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Recap

Recall that if N ⊂ M is a subfactor with finite index, say τ−1, and basic
construction tower

N ⊂ M ⊂e1 M1 ⊂e2 M2 ⊂ · · · ⊂ Mn−1 ⊂ Mn ⊂en+1 Mn+1 ⊂ ...

and conditional expectations EMn : Mn+1 → Mn, then

1 Mn ∩ {en+1}′ = Mn−1

2 en+1xnen+1 = EMn−1 (xn)en+1 ∀ xn ∈ Mn

3 EMn (en+1) = τ , or equivalently tr(xnen+1) = τ tr(xn) ∀xn ∈ Mn.

Since ek ∈ Mk , it follows from the preceding facts that

1 ei and ej commute for j ≥ i + 2

2 en+1enen+1 = τen+1

3 tr(xen) = τ tr(xen) ∀ x ∈ Mn−1 (and in particular, if x is a ‘word in
e1, · · · , en−1’
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Braids

An unexpected and pleasant offshoot of Jones’ work on subfactors was the
celebrated connection with knot theory. The initial contact seems to have been
made when Pierre de la Harpe, a collaborator of Jones, remarked on the
striking similarity between the relations satisfied by the Jones projections on the
one hand, and the so-called Braid relations on the other.

A braid is what you think it is:

1 2 3

1 2 3

3−strand braid

(= ( b
1
b
2

1−
)
k
)
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n-strand braids

The previous example was a ‘3-strand braid’; an ‘n-strand braid’ has a natural
intuitive definition, and we shall picture it as below:

b

1

1

general

n−strand braid

n

n

where the ‘black box b’ contains all the knotting/braiding between the different
strands.
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The Braid groups

The collection Bn of all n-strand braids turns out to be a group with respect to
the multiplication defined by:

ab a =b

b

a

x=

- provided we agree that two braids are the same if one may be continuously
deformed into the other. (This is needed even for associativity.)

1

1

2

2

n−1

n−1 n

n

= identity braid
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Braid inversion

The inverse of a braid is obtained by reflecting in a horizontal mirror placed at
the level of the lower frame of the braid: for example,

=

− 1

=
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The braid generators

Since braids can be built up ‘one crossing at a time’ it is clear that Bn is
generated , as a group, by the braids b1, b2, · · · , bn−1 shown below - together
with their inverses:

1 k k+1 n

1 k k+1 n

1 k k+1 n

nk k+11

b
k b

k

−1
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Tne braid relations

The bj ’s satisfy the following relations:

bibj = bjbi if |i − j | ≥ 2

b b
1 3

b b
3 1

=

bibi+1bi = bi+1bibi+1 for all i < n − 1

b
2

b
1

b
1

b
2

b
1

b
2

=
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Artin’s theorem

The Braid group is often referred to as Artin’s Braid Group, partly because of
the following theorem he proved:

Theorem: (Artin) Bn has the presentation

Bn = 〈b1, · · · , bn−1|r1, r2〉 ,

where

(r1) bibj = bjbi if |i − j | ≥ 2

(r2) bibi+1bi = bi+1bibi+1 for all i < n − 1

This means that if any group G contains elements g1, g2, · · · gn−1 which satisfy
the relations (r1) and (r2), then there exists a unique homomorphism
π : Bn → G such that π(bi ) = gi ∀i .

Corollary: There exist homomorphisms π : Bn → Bn+1 such that
π(b

(n)
i ) = b

(n+1)
i ∀ 1 ≤ i < n.

V.S. Sunder IMSc, Chennai Operator algebras - stage for non-commutativity (Panorama Lectures Series) V. The Jones polynomial invariant of knots



Artin’s theorem

The Braid group is often referred to as Artin’s Braid Group, partly because of
the following theorem he proved:

Theorem: (Artin) Bn has the presentation

Bn = 〈b1, · · · , bn−1|r1, r2〉 ,

where

(r1) bibj = bjbi if |i − j | ≥ 2

(r2) bibi+1bi = bi+1bibi+1 for all i < n − 1

This means that if any group G contains elements g1, g2, · · · gn−1 which satisfy
the relations (r1) and (r2), then there exists a unique homomorphism
π : Bn → G such that π(bi ) = gi ∀i .

Corollary: There exist homomorphisms π : Bn → Bn+1 such that
π(b

(n)
i ) = b

(n+1)
i ∀ 1 ≤ i < n.

V.S. Sunder IMSc, Chennai Operator algebras - stage for non-commutativity (Panorama Lectures Series) V. The Jones polynomial invariant of knots



Artin’s theorem

The Braid group is often referred to as Artin’s Braid Group, partly because of
the following theorem he proved:

Theorem: (Artin) Bn has the presentation

Bn = 〈b1, · · · , bn−1|r1, r2〉 ,

where

(r1) bibj = bjbi if |i − j | ≥ 2

(r2) bibi+1bi = bi+1bibi+1 for all i < n − 1

This means that if any group G contains elements g1, g2, · · · gn−1 which satisfy
the relations (r1) and (r2), then there exists a unique homomorphism
π : Bn → G such that π(bi ) = gi ∀i .

