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Abstract. To a semisimple and cosemisimple Hopf algebra over an algebraically closed
field, we associate a planar algebra defined by generators and relations and show that
it is a connected, irreducible, spherical, non-degenerate planar algebra with non-zero
modulus and of depth two. This association is shown to yield a bijection between (the
isomorphism classes, on both sides, of) such objects.
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0. Introduction

Throughout this paper, the symbol k will always denote an algebraically closed field and
H = (H, μ, η, �, ε, S) will always denote a semisimple and cosemisimple (necessarily
finite-dimensional) Hopf algebra over k. We associate to H , a planar algebra over the
field k which is an analogue of the construction in [KdyLndSnd] of the ‘subfactor planar
algebra’ associated to a (finite-dimensional) Kac algebra.

We then study various properties of this planar algebra including computation of its
partition function and duality with the planar algebra of H ∗. Conversely, we show that every
connected, irreducible, spherical, non-degenerate planar algebra with non-zero modulus
and of depth two arises in this manner, thus obtaining a generalisation of the Ocneanu–
Szymanski theorem (see [Szy]).

1. Semisimple and cosemisimple Hopf algebras

We begin by recalling well-known facts about such an H , the proofs of which may be found
in [TngGlk] and [LrsRdf]. The semisimplicity and cosemisimplicity assumptions imply
that both H and H ∗ are multi-matrix algebras and the dimensions, say n, of H , as well as
those of its irreducible representations, are ‘non-zero in k’. It follows that the traces in the
regular representations of H and H ∗, which we shall denote by φ and h respectively, are
non-degenerate traces. Further, these are two-sided integrals for H ∗ and H respectively:
i.e., they satisfy φψ = ψ(1)φ = ψφ and hx = ε(x)h = xh, for all ψ ∈ H ∗ and x ∈ H .
Also, ε(h) = φ(h) = φ(1) = n ∈ k. Finally, the antipodes of H and H ∗ are involutive.

We shall use the standard notations μk and �k for the k-fold iterated product and
coproduct respectively. In particular, μ0 = η, μ1 = idH , μ2 = μ and �0 = ε, �1 = idH

and�2 = �. We will find it convenient to use our version of the so-called Sweedler notation
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for comultiplication – according to which we write, for example, �n(x) = x1 ⊗ · · · ⊗ xn

rather than the more familiar �n(x) = ∑
(x) x(1) ⊗ · · · ⊗ x(n) in the interest of notational

convenience.

2. Planar algebras

We will also need the formalism of Jones’ planar algebras. Although Jones primarily used
planar algebras which are C∗-planar algebras, and à fortiori defined over C , we need their
analogues over more general fields here, so we give a ‘crash course’ accordingly; but by
and large, we assume familiarity with planar tangles, planar networks and planar algebras.
The basic reference is [Jns]. A somewhat more leisurely treatment of the basic notions
may also be found in [KdySnd]. (We will follow the latter where, for instance, the ∗’s are
attached to ‘distinguished points’ on boxes rather than to regions and for notation such as
1k for the identity element of Pk for a planar algebra P .)

We shall continue to use the term planar tangle, as well its colour, in exactly the same
sense as used in [KdySnd]. By a planar algebra P (over k), we shall mean a collection
{Pk: k ∈ Col} of k-vector spaces, indexed by the set Col = {0+, 0−, 1, 2, . . . } of ‘colours’,
which comes equipped with the following structure: to each k0-tangle T (with internal
boxes B1, . . . , Bg of colours k1, . . . , kg) is associated a k-linear mapping ZP

T : ⊗g

i=1Pki
→

Pk0 which satisfies several natural conditions (listed as equations (2.2), (2.3), (2.4) and
(2.6) in [KdySnd]).

Given a ‘label set’ L = ∐
k∈Col Lk , an L-labelled tangle is a tangle T equipped with a

labelling of every internal box of colour k by an element from Lk . The universal planar
algebra on L, denoted by P(L) = {P(L)k: k ∈ Col} is defined by requiring that P(L)k
is the k-vector space with basis consisting of the set of all L-labelled k-tangles, with the
action of a planar tangle on a tensor product of basis vectors given by L-labelled tangles
being the obvious L-labelled tangle obtained by substitution.

