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Abstract

We show that certain numerical invariants associated naturally to a subfactor pla-
nar algebra constitute a complete family in the sense of determining the isomor-
phism class of the subfactor planar algebra.

In the course of the proof, we show also that planar algebra isomorphisms
of subfactor planar algebras can always be chosen to be ∗-preserving. This latter
statement generalises the fact that ‘Hopf algebra isomorphisms of finite-dimensional
Kac algebras can be chosen to be ∗-preserving’.
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1 Introduction
In [J1], Jones associated what he called a planar algebra to every extremal subfac-
tor of finite index, and used earlier work of Popa ([Po2]) to show that all ‘subfactor
planar algebras’ (in the terminology we use here) arise in this fashion. A subfac-
tor is uniquely determined by its planar algebra only in the presence of additional
hypotheses such as strong amenability (by [Po1]); so our numerical invariants will
also determine only such subfactors.

We quickly recall the essential facts about a subfactor planar algebra P . (All
these facts are from [J1]; these facts are also covered in a more elaborate fashion
in [KLS].)

Facts:

• (1) There is a countable1 family {Pk}k∈ Col of finite-dimensional Hilbert
spaces, where the elements of the indexing set Col will be thought of as
colours.

• (2) A planar tangle T consists of an exterior disc of colour k0 and an or-
dered collection of b (≥ 0) internal discs of colours k1, · · · , kb respectively
together with some additional data. We will also refer to (and draw) the
discs of a tangle as boxes.

• (3) To each planar tangle T is associated a linear map

ZT : ⊗bi=1Pki → Pk0

(When we wish to draw attention to the planar algebra P , we shall write ZP
T

for what we called ZT above.)

• (4) The assignment T 7→ ZT satisfies various ‘natural’ properties (such as
being well-behaved with respect to ‘composition of tangles’ or ‘re-numbering
of the internal discs).

• (5) Each Pk is a C∗-algebra, with the adjoint and multiplication related to
the planar algebra structure in a definite manner.

• (6) There areC∗-algebra inclusions Pk ⊂ Pk+1 which are induced by certain
‘inclusion tangles’.

1Actually, this set is taken as {0+, 0−, 1, 2, · · ·} in [J1] and [KLS].
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• (7) P0± is a unital one-dimensional algebra over C and is hence canonically
identified with C . Further, there exists a tangle trk (which is also denoted,
at least when k 6= 0−, by E0+

k in §4 of this paper) whose external disc has
colour 0+ if k > 0 or k = 0+, and 0− if k = 0−, with the property that
if we let τk : Pk → C be the map obtained by composing δ−kZtrk and
the isomorphism of P0± with C (where δ2 is the Jones index of the given
subfactor), then the family {τk : k ∈ Col} defines a consistent faithful trace
τ on the union∪Pk, and the inner product on Pk is given by 〈x, y〉 = τ(y∗x).

It will be convenient for us to think pictorially of the operator ZT associated
to the tangle T as follows:

Z T
T

k

k

k

k
0
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2

b

It is clear that we may ‘glue’ several such pictures together (provided the
colours of the arrows match) to obtain more complicated pictures. For instance,
suppose we have tangles T1 and T2 where T1 has two internal discs of colours
k′1, k

′
2 and external disc of colour k′0, while T2 has three internal discs of colours

k′′1 , k
′′
2 , k

′′
3 and external disc of colour k′′0 ; suppose further that k′0 = k′′2 . Then we

can form a new tangle T (which would be denoted by T2 ◦D2 T1 in the notation
of [J1] and [KLS]) with four internal discs with colours k1 = k′′1 , k2 = k′1, k3 =
k′2, k4 = k′′3 respectively, and external disc of colour k0 = k′′0 . This is understood
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most easily via the picture:
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In more explicit detail, we find that

ZT : Pk′′1 ⊗ Pk′1 ⊗ Pk′2 ⊗ Pk′′3 → Pk′′0

and is defined by the equation

ZT (xk′′1 ⊗ xk′1 ⊗ xk′2 ⊗ xk′′3 ) = ZT2(xk′′1 ⊗ ZT1(xk′1 ⊗ xk′2)⊗ xk′′3 ) .