Corollary: There exist homomorphisms π : Bn → Bn+1 such that
π(b

(n)
i ) = b

(n+1)
i ∀ 1 ≤ i < n.

V.S. Sunder IMSc, Chennai Operator algebras - stage for non-commutativity (Panorama Lectures Series) V. The Jones polynomial invariant of knots



Artin’s theorem

The Braid group is often referred to as Artin’s Braid Group, partly because of
the following theorem he proved:

Theorem: (Artin) Bn has the presentation

Bn = 〈b1, · · · , bn−1|r1, r2〉 ,

where

(r1) bibj = bjbi if |i − j | ≥ 2

(r2) bibi+1bi = bi+1bibi+1 for all i < n − 1

This means that if any group G contains elements g1, g2, · · · gn−1 which satisfy
the relations (r1) and (r2), then there exists a unique homomorphism
π : Bn → G such that π(bi ) = gi ∀i .

Corollary: There exist homomorphisms π : Bn → Bn+1 such that
π(b

(n)
i ) = b

(n+1)
i ∀ 1 ≤ i < n.

V.S. Sunder IMSc, Chennai Operator algebras - stage for non-commutativity (Panorama Lectures Series) V. The Jones polynomial invariant of knots



From braids to knots

The closure of a braid b ∈ Bn is obtained by sticking together the strings
connected to the j-th pegs at the top and bottom. The result is a link,1 or a
many component knot b̂.

b
3

(b
3
)
^

right−handed

trefoil knot

b
2

=
=

=

= (b )
^2

= =

Hopf link

1Formally, a link is an isotopy class of embeddings of S1 × {1, 2, · · · , n} into R3 for some n;
when n = 1, the link is called a knot.
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Two theorems

What makes this ‘closure operation’ useful are two results:

Theorem: (Alexander):

Every tame link (= many component knot) is the closure of some braid (on
some number of strands).

Theorem: (Markov):

Two braids have isotopic closures iff you can pass from one to the other by a
finite sequence of moves of one of two types (the so-called Markov moves of
types I and II) which we now describe.
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Type I Markov move

Type I Markov move:

c (n)b(n)(c (n))−1 ↔ b(n)

c

c
−1

b b=
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Type II Markov move

Type II Markov move:

b(n) ↔ b(n+1)(b(n+1)
n )±1

b b
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Type II Markov move

Type II Markov move:

b(n) ↔ b(n+1)(b(n+1)
n )±1

b b
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The strategy for obtaining a link invariant

Let L denote the set of ‘(tame) link diagrams’. Let L 3 L
P7→ PL ∈ S be any

map from L into some set S. Then, we may conclude the following assertion
from Alexander’s and Markov’s theorems:

Proposition:(strategy) The following conditions are equivalent:

P is a link invariant - i.e., if L1 and L2 represent isotopic links, then PL1 = PL2 .

There exist functions Pn : Bn → S such that

1 Pn(b) = Pn(cbc−1) ∀b, c ∈ Bn - i.e., each Pn is a class function (meaning
it is constant on conjugacy classes).

2 Pn(b(n)) = Pn+1(b(n+1)(b
(n+1)
n )±1)

3 Pb̂ = Pn(b) ∀b ∈ Bn
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From subfactors to knot invariants

Recall that class functions on finite groups are given by characters (= traces of
representations). But the braid groups are not finite; so we seek representations
taking values in II1 factors. Thus condition (1) of the Proposition will be
satisfied if we define

Pn(b) = trM(πn(b))

for some representations πn : Bn → GL(M).

Theorem: (Jones) Suppose N ⊂ M is a subfactor with [M : N] = τ−1 <∞
and associated basic construction tower

N ⊂ M ⊂e1 M1 ⊂e2 M2 ⊂ · · ·

Then

there exists a unique representation πn : Bn → GL(Mn) such that

πn(b
(n)
i ) = q

1
2 ((q + 1)ei − 1) ∀1 ≤ i < n ,

where q + q−1 + 2 = τ−1.

If we define

Pn(b) =
n
−(q

1
2 + q−

1
2 )
on−1

trMn (πn(b)) ,

then the Pn’s satisfy conditions (1) and (2) of Proposition (strategy).

2
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Skein relations

By our proposition, the preceding theorem yields a link invariant, which is
customarily denoted by L 7→ VL(q).

Before we see some properties of this invariant, we pause for a simple
observation.

Definition: A triple (L+, L−, L0) of link diagrams is said to be skein-related if
there exists (some n and) a, b ∈ Bn and i ∈ {1, · · · , n − 1} such that

L+ = dabib

L− = âb−1
i b

L0 = cab
A more intuitively appealing way of saying this is that there exists one crossing
away from which all three diagrams are identical, and that at that crossing,
they look as follows:

0
L + L− L
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The Jones polynomial

Theorem: (Jones)

1 VL(q) is a Laurent polynomial in q
1
2 ;

2 VL(q) is a Laurent polynomial in q if L has an odd number of components;

3 VL(q) is q
1
2× (a Laurent polynomial in q) if L has an even number of

components;
4 The assignment L 7→ VL is uniquely determined by the properties

1

VU1
2(q) = 1

and
2

q−1VL+ (q)− qVL− (q) = (q
1
2 − q−

1
2 )VL0

(q)

for any skein-related triple (L+, L−, L0).