Recall that a planar ideal of a planar algebra P is a set I = {Ik: k ∈ Col} with the property
that (i) each Ik is a subspace of Pk , and (ii) for any k0-tangle T as before, ZT (⊗g

i=1xi) ∈ Ik0

whenever xi ∈ Iki
for at least one i. Given a planar ideal I in a planar algebra P , there is

a natural planar algebra structure on the ‘quotient’ P/I = {Pk/Ik: k ∈ Col}.
Given any subset R = {Rk: k ∈ Col} of P (meaning Rk ⊂ Pk), there is a smallest

planar ideal I (R) = {I (R)k: k ∈ Col} such that Rk ⊂ I (R)k for all k ∈ Col; and finally,
given a label set L as above, and any subset R of the universal planar algebra P(L), the
quotient P(L)/I (R) is said to be the planar algebra P(L, R) presented with generators L

and relations R.

3. Definition of P(H, δ)P (H, δ)P (H, δ)

Motivated by the results of [KdyLndSnd] – where the case of the so-called finite-
dimensional Kac-algebras (over C ) is treated – we wish to define the planar algebra
associated to a semisimple and cosemisimple Hopf algebra via generators and relations.

However, our definition will depend on a choice we have to make of a square root in k
of n. To be precise, we shall let δ be a solution to δ2 = n in k, and then define P(H, δ) to
be the planar algebra P(L, R), with

Lk =
{

H, if k = 2

∅, otherwise
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* * *
ζa + b === a bζ + δ

Figure 1. The L(inearity) and M(odulus) relations.
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Figure 2. The U(nit) and I(ntegral) relations.
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ε(a) == δ−1φ(a)aa

Figure 3. The C(ounit) and T(race) relations.

*

*

*
* *

*

==

a1

a
2
b

b

a

a

Sa

Figure 4. The E(xchange) and A(ntipode) relations.

and R being given by the set of relations in figures 1 – 4 (where (i) we write the relations
as identities – so the statement a = b is interpreted as a − b ∈ R; (ii) ζ ∈ k and a, b ∈ H ;
and (iii) the external boxes of all tangles appearing in the relations are left undrawn and it
is assumed that all external ∗’s are at the top left corners).

We note that relation (M) actually represents two relations, one in P0+ and the other in
P0− and that the δ in relation (M) means δ10+ in one of the relations and δ10− in the other.

In the rest of this paper, we shall simply write P for the planar algebra P(H, δ).

4. Properties of PPP

We wish to study the properties of P . Recall that a planar algebra P is said to be connected
if dim P0± = 1 and irreducible if dim P1 = 1. A connected planar algebra is said to have
modulus δ if the relation (M) holds in P .

We will need some facts concerning ‘exchange relation planar algebras’ as defined in
[Lnd]. Although only planar algebras over C are considered there, the proofs of some
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Figure 5. The procedure for calculating τ+.

results we need from there are seen to carry over verbatim for general k. We isolate one
such fact from [Lnd] as a lemma below, which we will need to use repeatedly in the sequel.

Lemma 1. In any ‘exchange relation planar algebra’ P , and for any k ∈ Col, the space
Pk is linearly spanned by the images of labelled k-tangles with at most k−1 internal boxes
(all of colour 2 and where we take k − 1 = 0 if k = 0±) that have no ‘internal faces’.

Rather than repeating the definition of an ‘exchange relation planar algebra’ here, it will
suffice for the reader to know that if L = L2 = H and R0 is any set of relations which
contains R \ {U, I }, then P(L, R0) is an exchange relation planar algebra.

PROPOSITION 2

The planar algebra P is a connected planar algebra.

Proof. We deduce from Lemma 1 that P0± is linearly spanned by its identity element 10±
(since 10± is the only 0±-tangle ‘without internal faces’). Thus, dim P0± ≤ 1.

To prove the reverse inequality, we construct a functional λ±: P(L)0± → k which
is non-trivial and show that it descends to the quotient P0± of P(L)0± by I (R)0± . The
motivation for the definition of λ± comes from the description of the partition function of
P(H) given in [Lnd] for H = C [G] and generalised in [KdyLndSnd] for a Kac algebra H .

The functional λ± is defined by specifying it on a basis of P(L)0± , a typical element
of which is an L-labelled 0±-tangle. Since Lk = ∅ for k 	= 2, each internal box of such a
tangle is necessarily a 2-box. It will be easiest to illustrate the prescription in a particular
example. Consider, for instance, the 0+-tangle T shown on the left in figure 5. (We will
identify 0+-tangles (resp. 0−-tangles) with planar networks with unbounded region of
colour white (resp. black) by removing the external box.)