One convention that we will follow, and which is illustrated above, is the fol-
lowing: when we draw such pictures, it will always be assumed that the order of
the inputs (resp., outputs) for a tangle (resp., the dagger of a tangle - see §3) will
be counter-clockwise (resp., clockwise) starting from just after its unique output
(resp., input).

We now come to the most important ‘picture’ from the point of view of this
paper.

DEFINITION 1 If S, T are two tangles of the same type - i.e., S and T have the
same number, say b, of internal discs, the i-th internal disc of each is of the same
colour, say ki, and both have their external discs of the same colour, say k0 - then
the operator ZP

S (ZP
T )∗ is an endomorphism of Pk0 , and so, the right sides of the

following equation makes sense:

χPS,T = Tr((ZP
T )∗ZP

S ) = Tr(ZP
S (ZP

T )∗) , (1.1)

where Tr denotes the usual trace of an endomorphism of a finite-dimensional
space. We shall think of χS,T as the following ‘closed picture’ - i.e., a picture with
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no ‘free’ inputs or outputs - and shall refer to χ as the character of the planar
algebra.
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(We shall later make precise what we mean by equality of ‘picture invariants’ and
what T † in the above picture stands for.)

We are now in a position to state the main result of this paper.

THEOREM 2 Two subfactor planar algebras are isomorphic if and only if they
have the same character.

Or in more detail, subfactor planar algebras P and Q are isomorphic if and
only if χPS,T = χQS,T for every pair S, T of planar tangles of the ‘same type’.

In §2 we prove that isomorphisms of subfactor planar algebras may be chosen
to be ∗-preserving and use this to show that isomorphic planar algebras have the
same character. In §3 a general result of the invariant theory of unitary groups
is proved which is applied in §4 to the subfactor context to show the converse
implication.

Finally, we shall consistently use the sybmol [N ] to denote the set {1, 2, · · · , N}
whenever N ∈ Z+ (with the convention that [0] = ∅).

2 Isomorphism vs. ∗-isomorphism
We recall, for the reader’s sake, that planar algebras P = {Pk : k ∈ Col} and
Q = {Qk : k ∈ Col} are said to be isomorphic if there exist linear isomorphisms
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πk : Pk → Qk which are compatible with the action of planar tangles in the sense
that if T is any planar tangle with b internal discs of colours k1, · · · , kb respectively
and the external disc of colour k0, then

πk0 ◦ ZP
T = ZQ

T ◦
(
⊗bi=1πki

)
.

We begin this section by proving that subfactor planar algebras are isomorphic
as planar algebras if and only if they are isomorphic as subfactor planar algebras. 2

More precisely, we shall prove the following technical fact.

THEOREM 3 Suppose P and Q are subfactor planar algebras. Suppose there
exist linear maps πk : Pk → Qk such that the family π = {πk : k ∈ Col}
implements a planar algebra isomorphism of P onto Q (in the sense of being
compatible with the actions of the planar operad of coloured tangles, as described
in the first paragraph of this section). Then there exists another planar algebra
isomorphism ω = {ωk : k ∈ Col} of P onto Q with the additional property that
each ωk is a ∗-isomorphism (of finite-dimensional C∗-algebras).

Proof: The idea of the proof is as follows. To start with, fix a k ∈ Col, and
consider the polar decomposition πk = ωkαk of πk regarded as a linear operator
between the Hilbert spaces Pk and Qk (equipped with the ‘Hilbert-Schmidt’ norm
induced by the trace). So ωk : Pk → Qk (resp. αk : Pk → Pk) is a unitary
operator (resp., is a positive operator). We shall show that ω = {ωk : k ∈ Col}
(and hence also α = {αk : k ∈ Col}) implements a planar algebra isomorphism
of P onto Q (of P onto P , respectively). Finally, we shall show that each ωk is a
∗-isomorphism.

In order to prove that the family ω = {ωk : k ∈ Col} implements a planar
algebra isomorphism, let us look at

Tω = {T ∈ T : ωk0(T ) ◦ ZP
T = ZQ

T ◦
(
⊗b(T )
i=1 ωki(T )

)
} ,

(where, as in [KLS], we have used the notation T for the collection of all tangles,
b(T ) for the number of internal discs (or ‘boxes’) of T , and ki(T ) for the colour
of the i-th internal disc of T ).

