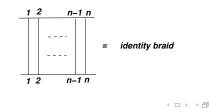
- provided we agree that two braids are the same if one may be continuously deformed into the other. (This is needed even for associativity.)

The Braid groups

The collection B_n of all *n*-strand braids turns out to be a group with respect to the multiplication defined by:

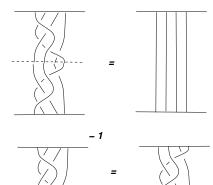


- provided we agree that two braids are the same if one may be continuously deformed into the other. (This is needed even for associativity.)



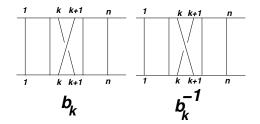
nar

The inverse of a braid is obtained by reflecting in a horizontal mirror placed at the level of the lower frame of the braid: for example,



Since braids can be built up 'one crossing at a time' it is clear that B_n is generated , as a group, by the braids b_1, b_2, \dots, b_{n-1} shown below - together with their inverses:

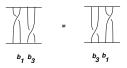
Since braids can be built up 'one crossing at a time' it is clear that B_n is generated , as a group, by the braids b_1, b_2, \dots, b_{n-1} shown below - together with their inverses:



Tne braid relations

The b_j 's satisfy the following relations:

 $b_i b_j = b_j b_i$ if $|i - j| \ge 2$



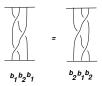
DQC

The b_j 's satisfy the following relations:

 $b_i b_j = b_j b_i$ if $|i - j| \ge 2$



 $b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1}$ for all i < n-1



V.S. Sunder IMSc, Chennai Operator algebras - stage for non-commutativity (Panorama Lectures Series)

SOC

Theorem: (Artin) B_n has the presentation

$$B_n = \langle b_1, \cdots, b_{n-1} | r_1, r_2 \rangle$$
,

where

•
$$(r_1) \ b_i b_j = b_j b_i \ \text{if} \ |i - j| \ge 2$$

•
$$(r_2) b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1}$$
 for all $i < n-1$

nar

Theorem: (Artin) B_n has the presentation

$$B_n = \langle b_1, \cdots, b_{n-1} | r_1, r_2 \rangle$$
,

where

•
$$(r_1) \ b_i b_j = b_j b_i \ \text{if} \ |i - j| \ge 2$$

•
$$(r_2) b_i b_{i+1} b_i = b_{i+1} b_i b_{i+1}$$
 for all $i < n-1$

This means that if any group G contains elements g_1, g_2, \dots, g_{n-1} which satisfy the relations (r_1) and (r_2) , then there exists a unique homomorphism $\pi: B_n \to G$ such that $\pi(b_i) = g_i \ \forall i$.

Theorem: (Artin) B_n has the presentation

$$B_n = \langle b_1, \cdots, b_{n-1} | r_1, r_2 \rangle$$
,

where

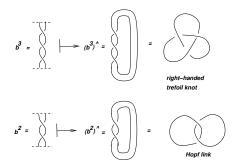
•
$$(r_1) b_i b_j = b_j b_i$$
 if $|i - j| \ge 2$
• $(r_2) b_j b_{j+1} b_j = b_{j+1} b_j b_{j+1}$ for all $i < n-1$

This means that if any group G contains elements g_1, g_2, \dots, g_{n-1} which satisfy the relations (r_1) and (r_2) , then there exists a unique homomorphism $\pi: B_n \to G$ such that $\pi(b_i) = g_i \ \forall i$.

Corollary: There exist homomorphisms $\pi : B_n \to B_{n+1}$ such that $\pi(b_i^{(n)}) = b_i^{(n+1)} \forall 1 \le i < n.$

The closure of a braid $b \in B_n$ is obtained by sticking together the strings connected to the *j*-th pegs at the top and bottom. The result is a link,¹ or a many component knot \hat{b} .