Removing each labelled 2-box – with label l (say) – and inserting a symbol l1 close to
the strand through the ∗ of the box and a symbol Sl2 = S(l2) close to the other strand
yields the picture on the right of figure 5.

Now arbitrarily pick a base point on each component (loop) of the resulting figure, read
the labels on that component in the order opposite to that prescribed by the orientation of
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X X

h

T1 = T2 =

Figure 6. Two tangles that differ by the relation (I).

the loop, evaluate δ−1φ on each resulting product (the empty ‘product’ being 1 if the loop
has no labels) and multiply the answers. Thus, in our example, we would obtain

δ−1φ(a1(Sd2)c1) δ−1φ((Sc2)(Sb2)(Sa2)) δ−1φ(b1d1),

and this element of k is what we will define as λ+(T ). Note that the answer is independent
of the choices of base-points since φ is a trace. The same procedure is used to define
λ− on P(L)0− . Observe that two 0-tangles (possibly one 0+ and the other 0−) whose
associated planar networks are isotopic on the sphere S2 yield the same element of k under
the appropriate λ’s.

We now assert that λ± vanishes on I (R)0± . To see this, it suffices to see that if two (linear
combinations of) L-labelled 0±-tangles differ by an application of any of the relations in
R, then λ± assigns the same value to both. For all but relation (I), this follows – and we
leave it to the reader to verify – from various properties of and identities in H which we
will list out.

• Relation (L): Linearity of (id ⊗ S) ◦ �.
• Relation (M): φ(1) = δ2.
• Relation (U): �(1) = 1 ⊗ 1.
• Relation (C): a1Sa2 = ε(a) · 1H .
• Relation (T): a1φ(Sa2) = φ(a) · 1H .
• Relation (E): a1 ⊗ b1 ⊗ Sb2Sa2 = a1 ⊗ Sa2(a3b1) ⊗ S(a4b2).
• Relation (A): (Sa)1 ⊗ S(Sa)2 = Sa2 ⊗ a1.

The verification that λ± assigns the same value to two L-labelled 0±-tangles that differ
at a single 2-box by an application of the relation (I) needs a little work. First, use isotopy
on S2 to move the point at infinity to a point in the white region near the ∗ of the special
2-boxes of both (at which they differ). It should then be clear that the two tangles necessarily
have the forms in figure 6 where X is some L-labelled 2-tangle. What we need to verify
is that λ+(T1) = δλ+(T2), where the δ factor comes from the relation (I).

Let R0 = R \ {I }. An application of Lemma 1 to P(L, R0)2 shows now that the image
of X in P2 may be expressed, using the relations other than (I), as a linear combination
of (images of) labelled 2-boxes and the tangle E2 shown in figure 7. (Tangles E3 and E4

are shown, in order to indicate a whole sequence of tangles Ek .) Since we have already
verified that λ± is invariant under application of any of the relations other than (I), we
reduce immediately to the case that X itself is either a labelled 2-box or the tangle E2. We
treat these cases one by one.

If X is a 2-box labelled by a ∈ H , then the procedure for calculating λ+ yields λ+(T1) =
δ−1φ(h1a1)δ

−1φ(Sh2Sa2) = δ2ε(a) while λ+(T2) = δ−1φ(Sa2a1) = δε(a). On the
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* * *

Figure 7. The tangles E2, E3 and E4.

. . .

. . .
. . .

Figure 8. The trace tangle.

other hand, if X = E2, then λ+(T1) may be computed to be δ−1φ(h1Sh2) = δ3 while
λ+(T2) is computed to be δ−2φ(1)φ(1) = δ2. In either case, we see that λ+(T1) =
δλ+(T2). This completes verification of invariance under the relation (I).

Thus λ± descend to give maps from P0± → k that are clearly (since λ±(10±) = 1)
surjective, thereby establishing that dim P0± ≥ 1 and concluding the proof.

Before stating our next result, note that since for any planar algebra P , each Pk is a
k-algebra with identity 1k , it follows that if P is connected, there are canonical identifi-
cations P0± = k (under which 10± is identified with 1). Consequently, if N is any planar
network then its partition function ZP

N takes values in k.