It is easy to see that Tω is ‘closed under composition’ in the sense that if (i)
T, S ∈ Tω, and (ii) if the colour of the external disc of S agrees with that of the
i-th internal disc of T , then also the ‘composite tangle’ T ◦Di S ∈ Tω.

2This should be compared with the fact that normal operators are similar if and only if they are
unitarily equivalent. Both results essentially say that there is enough algebraic structure around to
ensure that ‘the ∗-structure is unique, if it exists’.
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Since we need to show that Tω = T , it suffices, in view of Theorem 3.3 of
[KS]3, to show that

10+ , 10− ∈ Tω (2.2)
∀k ≥ 2 , Rk ∈ Tω (2.3)

∀k ∈ Col , Ek
k+1, I

k+1
k ∈ Tω (2.4)

and ∀k ∈ Col , Mk ∈ Tω. (2.5)

For (2.2), note that P0± and Q0± are unital 1-dimensional algebras and hence
canonically identified with C; consequently the algebra isomorphisms π0± get
identified with idC; since this operator is unitary, we find that both ω0± and α0±
also get identified with idC, and we see that indeed 10+ , 10− ∈ Tω.

Suppose next that T is an ‘annular tangle’- i.e., b(T ) = 1 - and that k1(T ) = k1

and k0(T ) = k0. It then follows that T † - see Remark 9 - may also be viewed as an
(annular) tangle, and that k1(T †) = k0 and k0(T †) = k1. Hence, by assumption,
we see that πk1 ◦ZP

T † = ZQ
T † ◦πk0 , and that πk0 ◦ZP

T = ZQ
T ◦πk1 . Since Z∗

T † = ZT ,
we deduce by taking adjoints that ZP

T ◦ π∗k1
= π∗k0

◦ ZQ
T , and then conclude that

ZP
T ◦ α2

k1
= ZP

T ◦ π∗k1
◦ πk1

= π∗k0
◦ ZQ

T ◦ πk1

= π∗k0
◦ πk0 ◦ ZP

T

= α2
k0
◦ ZP

T ;

Next, choose a a one-variable polynomial p without constant term, such that
p(t) =

√
t whenever t is an eigenvalue of either α2

k0
or α2

k1
; then it follows that

p(α2
ki

) = αi for i = 0, 1, and hence

ZP
T ◦ αk1 = ZP

T ◦ p(α2
k1

)

= p(α2
k0

) ◦ ZP
T

= αk0 ◦ ZP
T .

Since the αki are invertible, we may finally conclude that

ωk0 ◦ ZP
T = πk0 ◦ α−1

k0
◦ ZP

T

= πk0 ◦ ZP
T ◦ α−1

k1

= ZQ
T ◦ πk1 ◦ α−1

k1

= ZQ
T ◦ ωk1 .

3This theorem says that the tangles displayed in equations (2.2), (2.3), (2.4) and (2.5) ‘generate’
the class of all tangles with respect to ‘composition of tangles’ defined as above.
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In other words, we have shown that T ∈ Tω for every annular tangle T ; in
particular, this establishes (2.3) and (2.4).

In order to complete the proof of the theorem, it remains only to prove that (a)
in addition to (2.2), (2.3) and (2.4), the statement ((2.5) is also valid, so that ω (as
well as α) implements an isomorphism of planar algebras; and (b) each ωk is a
∗-homomorphism. Both these statements will follow from the lemma below, and
the proof of the theorem and the next lemma would be simultaneously complete.
2

LEMMA 4 Suppose π : A → B is an algebra isomorphism between two finite-
dimensional C∗-algebras. Suppose σ and τ are faithful traces on A and B, re-
spectively, such that σ = τ ◦ π. Consider the polar decomposition π = ωα of
π regarded as an operator between the Hilbert spaces A and B (where ‖a‖ =

(σ(a∗a))
1
2 and ‖b‖ = (τ(b∗b))

1
2 ).

Then (the unitary operator) ω defines a ∗-isomorphism of the C∗-algebra A
onto the C∗-algebra B (and hence also α defines an algebra automorphism of A).