¹Formally, a link is an isotopy class of embeddings of $S^1 \times \{1, 2, \cdots, n\}$ into \mathbb{R}^3 for some n; when n = 1, the link is called a knot. The closure of a braid $b \in B_n$ is obtained by sticking together the strings connected to the *j*-th pegs at the top and bottom. The result is a link,¹ or a many component knot \hat{b} .



¹Formally, a link is an isotopy class of embeddings of $S^1 \times \{1, 2, \cdots, n\}$ into \mathbb{R}^3 for some n; when n = 1, the link is called a knot.

What makes this 'closure operation' useful are two results:

DQC

What makes this 'closure operation' useful are two results:

Theorem: (Alexander):

Every *tame* link (= many component knot) is the closure of some braid (on some number of strands).

nar

What makes this 'closure operation' useful are two results:

Theorem: (Alexander):

Every *tame* link (= many component knot) is the closure of some braid (on some number of strands).

Theorem: (Markov):

Two braids have isotopic closures iff you can pass from one to the other by a finite sequence of moves of one of two types (the so-called Markov moves of types I and II) which we now describe.

Type I Markov move:

$$c^{(n)}b^{(n)}(c^{(n)})^{-1}\leftrightarrow b^{(n)}$$

V.S. Sunder IMSc, Chennai Operator algebras - stage for non-commutativity (Panorama Lectures Series)

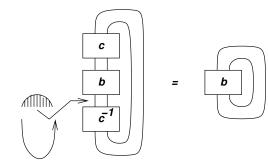
(4) (2) (4) (2)

A.

æ

Type I Markov move:

$$c^{(n)}b^{(n)}(c^{(n)})^{-1}\leftrightarrow b^{(n)}$$



э

1

Type II Markov move:

$$b^{(n)} \leftrightarrow b^{(n+1)}(b_n^{(n+1)})^{\pm 1}$$

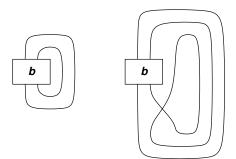
() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- T-

æ

Type II Markov move:

$$b^{(n)} \leftrightarrow b^{(n+1)} (b_n^{(n+1)})^{\pm 1}$$



э

ヨート

Proposition:(*strategy*) The following conditions are equivalent:

Proposition:(*strategy*) The following conditions are equivalent:

P is a link invariant - i.e., if L_1 and L_2 represent isotopic links, then $P_{L_1} = P_{L_2}$.

Proposition:(*strategy*) The following conditions are equivalent:

P is a **link invariant** - i.e., if L_1 and L_2 represent isotopic links, then $P_{L_1} = P_{L_2}$.

There exist functions $P_n : B_n \to S$ such that

- P_n(b) = P_n(cbc⁻¹) ∀b, c ∈ B_n i.e., each P_n is a class function (meaning it is constant on conjugacy classes).
- 2 $P_n(b^{(n)}) = P_{n+1}(b^{(n+1)}(b^{(n+1)}_n)^{\pm 1})$
- $P_{\hat{b}} = P_n(b) \ \forall b \in B_n$

From subfactors to knot invariants

Recall that class functions on finite groups are given by characters (= traces of representations). But the braid groups are not finite; so we seek representations taking values in II_1 factors. Thus condition (1) of the Proposition will be satisfied if we define

$$P_n(b) = tr_M(\pi_n(b))$$

for some representations $\pi_n : B_n \to GL(M)$.

From subfactors to knot invariants

Recall that class functions on finite groups are given by characters (= traces of representations). But the braid groups are not finite; so we seek representations taking values in II_1 factors. Thus condition (1) of the Proposition will be satisfied if we define

$$P_n(b) = tr_M(\pi_n(b))$$

for some representations $\pi_n : B_n \to GL(M)$.

Theorem: (Jones) Suppose $N \subset M$ is a subfactor with $[M : N] = \tau^{-1} < \infty$ and associated basic construction tower

$$N \subset M \subset^{e_1} M_1 \subset^{e_2} M_2 \subset \cdots$$

Then

• there exists a unique representation $\pi_n: B_n \to GL(M_n)$ such that

$$\pi_n(b_i^{(n)}) = q^{rac{1}{2}} \left((q+1)e_i - 1
ight) \; orall 1 \leq i < n \; ,$$

where $q + q^{-1} + 2 = \tau^{-1}$.