COROLLARY 3

For any labelled planar network N in P(L)0± , its value (as given by the partition function
of P ) is λ±(N).

Proof. By Lemma 1, any L-labelled 0±-tangle may be written, using all the relations in
R, as a multiple of 10± – the only 0±-tangle without internal faces. Since λ± is invariant
under the relation R, it suffices to verify that for the tangle 10± , both the partition function
and λ± assign the same value. This is true since both give the value 1 to 10± , establishing
the corollary.

Since we have now verified that P0± is 1-dimensional, and in particular that its identity
10± is non-zero, the following equation for x ∈ Pk where k ≥ 1,

Z P
Tr(k)(x) = δkτk(x)10+ ,

uniquely defines a tracial linear functional τk on Pk which will be referred to as the
normalised picture trace. Here Tr(k) denotes the 0+-tangle with a single internal k-box
that is shown in figure 8. Note that τk(1k) = 1.

Let π denote the natural map from H to P2 which takes a ∈ H to the image of the 2-box
labelled by a. We then have the following lemma by which we will henceforth identify H

with P2.

Lemma 4. The map π is a unital algebra isomorphism from H to P2.
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Figure 9. The tangles X4 and X5.
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Figure 10. The tangles X∗
4 and X∗

5 .

Proof. From the results of [Lnd] it follows that each element of P2 is a linear combination
of labelled 2-boxes or equivalently that π is surjective. The relations (E) and (C) may be
seen to imply that π preserves multiplication while (U) ensures that π is unital.

To show that π is injective, observe that relations (T) and (M) imply that τ2 ◦π = δ−2φ.
Since δ−2φ is a non-degenerate trace on H , if {ei : i ∈ I } is a basis of H there is a basis
{ei : i ∈ I } of H that is dual to this basis in the sense that δ−2φ(eie

j ) = δ
j
i – where,

of course, δ
j
i is the Kronecker delta. Since π preserves multiplication, it follows that

τ2(π(ei)π(ej )) = δ
j
i . Thus {π(ei): i ∈ I } is linearly independent and so π is a unital

algebra isomorphism.

We omit the proof of the following corollary which follows immediately from Lemma 4
and the relation (T).

COROLLARY 5

The planar algebra P is irreducible.

We will be interested in describing a basis of Pk in terms of a basis of H . For this, the
k-tangles Xk and their adjoint tangles X∗

k (each with k − 1 internal 2-boxes), illustrated in
figures 9 and 10 for k = 4 and k = 5, will turn out to be relevant. Note that the tangles
Xk may be defined inductively as in Figure 11. Close relatives of the tangles Xk occur in
[LndSnd].

Before describing a basis of Pk , we would like to introduce the notation T (k) (resp.
T≤(k)) for the set of k-tangles without internal faces and exactly k−1 (resp. at most k−1)
internal boxes all of colour 2. Note that Xk, X

∗
k ∈ T (k).

We will next prove the following lemma. See the appendix for a generalisation.
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k

Figure 11. Inductive definition of Xk+1.
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X = W = F = L =

Figure 12. The tangles X, W , F and L.
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1
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Figure 13. The k + 1-tangle T .

Lemma 6. For each k ≥ 3, the map ZP
Xk

: P
⊗(k−1)
2 → Pk is surjective.

Proof. It is easy to verify that any element of T (3) is obtained from any other by rotating the
external and internal boxes. (cf. eq. (3.1) in [KdyLndSnd].) It then follows from relations
(E) and (A) (and (L)) that all these tangles have the same range in P3. Further, inspection
shows that any element of T≤(3) may be obtained from one of the elements of T (3) by
substituting 12 or E2 into some of its internal boxes. Together with Lemma 1, this implies
that for any X ∈ T (3), the map ZP

X is surjective. In particular, ZP
X3

is surjective.

The tangles X and W of figure 12 are in T (3) and the surjectivity of ZP
X implies that

P3 = P2e2P2 and consequently (see Lemma 5.7 of [KdyLndSnd] for the proof) that
Pk+1 = P2e2e3 . . . ekPk for any k ≥ 3. (We recall that ek = δ−1ZEk+1(1), with Ek+1 as
indicated by figure 7.)