The proof relies on the following fact, which in turn, is proved by an interesting
kind of induction:

Lemma: Every link diagram can be transformed, by making ‘sign-changes’ at a
suitably chosen set of crossings, into one representing an unlink3.

2U1 = c1(1) is the so-called unknot
3The unlink Un on n components is just (̂1(n))
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A knotty induction

Define the knottiness κ(L) of a link diagram L to be (n, k), where

n is the number of crossings of L; and

k is the minimum number of sign-changes needed to transform L to an
unlink.

Our proofs by ‘knotty induction’ rely on the fact that the set Z+ × Z+ is a
totally ordered set (i.e., non-empty subsets have smallest elements) with
respect to lexicographic ordering:

(n1, k1) ≤ (n2, k2) ⇔

8<:
n1 < n2

or
n1 = n2 and k1 ≤ k2

Hence, to prove an assertion about all link diagrams by induction on their
knottiness, it suffices to

verify it for unlinks (level 0)

verify it for an L under the assumption that it is true for every L′ with
κ(L′) < κ(L).
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Proof of Jones’ theorem

We first prove that VL satisfies the two properties listed in (4). Part (1) of (4)
follows from the definition; as for part (2) of (4), observe that gi = πn(bi ) has

eigenvalues q
3
2 and −q

1
2 , and hence satisfies the quadratic equation

(gi − q
3
2 )(gi + q

1
2 ) = 0 ,

which may be re-written as

q−1gi − qg−1
i = (q

1
2 − q−

1
2 )1

and the asserted skein relation follows by definition of L±, L0.

Next we simultaneously establish assertions (2) and (3) of the theorem by our
method of knotty induction. To set the ball rolling, observe that putting
b = 1(n) in the definition of Pn, we get

VUn (q) =
n
−(q

1
2 + q−

1
2 )
on−1

so the unlinks do satisfy (2) and (3).
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Proof of Jones’ theorem (contd.)

Suppose next that L ∈ L is not an unlink, and that L′ ∈ L satisfies (2) and (3)
whenever κ(L′) < κ(L) = (n, k) (say). Then n > 0 and k > 0 (since L is not
an unlink) and hence there is one crossing of L such that if L′ is the link
obtained by changing that crossing from an over-crossing to an under-crossing
(or vice versa) then κ(L′) = (n, k ′) with k ′ < k. Hence there exists an L” ∈ L
with κ(L”) = (n − 1, k”) such that (L, L′, L”) (or (L′, L, L”)) is a skein-related
triple. The fact that κ(L) > max{κ(L′), κ(L”)} and the already established
fact that VL satisfies the skein relation (4)(2) is now seen to imply that L must
also satisfy (2) and (3).

For the last assertion of the previous paragraph, one also needs to observe that
L+ and L− always have the same number of components while L0 has one more
(or less) component than L0.

Finally, it is a pleasant exercise in this knotty induction to show that if PL is any
knot invariant satisfying parts (1) and (2) of (4), then we must have PL = VL.
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An example

We conclude by listing some exercises which demonstrate the method of
computation of VL for a desired L (where we consider the example of L = T+,
the so-called right-handed trefoil. For this, we first identify a few links.

right−handed trefoil

T +

T
−

left−handed trefoil

Hopf link

H
+
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A computation

Suppose we want to compute VT+ . We look at one crossing of T+, and observe
that (T+,U1,H+) is a skein-related triple

+T +
U

1
H

so the skein relation reduces the problem to computing VH+ .

Next, look at a crossing of H+ and note that (H+,U2,U1) is a skein-related
triple

U
1

H U
+ 2

so the skein relation tells us how to compute VH+ , since we know that

VUn (q) =
n
−(q

1
2 + q−

1
2 )
on−1
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Some answers

Explicitly, our computations reveal that

q−1VH+ (q)− qVU2 (q) = (q
1
2 − q−

1
2 )VU1 (q)

and hence,

VH+ (q) = q

„
qVU2 (q) + (

√
q − 1
√

q
)VU1 (q)

«
= q

„
−q(q + 1)

√
q

) +
q − 1
√

q

«
= −√q(q2 + 1)

q−1VT+ (q)− qVU1 (q) = (q
1
2 − q−

1
2 )VH+ (q)

and hence,

VT+ (q) = q

„
qVU1 (q) + (

√
q − 1
√

q
)VH+ (q)

«
= · · ·
= q + q3 − q4
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Chirality sensitivity

Analogously, it can also be shown that

VT−(q) = q−1 + q−3 − q−4

But more generally, we have the following fact, also provable easily by our
method of knotty induction:

Proposition: If L ∈ L and if L̃ denotes the result of applying a mirror-reflection
to L, then VL̃(q) = VL(q−1).

Thus, the Jones can be effective in recognising some knots from their mirror
images.

In conclusion, the Jones polynomial allows us to make the topologically
non-trivial statment that the links T+,T−,H+,Un are all pairwise inequivalent.
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