• If we define

$$P_n(b) = \left\{-(q^{\frac{1}{2}} + q^{-\frac{1}{2}})\right\}^{n-1} tr_{M_n}(\pi_n(b)) ,$$

then the P_n 's satisfy conditions (1) and (2) of Proposition (strategy).

不同下 不是下 不是下

Skein relations

By our proposition, the preceding theorem yields a link invariant, which is customarily denoted by $L \mapsto V_L(q)$.

Before we see some properties of this invariant, we pause for a simple observation.

nar

Skein relations

By our proposition, the preceding theorem yields a link invariant, which is customarily denoted by $L \mapsto V_L(q)$.

Before we see some properties of this invariant, we pause for a simple observation.

Definition: A triple (L_+, L_-, L_0) of link diagrams is said to be **skein-related** if there exists (some *n* and) *a*, *b* \in *B_n* and *i* \in {1, · · · , *n* - 1} such that

$$L_{+} = \widehat{ab_{i}b}$$
$$L_{-} = \widehat{ab_{i}^{-1}b}$$
$$L_{0} = \widehat{ab}$$

Skein relations

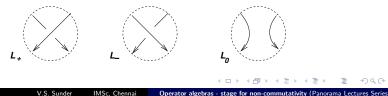
By our proposition, the preceding theorem yields a link invariant, which is customarily denoted by $L \mapsto V_L(q)$.

Before we see some properties of this invariant, we pause for a simple observation.

Definition: A triple (L_+, L_-, L_0) of link diagrams is said to be **skein-related** if there exists (some *n* and) *a*, *b* \in *B_n* and *i* \in {1, · · · , *n* - 1} such that

$$L_{+} = \widehat{ab_{i}b}$$
$$L_{-} = \widehat{ab_{i}}^{-1}b$$
$$L_{0} = \widehat{ab}$$

A more intuitively appealing way of saying this is that there exists one crossing away from which all three diagrams are identical, and that at that crossing, they look as follows:



The Jones polynomial

Theorem: (Jones)

- $V_L(q)$ is a Laurent polynomial in $q^{\frac{1}{2}}$;
- **2** $V_L(q)$ is a Laurent polynomial in q if L has an odd number of components;
- V_L(q) is q^{1/2} × (a Laurent polynomial in q) if L has an even number of components;
- **(**) The assignment $L \mapsto V_L$ is uniquely determined by the properties

 $V_{U_1}{}^2(q)=1$

and

2

0

$$q^{-1}V_{L_{+}}(q) - qV_{L_{-}}(q) = (q^{\frac{1}{2}} - q^{-\frac{1}{2}})V_{L_{0}}(q)$$

for any skein-related triple (L_+, L_-, L_0) .

 ${}^{2}U_{1} = \widehat{1^{(1)}}$ is the so-called unknot

³The unlink U_n on *n* components is just $(1^{(n)})$

The Jones polynomial

Theorem: (Jones)

- $V_L(q)$ is a Laurent polynomial in $q^{\frac{1}{2}}$;
- **2** $V_L(q)$ is a Laurent polynomial in q if L has an odd number of components;
- V_L(q) is q^{1/2} × (a Laurent polynomial in q) if L has an even number of components;
- **(**) The assignment $L \mapsto V_L$ is uniquely determined by the properties

 $V_{U_1}{}^2(q)=1$

and

2

0

$$q^{-1}V_{L_{+}}(q) - qV_{L_{-}}(q) = (q^{\frac{1}{2}} - q^{-\frac{1}{2}})V_{L_{0}}(q)$$

for any skein-related triple (L_+, L_-, L_0) .