This is equivalent to the statement that the k + 1 tangle T with two internal boxes of
colours 2 and k shown in figure 13 has ZP

T surjective. However, a little thought shows
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ei1 ei2

ei3

e
j3

ej2ej1

Figure 14. The planar network N of Lemma 7.

that R−2
k+1 ◦ Xk+1 = T ◦D2 (R−1

k ◦ Xk) where Rk is the k-rotation tangle. Since ZRk
is

an isomorphism for each k, it follows that surjectivity of ZP
Xk

implies that of ZP
Xk+1

and
concludes the proof, by induction on k.

In order to state our next result, we fix a pair of bases {ei : i ∈ I } and {ei : i ∈ I } of H

that are dual with respect to the trace δ−2φ, as in Lemma 4. We then have the following.

Lemma 7. For k ≥ 2, and for each i = (i1, . . . , ik−1) ∈ I k−1, if we set ei = ZXk
(ei1 ⊗

· · · ⊗ eik−1) and ei = ZX∗
k
(ei1 ⊗ · · · ⊗ eik−1), then {ei: i ∈ I k−1} and {ei: i ∈ I k−1} are a

pair of bases of Pk dual with respect to the trace τk , which is a non-degenerate trace. In
particular, dim Pk = nk−1.

Proof. The case k = 2 of this lemma is contained in Lemma 4. For a general k, Lemma 6
shows that Pk is linearly spanned by (the images of) H -labelled k-tangles ZXk

(a(1) ⊗
· · · ⊗ a(k − 1) ⊗ 1) where (a(1), . . . , a(k − 1)) ∈ Hk−1. This establishes the inequality
dim Pk ≤ nk−1.

We will next show that for k = 4, if i = (i1, i2, i3) and j = (j1, j2, j3), then τ4(eie
j) =

δ
j
i ; the proof of the general case is similar. Notice that τ4(eie

j) = δ−4×(the value of the
labelled planar network N in figure 14).
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==δ−1 ejei δ−2φ(ejei) δ
j
i

Figure 15. A relation that holds in P .

**
TR = TL =

Figure 16. The tangles TR and TL.

Now use relation (T) and the hypothesis that δ−2φ(eie
j ) = δ−2φ(ej ei) = δ

j
i to

conclude that the relation shown in figure 15 holds in P . Apply this repeatedly with
(i, j) = (i3, j3), (i2, j2), (i1, j1) to deduce – after 4 applications of relation (M) that
τ4(eie

j) = δ
j
i , thereby establishing the desired equation.

It now follows that {ei: i ∈ I k−1} is a linearly independent set in Pk , that dim Pk = nk−1,
that {ei: i ∈ I k−1} is a basis of Pk with {ei: i ∈ I k−1} being a dual basis, and finally that
τk is a non-degenerate trace on Pk .

Recall that a planar algebra P is said to be spherical if the partition function for planar
networks is an invariant of isotopy on S2. We now make the following simple observation.

Lemma 8. If P is any connected and irreducible planar algebra with modulus δ, then P

is spherical.

Proof. Since the only difference between viewing a network as being embedded in the
plane or on the sphere is how it is positioned with respect to the point at infinity, it is seen
after a little thought that a connected planar algebra is spherical if and only if ZP

TL
= ZP

TR

where TL (resp., TR) is the 0−-tangle (resp., 0+-tangle) shown in figure 16, where both
ZP

TL
and ZP

TR
are regarded as linear functionals on P1.

However, for irreducible P , the space P1 is 1-dimensional and is consequently spanned
by its identity element 11, and relation (M) says precisely that

ZP
TL

(11) = δ = ZP
TR

(11);
and since two linear functionals which agree on a basis must be identical, we see that P is
indeed spherical.

We summarise the facts we have proved about P in the following theorem. The term
‘non-degenerate planar algebra’ is used for a connected planar algebra for which the picture
traces τk are all non-degenerate. Recall that a planar algebra P with non-zero modulus is
said to be of depth two if P3 = P2e2P2, where e2 is defined as in the proof of Lemma 6
(or equivalently, if ZP

X is surjective where X is the tangle of Figure 12).

Theorem 9. Let H be a semisimple and cosemisimple Hopf algebra H of dimension n.
The planar algebra P = P(H, δ) associated to H is a connected, irreducible, spherical,
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non-degenerate planar algebra with modulus δ and of depth two. Further, dim Pk = nk−1

for all k ≥ 1.