Proof: Case 1: A = B ∼Mn(C)
In this case, π is an algebra automorphism of A and the Skolem-Noether the-

orem guarantees the existence of an invertible element x ∈ A such that π(a) =
xax−1 ∀a ∈ A. Also σ and τ must be multiples of the normal trace on the ma-
trix algebra, and the comptibility condition σ = τ ◦ π forces them to be equal.
Now, if x = u|x| is the polar decomposition of x, with u unitary and |x| ≥ 0,
it is fairly easy to see, using the faithfulness of the trace, that π∗(b) = x∗bx∗−1,
ω(a) = uau−1 and α(a) = |x|a|x|−1 ∀a ∈ A; and the desired conclusions follow.

Case 2: A ∼Mn(C).
In this case, Z(A) = C1A, and it follows that also Z(B) = π(Z(A)) = C1B .

So B is a finite factor of dimension n2 and hence there exists a ∗-isomorphism -
say γ - of B onto A; and in view of the uniqueness, up to scaling, of the trace on
a finite factor, we see that γ is also ‘trace-preserving’, and consequently ‘unitary’
when viewed as an operator between Hilbert spaces. Note then that γ ◦ π =
(γ ◦ω) ◦α is the polar decomposition of the algebra isomorphism γ ◦ π of A onto
itself. It follows from Case 1 that γ ◦ ω is a ∗-automorphism of A, and hence also
ω = γ−1 ◦ (γ ◦ ω) is a ∗-isomorphism (being a composite of such maps).

Case 3: A arbitrary (but still finite-dimensional)
Notice first that if C is any finite-dimensional C∗-algebra, and if p ∈ Z(C),

then p = p2 if and only if p = p2 = p∗. Hence, e is a minimal central projection
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of A if and only if f = π(e) is a minimal central projection of B. Therefore if
{ei : 1 ≤ i ≤ n} is the set of all minimal projections of A, then {fi = π(ei) : 1 ≤
i ≤ n} is the set of all minimal projections of B. Then notice that A = ⊕Aei and
B = ⊕Bfi while π restricts to a trace-preserving (algebra-)isomorphism - call it
πi - of the factor Aei ontoBfi. Since the ei are central and σ is a trace, we see that
A = ⊕Aei is an orthogonal decomposition of the Hilbert space A; and similarly,
B = ⊕Bfi is also an orthogonal decomposition. Hence the polar decomposition
also factors as a direct sum

ωα = π = ⊕iπi = ⊕iωiαi

so that
ω = ⊕iωi , α = ⊕iαi ;

and since we may deduce from Case 2 that each ωi is a ∗-isomorphism, we con-
clude finally that ω = ⊕iωi is a ∗-isomorphism. 2

COROLLARY 5 If two subfactor planar algebras P and Q are isomorphic, then
χPS,T = χQS,T for every pair S, T of planar tangles of the ‘same type’.

Proof: Suppose that the linear maps πk : Pk → Qk for k ∈ Col implement
a planar algebra isomorphism of P onto Q. Choose, by Theorem 3, maps ωk :
Pk → Qk that are unitary and implement a planar algebra isomorphism.

Fix any pair S and T of tangles each of which has an external disc of colour
k0 and b internal discs of colours k1, · · · , kb. Since the ωk’s implement a planar
algebra isomorphism, we have that for X ∈ {S, T},

ωk0 ◦ ZP
X = ZQ

X ◦
(
⊗bi=1ωki

)
.

But now the unitarity of the ωk is easily seen to imply that

χQS,T = Tr(ZQ
S (ZQ

T )∗) = Tr(ωk0Z
P
S (ZP

T )∗ω∗k0
) = Tr(ZP

S (ZP
T )∗) = χPS,T ,

and thus P and Q have the same character. 2

3 The relevant orbit space
We shall assume, throughout this section, that we have been given the following
data:
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a countable set Col of ‘colours’;
a collection {Pk : k ∈ Col} of finite-dimensional Hilbert spaces;
a countable set T ; and4

an assignment

T 3 T 7→ (b0(T ), b1(T ), rT , sT , D(T ), R(T )) ,

where
b0(T ), b1(T ) ∈ Z+;
sT : [b0(T )]→ Col and rT : [b1(T )]→ Col; and we write sTi , r

T
j rather than

sT (i), rT (j);
D(T ) = ⊗b0(T )

i=1 PsTi and R(T ) = ⊗b1(T )
j=1 PrTj .