The proof relies on the following fact, which in turn, is proved by an interesting kind of induction:

³The unlink U_n on *n* components is just $(1^{(n)})$

SOG

 $^{^{2}}U_{1} = \widehat{1^{(1)}}$ is the so-called unknot

The Jones polynomial

Theorem: (Jones)

- $V_L(q)$ is a Laurent polynomial in $q^{\frac{1}{2}}$;
- **2** $V_L(q)$ is a Laurent polynomial in q if L has an odd number of components;
- V_L(q) is q^{1/2} × (a Laurent polynomial in q) if L has an even number of components;
- **(**) The assignment $L \mapsto V_L$ is uniquely determined by the properties

 $V_{U_1}{}^2(q)=1$

and

2

0

$$q^{-1}V_{L_{+}}(q) - qV_{L_{-}}(q) = (q^{\frac{1}{2}} - q^{-\frac{1}{2}})V_{L_{0}}(q)$$

for any skein-related triple (L_+, L_-, L_0) .

The proof relies on the following fact, which in turn, is proved by an interesting kind of induction:

Lemma: Every link diagram can be transformed, by making 'sign-changes' at a suitably chosen set of crossings, into one representing an **unlink**³.

 $^{2}U_{1} = \widehat{1^{(1)}}$ is the so-called unknot

³The unlink U_n on *n* components is just $(1^{(n)})$

SOG

A knotty induction

Define the *knottiness* $\kappa(L)$ of a link diagram L to be (n, k), where

- *n* is the number of crossings of *L*; and
- *k* is the minimum number of sign-changes needed to transform *L* to an unlink.

Our proofs by 'knotty induction' rely on the fact that the set $\mathbb{Z}_+ \times \mathbb{Z}_+$ is a *totally ordered* set (i.e., non-empty subsets have smallest elements) with respect to lexicographic ordering:

$$(n_1, k_1) \le (n_2, k_2) \Leftrightarrow \begin{cases} n_1 < n_2 \\ \text{or} \\ n_1 = n_2 \text{ and } k_1 \le k_2 \end{cases}$$

Define the *knottiness* $\kappa(L)$ of a link diagram L to be (n, k), where

- *n* is the number of crossings of *L*; and
- *k* is the minimum number of sign-changes needed to transform *L* to an unlink.

Our proofs by 'knotty induction' rely on the fact that the set $\mathbb{Z}_+ \times \mathbb{Z}_+$ is a *totally ordered* set (i.e., non-empty subsets have smallest elements) with respect to lexicographic ordering:

$$(n_1, k_1) \leq (n_2, k_2) \Leftrightarrow \left\{ egin{array}{l} n_1 < n_2 \ {
m or} \ n_1 = n_2 \ {
m and} \ k_1 \leq k_2 \end{array}
ight.$$

Hence, to prove an assertion about all link diagrams by induction on their knottiness, it suffices to

- verify it for unlinks (level 0)
- verify it for an L under the assumption that it is true for every L' with $\kappa(L') < \kappa(L)$.

We first prove that V_L satisfies the two properties listed in (4). Part (1) of (4) follows from the definition; as for part (2) of (4), observe that $g_i = \pi_n(b_i)$ has eigenvalues $q^{\frac{3}{2}}$ and $-q^{\frac{1}{2}}$, and hence satisfies the quadratic equation

$$(g_i-q^{\frac{3}{2}})(g_i+q^{\frac{1}{2}})=0$$

which may be re-written as

$$q^{-1}g_i - qg_i^{-1} = (q^{\frac{1}{2}} - q^{-\frac{1}{2}})1$$

and the asserted skein relation follows by definition of L_{\pm}, L_0 .

We first prove that V_L satisfies the two properties listed in (4). Part (1) of (4) follows from the definition; as for part (2) of (4), observe that $g_i = \pi_n(b_i)$ has eigenvalues $q^{\frac{3}{2}}$ and $-q^{\frac{1}{2}}$, and hence satisfies the quadratic equation

$$(g_i-q^{\frac{3}{2}})(g_i+q^{\frac{1}{2}})=0$$

which may be re-written as

$$q^{-1}g_i - qg_i^{-1} = (q^{\frac{1}{2}} - q^{-\frac{1}{2}})1$$

and the asserted skein relation follows by definition of L_{\pm}, L_0 .