It should be clear that an isomorphism of semisimple and cosemisimple Hopf algebras
naturally yields an isomorphism of the corresponding planar algebras (with the same choice
of δ).

5. From planar algebras to Hopf algebras

In this section, we wish to invert the procedure of §3 to get a semisimple and cosemisimple
Hopf algebra from a connected, irreducible and non-degenerate planar algebra of depth
two and non-zero modulus. So fix such a planar algebra P with modulus δ.

If P is a ‘subfactor planar algebra’, there is a detailed description in [DasKdy] of the
construction of a Kac algebra from P . Essentially the same proof works in our situation
to get a Hopf algebra from P , and so we will only indicate the changes to be made for that
proof to work here. These changes are summarised in the following lemmas.

Lemma 10. For the tangle W shown in figure 12, the map ZP
W : P2 ⊗ P2 → P3 is an

isomorphism.

Proof. The depth two assumption on P is equivalent to the surjectivity of ZP
X for the

tangle X of figure 12 or to that of ZP
W – since W = X ◦D1 R2 and all rotation tangles give

isomorphisms of the spaces they naturally act on. Thus ZP
W is surjective.

As for injectivity, use the non-degeneracy of the picture trace to choose a pair of bases
{ei : i ∈ I } and {ei : i ∈ I } of P2 that are dual with respect to τ2. Then, the proof of Lemma 7
goes through to show that {ZX3(ei1 ⊗ ei2): i1, i2 ∈ I } forms a linearly independent set in
P3. Thus dim P3 = (dim P2)

2 and so ZP
W is an isomorphism.

The proof of the main theorem of [DasKdy] goes through in this context to imply
that H = P2 is a Hopf algebra with its usual (from the planar algebra) multiplicative
structure and the comultiplication, counit and antipode defined by �(a) = (ZP

W )−1ZP
F (a),

ε(a) = δ−1ZP
L (a) (where the tangles F and L are shown in figure 12) and S(a) = ZP

R2
(a).

We now have the following lemma

Lemma 11. With the foregoing notations, the Hopf algebra H is semisimple and
cosemisimple and its dimension n is related to the modulus δ of P by δ2 = n.

Proof. Recall that a Hopf algebra H is semisimple if there exists a one-sided integral
h ∈ H with ε(h) 	= 0. For H = P2, define h ∈ H and φ ∈ H ∗ so that the (I) and (T)
relations hold (for the φ this needs irreducibility of P ).

A pleasant exercise with the relations in Figures 1 – 4 then shows that ha = ε(a)h,
a1φ(a2) = φ(a) · 1, ε(h) = δ2, φ(1) = δ2 and φ(h) = δ2 proving that both H and
H ∗ are semisimple. However, in a semisimple and cosemisimple Hopf algebra, there are
choices of h and φ for which ε(h) = φ(1) = φ(h) = n; since the space of integrals is
1-dimensional, it follows that δ2 = n.

PROPOSITION 12

The association H �→ P(H, δ) defines a bijective correspondence between isomorphism
classes of semisimple and cosemisimple Hopf algebras (over k) with dim H = δ2 ∈ k, on
the one hand, and isomorphism classes of connected, irreducible, non-degenerate planar
algebras (over k) with modulus δ and of depth two.
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Proof. It is easy to see that

H1 ∼= H2 ⇒ P(H1, δ) ∼= P(H2, δ).

In the other direction, suppose P is a connected, irreducible, non-degenerate planar alge-
bra (over k) with modulus δ and of depth two. Let H be the semisimple and cosemisimple
Hopf algebra constructed as above. We wish to prove first that P ∼= P(H, δ).

Since P2 = H , there is a planar algebra homomorphism of π : P(L) → P – where
L = L2 = H . The depth two assumption says P3 = P2e2P2, which implies (as already
observed in the proof of Lemma 6) that Pk+1 = P2e2e3 . . . ekPk ∀k ≥ 3, and hence (by
induction) that P is generated, as a planar algebra, by P2; and in particular, the map π is
surjective.

Next, it is easy to see that all the relations defining P(H, δ) are satisfied in P , and hence
π descends to a surjective planar algebra homomorphism of P(H, δ) to P . In particular,
dim Pk ≤ dim P(H, δ)k = (dim H)k−1. On the other hand, the proof of Lemma 7 shows,
even in this case, that if {ei : i ∈ I } and {ej : j ∈ I } are a pair of bases of P2 which are
dual with respect to τ2, then {ei: i ∈ I k−1} and {ej: j ∈ I k−1} (as defined in Lemma 7) are
linearly independent in Pk and that hence, also dim Pk ≥ (dim H)k−1 = dim P(H, δ)k .
This shows that indeed P(H, δ) ∼= P .