We shall be concerned with the space

X =
∏

T∈T
HomC(D(T ), R(T )) , (3.6)

the (visibly compact) group

G =
∏

k∈ Col
U(Pk) , (3.7)

- where of course U(H) denotes the unitary group of the Hilbert space H - and
the action of G on X by5

(g · x)T =
(
⊗b1(T )
j=1 grTj

)
◦ xT ◦

(
⊗b0(T )
i=1 g−1

sTi

)
(3.8)

The definition of the product topology and the assumed countability of T and
finite-dimensionality of the Pk’s show that the G-action on X is continuous and
that X is a metrisable space. We shall write C(X) to denote the vector space of
all continuous complex-valued functions on X . (Note that X is not compact, so
this is NOT naturally a normed space.)

LEMMA 6 The fixed point algebra C(X)G = {f ∈ C(X) : f(g · x) = f(x)∀g ∈
G, x ∈ X} separates distinct G-orbits in X .

4In the set-up we shall describe in this section, the symbol T could be thought of as the (count-
able) set of all coloured planar tangles, and it might help to think of the letters s, r,D,R as being
suggestive of the words ‘source’, ‘range’, ‘domain’ and ‘range’ respectively. In the special case of
a tangle, we would have b1 = 1; but we could conceivably even have more complicated situations
where neither bi is 1, and there is no reason to rule this out.

5We denote typical elements of G and X by g = (gk) and x = (xT ), respectively.
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Proof: If x ∈ X , let us write [x] = {g · x : g ∈ G} to denote its G-orbit. Sim-
ilarly, if f ∈ C(X), let us write [f ] for its ‘average over G’, given by integrating
with respect to (normalised) Haar measure on the compact group, thus:

[f ](x) =

∫

G

f(g · x)dg.

Clearly [f ] ∈ C(X)G.
Suppose x1, x2 ∈ X and [x1] 6= [x2]. Then the [xi] are disjoint compact sets in

the metrisable space X , so we can find an f ∈ C(X) such that

f(x) =

{
1 if x ∈ [x1]
2 if x ∈ [x2]

It is then clear that [f ] is an element of C(X)G which takes the value i on [xi],
thereby proving the lemma. 2

Note that X is a product of Cn’s, and so it makes sense to talk of ‘polynomial
functions on X’; we give a name to these functions in the following definition.

DEFINITION 7 (a) For fixed T ∈ T , ξ ∈ D(T ), η ∈ R(T ), define the obviously
continuous function XT,ξ,η on X by

XT,ξ,η(x) = 〈xT ξ, η〉 .

(b) Let A be the unital *-subalgebra of C(X) generated by {XT,ξ,η : T ∈
T , ξ ∈ D(T ), η ∈ R(T )}.

Note that A consists of precisely those functions of the form p ◦ π, where
π is the projection of X onto some finite set of factors, and p is a ‘polynomial
function’ on that finite-dimensional quotient of X . Anticipating a definition to
come later, we will denote the adjoint of the element XT,ξ,η by XT †,η,ξ. Hence
XT †,η,ξ(x) = XT,ξ,η(x) = 〈xT ξ, η〉 = 〈x∗Tη, ξ〉.

LEMMA 8 (a) A is stable under the G-action on C(X);
(b) f ∈ A⇒ [f ] ∈ A; and
(c) AG = A ∩ C(X)G separates distinct G-orbits in X .
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Proof: Note, to start with, that for any T ∈ T , ξ ∈ D(T ), η ∈ R(T ), we have

XT,ξ,η(g
−1 · x) = 〈(g−1 · x)T ξ, η〉

= 〈
(
⊗b1(T )
j=1 g−1

rTj

)
◦ xT ◦

(
⊗b0(T )
i=1 gsTi

)
ξ, η〉

= 〈xT (g · ξ), (g · η)〉 ,

where we write g · ξ =
(
⊗b0(T )
i=1 gsTi

)
ξ and g · η =

(
⊗b0(T )
j=1 grTj

)
η. Clearly, g · ξ ∈

D(T ), g · η ∈ R(T ), so this shows that our set of generators of A is stable under
the G-action, and establishes (a). Also,