Next we simultaneously establish assertions (2) and (3) of the theorem by our method of knotty induction. To set the ball rolling, observe that putting $b = 1^{(n)}$ in the definition of P_n , we get

$$V_{U_n}(q) = \left\{-(q^{rac{1}{2}}+q^{-rac{1}{2}})
ight\}^{n-1}$$

so the unlinks do satisfy (2) and (3).

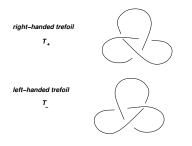
Suppose next that $L \in \mathcal{L}$ is not an unlink, and that $L' \in \mathcal{L}$ satisfies (2) and (3) whenever $\kappa(L') < \kappa(L) = (n, k)$ (say). Then n > 0 and k > 0 (since L is not an unlink) and hence there is one crossing of L such that if L' is the link obtained by changing that crossing from an over-crossing to an under-crossing (or vice versa) then $\kappa(L') = (n, k')$ with k' < k. Hence there exists an $L'' \in \mathcal{L}$ with $\kappa(L'') = (n - 1, k'')$ such that (L, L', L'') (or (L', L, L'')) is a skein-related triple. The fact that $\kappa(L) > \max{\kappa(L'), \kappa(L'')}$ and the already established fact that V_L satisfies the skein relation (4)(2) is now seen to imply that L must also satisfy (2) and (3).

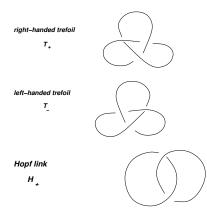
Suppose next that $L \in \mathcal{L}$ is not an unlink, and that $L' \in \mathcal{L}$ satisfies (2) and (3) whenever $\kappa(L') < \kappa(L) = (n, k)$ (say). Then n > 0 and k > 0 (since L is not an unlink) and hence there is one crossing of L such that if L' is the link obtained by changing that crossing from an over-crossing to an under-crossing (or vice versa) then $\kappa(L') = (n, k')$ with k' < k. Hence there exists an $L'' \in \mathcal{L}$ with $\kappa(L'') = (n - 1, k'')$ such that (L, L', L'') (or (L', L, L'')) is a skein-related triple. The fact that $\kappa(L) > \max{\kappa(L'), \kappa(L'')}$ and the already established fact that V_L satisfies the skein relation (4)(2) is now seen to imply that L must also satisfy (2) and (3).

For the last assertion of the previous paragraph, one also needs to observe that L_+ and L_- always have the same number of components while L_0 has one more (or less) component than L_0 .

Finally, it is a pleasant exercise in this knotty induction to show that if P_L is any knot invariant satisfying parts (1) and (2) of (4), then we must have $P_L = V_L$.

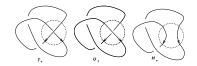
right-handed trefoil Τ_





A computation

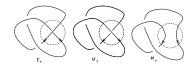
Suppose we want to compute V_{T_+} . We look at one crossing of T_+ , and observe that (T_+, U_1, H_+) is a skein-related triple



so the skein relation reduces the problem to computing V_{H_+} .

A computation

Suppose we want to compute V_{T_+} . We look at one crossing of T_+ , and observe that (T_+, U_1, H_+) is a skein-related triple



so the skein relation reduces the problem to computing V_{H_+} .

Next, look at a crossing of H_+ and note that (H_+, U_2, U_1) is a skein-related triple

so the skein relation tells us how to compute V_{H_+} , since we know that

$$V_{U_n}(q) = \left\{-(q^{\frac{1}{2}}+q^{-\frac{1}{2}})
ight\}^{n-1}$$

Explicitly, our computations reveal that

$$q^{-1}V_{H_+}(q) - qV_{U_2}(q) = (q^{rac{1}{2}} - q^{-rac{1}{2}})V_{U_1}(q)$$

and hence,

$$egin{array}{rcl} V_{H_+}(q) &=& q\left(qV_{U_2}(q)+(\sqrt{q}-rac{1}{\sqrt{q}})V_{U_1}(q)
ight) \ &=& q\left(-rac{q(q+1)}{\sqrt{q}})+rac{q-1}{\sqrt{q}}
ight) \ &=& -\sqrt{q}(q^2+1) \end{array}$$