To complete the proof, note that

P(H1, δ)
ψ∼= P(H2, δ) ⇒ H1

ψ2∼= H2.

6. Duality between P(H, δ)P (H, δ)P (H, δ) and P(H ∗, δ)P (H ∗, δ)P (H ∗, δ)

We will next explicate a duality between the planar algebras associated to H and to H ∗.
Recall from [KdySnd] that there is an ‘operation on planar tangles’ denoted by ‘−’. This
is defined by (i) the map k �→ k− that toggles 0± and fixes the other colours and (ii) the
map T �→ T − that moves the ∗ back (anticlockwise) by one on all boxes and inverts
shading. If P is a planar algebra, the planar algebra −P is defined by setting −Pk = Pk−

and Z
−P
T = ZP

T − for each tangle T . By #, we will denote the inverse operation (which
moves all ∗s forward by one and inverts shading).

We will also need to recall the Fourier transform map for H . This is the map F : H → H ∗
defined by F(a) = δ−1φ1(a)φ2. We use F to also denote the Fourier transform map of H ∗,
the argument of F making it clear which one is meant. Similarly, we use S to also denote
the antipode of H ∗. The properties of F that we will use are that F 2 = S, FS = SF and
F(SF) = id = (SF )F .

The result that we wish to prove is the following theorem.

Theorem 13. The map −P(H, δ)2 = H → H ∗ = P(H ∗, δ)2 defined by a �→ SF(a)

extends to a planar algebra isomorphism from −P(H, δ) to P(H ∗, δ).

Proof. Observe first that if P is a planar algebra presented with generators L = ∐
k∈Col Lk

and relations R, then the planar algebra −P is presented by the label set given by −Lk =
Lk− , and relations −R given as follows. Consider a typical relation in R. It is given as a
linear combination of L-labelled tangles all of a fixed colour. Applying # to each of these
(leaving the labels unchanged but regarded as elements of −L) gives a linear combination
of −L-labelled tangles which is the typical relation of −R. This is an easy consequence of
the definitions in [KdySnd].
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Figure 17. The E(xchange) and A(ntipode) relations in −P(H, δ).

In particular, −P(H, δ) is presented with generators −L, where −L2 = H and −Lk = ∅
for k 	= 2, and relations given by the # of the relations in figures 1 – 4. For instance, the
relations corresponding to those in figure 4 are given by those in figure 17.

The universal property of the planar algebra P(−L) implies that there is a planar algebra
map (i.e., a map of vector spaces for each k ∈ Col that intertwines the tangle actions)
from P(−L) to P(H ∗, δ) that takes the 2-box labelled by a in P(−L) to the (image of
the) one labelled by SF(a) in P(H ∗, δ). Since P(H ∗, δ) is generated by its 2-boxes as
a planar algebra, this map is surjective. If we now verify that all relations in −R go to 0
under this map, it will induce a surjective planar algebra map from the quotient −P(H, δ)

to P(H ∗, δ). A comparison of the dimensions will then show that this is a planar algebra
isomorphism and conclude the proof.

It remains to verify that for each relation in −P(H, δ), the relation obtained by substi-
tuting SF(a) in each box labelled by a gives a valid relation in P(H ∗, δ). As in the proof
of Proposition 2, we will leave all the easier verifications to the reader indicating only the
relevant properties and the appropriate relations in P(H ∗, δ) used.

• Relation (L): Linearity of SF and relation (L).
• Relation (M): The equality of the choice of δ for P(H, δ) and P(H ∗, δ) and relation (M).
• Relation (U): SF(1H ) = δ−1φ and relation (I).
• Relation (I): SF(h) = δε and relation (U).
• Relation (C): δ−1(SF (a))(h) = ε(a) and relation (T).
• Relation (T): (F (a))(1) = δ−1φ(a) and relations (A) and (C).
• Relation (A): SFS = F and relation (A).

For relation (E), it follows from the figure on the left in figure 17 that the relation that
requires to be verified in P(H ∗, δ) is the one in figure 18, for each a, b ∈ H .