э

1

990

Explicitly, our computations reveal that

$$q^{-1}V_{H_+}(q) - qV_{U_2}(q) = (q^{rac{1}{2}} - q^{-rac{1}{2}})V_{U_1}(q)$$

and hence,

$$egin{array}{rcl} V_{\mathcal{H}_+}(q) &=& q\left(qV_{U_2}(q)+(\sqrt{q}-rac{1}{\sqrt{q}})V_{U_1}(q)
ight) \ &=& q\left(-rac{q(q+1)}{\sqrt{q}})+rac{q-1}{\sqrt{q}}
ight) \ &=& -\sqrt{q}(q^2+1) \end{array}$$

$$q^{-1}V_{T_+}(q) - qV_{U_1}(q) = (q^{rac{1}{2}} - q^{-rac{1}{2}})V_{H_+}(q)$$

and hence,

$$egin{array}{rll} V_{T_+}(q) &=& q\left(qV_{U_1}(q)+(\sqrt{q}-rac{1}{\sqrt{q}})V_{H_+}(q)
ight) \ &=&\cdots \ &=& q+q^3-q^4 \end{array}$$

DQC

1

$$V_{T_{-}}(q) = q^{-1} + q^{-3} - q^{-4}$$

But more generally, we have the following fact, also provable easily by our method of knotty induction:

nan

$$V_{T_{-}}(q) = q^{-1} + q^{-3} - q^{-4}$$

But more generally, we have the following fact, also provable easily by our method of knotty induction:

Proposition: If $L \in \mathcal{L}$ and if \tilde{L} denotes the result of applying a mirror-reflection to L, then $V_{\tilde{L}}(q) = V_L(q^{-1})$.

$$V_{T_{-}}(q) = q^{-1} + q^{-3} - q^{-4}$$

But more generally, we have the following fact, also provable easily by our method of knotty induction:

Proposition: If $L \in \mathcal{L}$ and if \tilde{L} denotes the result of applying a mirror-reflection to L, then $V_{\tilde{L}}(q) = V_L(q^{-1})$.

Thus, the Jones can be effective in recognising some knots from their mirror images.

$$V_{T_{-}}(q) = q^{-1} + q^{-3} - q^{-4}$$

But more generally, we have the following fact, also provable easily by our method of knotty induction:

Proposition: If $L \in \mathcal{L}$ and if \tilde{L} denotes the result of applying a mirror-reflection to L, then $V_{\tilde{L}}(q) = V_L(q^{-1})$.

Thus, the Jones can be effective in recognising some knots from their mirror images.

In conclusion, the Jones polynomial allows us to make the topologically non-trivial statement that the links T_+ , T_- , H_+ , U_n are all pairwise inequivalent.

Pierre de la Harpe, Michael Kervaire and Claude Weber, *The Jones polynomial*, l'Enseignement Mathematique, 32, (1986), 271-335.

Jones, V. F. R. *A polynomial invariant for knots via von Neumann algebras,* Bulletin of the American Mathematical Society, **12**, (1985), 103–112.

Jones, V. F. R., *Braid groups, Hecke algebras and type II*₁ *factors,* in Geometric Methods in Operator Algebras, ed. H. Araki and E. G. Effros., Longman, 242–273, (1986).

Jones, V. F. R., *Hecke algebra representations of braid groups and link polynomials*, Annals of Mathematics, **126**, (1987), 335–388.

Jones, V.F.R. and Sunder, V.S., *Introduction to Subfactors*, Cambridge University Press, 1997.

V.S. Sunder, From von Neumann algebras to knot invariants - The work of Vaughan Jones, Current Science, **59** (1990),1285-1292.

V.S. Sunder, Knots, Resonance, Vol. 1, no. 7, (1996), 31-43.