Note that SF(a) = δ−1φ1(a)Sφ2 and SF(b) = δ−1φ̃1(a)Sφ̃2, where φ̃ is another copy
of φ. Then the labelled tangle on the left of figure 18 equals (by application of the (A) and
(E) relations in P(H ∗, δ)) either of the labelled tangles in figure 19.

We now simplify:

δ−2φ1(a)φ̃1(b)Sφ̃2 ⊗ φ̃3Sφ2 = δ−2(φ1φ̃3)(a)φ̃1(b)Sφ̃2 ⊗ Sφ2

= δ−2(φ1φ̃1)(a)φ̃2(b)Sφ̃3 ⊗ Sφ2

= δ−2φ1(a1)φ̃1(a2)φ̃2(b)Sφ̃3 ⊗ Sφ2

= δ−2φ1(a1)φ̃1(a2b)Sφ̃2 ⊗ Sφ2
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Figure 18. Relation to be verified in −P(H ∗, δ).

*

*

*

*

=

˜φ3Sφ2

S˜φ2

˜

φ
2

φ2

δ−2φ1(a)˜φ1(b) δ−2φ1(a)˜φ1(b)

Figure 19. Simplifying the tangle on the left of figure 18.

= δ−1φ̃1(a2b)Sφ̃2 ⊗ δ−1φ1(a1)Sφ2

= SF(a2b) ⊗ SF(a1),

where the first equality is a consequence of φ1 ⊗ ψSφ2 = φ1ψ ⊗ Sφ2 and the second is
a consequence of the traciality of φ.

Comparing the initial and terminal expressions in the above chain of equalities with the
labelled tangles on the right in figures 18 and 19 completes the proof.

We conclude with the following corollary.

COROLLARY 14

Suppose that N is a planar network with g boxes all of which are 2-boxes. Then,

Z
P(H,δ)
N = Z

P(H ∗,δ)
N− ◦ F⊗g,

where both sides are regarded as k-valued functions on H⊗g .

Proof. Note first that since P(H, δ)0± and P(H ∗, δ)0± are identified canonically with k,
the planar algebra isomorphism of Theorem 13, which maps −P(H, δ)0± = P(H, δ)0∓
to P(H ∗, δ)0± , is identified with the identity map of k.

According to Theorem 13, if N is a planar network with g boxes all of which are

2-boxes, then, with the identifications above, Z
−P(H,δ)
N = Z

P(H ∗,δ)
N ◦ (SF )⊗g . But by
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Figure 20. Some tangles and their associated tilings.

definition, the former is Z
P(H,δ)

N− while the latter is nothing but Z
P(H ∗,δ)
N−− ◦ (F )⊗g , since (i)

N−− = N ◦(B1,...,Bg) (R2, . . . , R2) where R2 is the 2-rotation tangle and (ii) Z
P(H ∗,δ)
R2

= S.
Now, replacing N− by N yields the desired conclusion.

7. Appendix: Tilings and tangles

This brief appendix will be devoted to a statement of a result in combinatorial topology
and a sketch of its application in proving a generalisation of Lemma 6. We omit all proofs.

Consider a convex 2k-gon in the plane with its vertices numbered from 1 to 2k in
clockwise order. By a tiling (by quadrilaterals) of the 2k-gon we will mean a collection of its
diagonals that are required to be non-intersecting and divide the polygon into quadrilaterals.

By a hexagon move on a tiling of a 2k-gon, we will mean the following. Take two of
its quadrilaterals that share an edge and consider the hexagon formed by their remaining
edges. The common edge is a principal diagonal of this hexagon. Replace this principal
diagonal with one of the other two principal diagonals of the hexagon to get a new tiling
of the 2k-gon.

PROPOSITION 15

Any two tilings of a 2k-gon are related by a sequence of hexagon moves.

The point of this digression into tilings and hexagon moves is roughly that tilings of
a 2k-gon correspond to tangles in T (k) (modulo the equivalence relation that forgets the
internal ∗’s) while hexagon moves correspond to applying the exchange relations (E) and
(A). Figure 20 shows some elements of T (3) and their corresponding tilings of the hexagon.
Proposition 15 is the main step in the following generalisation of Lemma 6.

Lemma 16. For each k ≥ 3, and each X ∈ T (k), the map ZP
X : P ⊗(k−1)

2 → Pk is surjective.
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