[XT,ξ,η](x) =

∫

G

XT,ξ,η(g
−1 · x)dg

=

∫

G

〈xT (g · ξ), (g · η)〉dg

=

∫

G

∑

k,l

〈(g · ξ), ξk〉〈ηl, (g · η)〉〈xT ξk, ηl〉dg

=
∑

k,l

(∫

G

〈(g · ξ), ξk〉〈ηl, (g · η)〉dg
)
XT,ξk,ηl(x) ,

where {ξk}k and {ηl}l are orthonormal bases for D(T ) and R(T ) respectively,
and of course we use the notation f 7→ [f ], as in the proof of Lemma 6, for the
process of averaging a function over G. We have thus shown that [XT,ξ,η] ∈ A.
A similar proof shows that also ‘averages of monomials of degree more than one’
are ‘polynomials’ and establishes (b).

(c) First observe that A separates points of X . (If x 6= y, pick T ∈ T such
that xT 6= yT ; then there must exist ξ ∈ D(T ), η ∈ R(T ) such that XT,ξ,η(x) 6=
XT,ξ,η(y).) Now, suppose x0, x1 ∈ X and [x0] 6= [x1]. Then the set K = [x0] ∪
[x1] is a compact metrisable space, and the function f = 1[x1] is a continuous
function on K. On the other hand, the collection AK = {p|K : p ∈ A} is a
unital *-subalgebra of C(K) which separates points and, by the Stone-Weierstrass
theorem, is consequently uniformly dense in C(K). In particular, we may find a
p ∈ A such that |p(x) − f(x)| < 1

2
for all x ∈ K; and we find that, for i = 0, 1,

we have

|[p](xi)− i| = |[p](xi)− f(xi)|

≤
∫
|p(g · xi)− f(g · xi)|dg
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<
1

2
;

so that
[p](x0) <

1

2
< [p](x1) .

In particular, we have found the element [p] of AG which separates the orbits [x0]
and [x1]. 2

REMARK 9 The reader cannot but notice an inherent asymmetry in the notion of a
planar tangle; any number of ‘inputs’ is permitted, but there is only one ‘output’.
We shall partially redress this state of affairs by introducing the ‘dagger’ of a
tangle via the following prescription:

Z T
T
*

+
k

k

1

b

kk0
2

Thus, if the number b of internal discs of a tangle T is greater than 1, then T † is
not a tangle, but merely a convenient device which admits one input and several
outputs; thus, in the above notation, we have

ZT † = Z∗T : Pk0 → ⊗bi=1Pki

Although our subequent work with planar algebras will only need the case
where T is precisely the class of all planar tangles, we continue to work in the
more general situation of an abstract T in this section. We make precise the
notion of the ‘dagger of a member of T ’ (in our possibly more general setting).

DEFINITION 10 Define a set T † = {T † : T ∈ T }, and define

b0(T †) = b1(T ), b1(T †) = b0(T ), rT
†

i = sTi , s
T †
j = rTj , D(T †) = R(T ), R(T †) = D(T ).

We will now proceed by formalising the notion of a closed picture and that of
its associated picture invariant.
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DEFINITION 11 By a closed picture we shall mean a finite directed graph where:

(a) each vertex v is labelled by an element S(v) ∈ T ∪ T † and each edge e by a
colour k(e);

(b) each vertex labelled by an S ∈ T ∪ T † comes equipped with a labelling of
its in-arrows (resp., out-arrows) by [b0(S)] (resp., [b1(S)]); we write ev(i) (resp.,
fv(j)) to denote the ith in-arrow (resp., the jth out-arrow) at the vertex v; and

(c) the two labellings are compatible, meaning: at each vertex v, k(ev(i)) = s
S(v)
i

and k(fv(j)) = r
S(v)
j .

We wish to associate to a closed picture an element of the algebra AG. This is
done by a state sum approach as follows. Fix once and for all an orthonormal basis
Bk for each Pk, k ∈ Col. By a state κ of a closed picture we mean an assignment
of a basis vector κ(e) ∈ Bk(e) to each edge e.

A state κ of a closed picture P determines an element of A, denoted IP(κ),
thus: for each vertex v, define ξv(κ) = ⊗b0(S(v))

l=1 κ(ev(l)) ∈ D(S(v)) and ηv(κ) =

⊗b1(S(v))
m=1 κ(fv(m)) ∈ R(S(v)); and set IP(κ) =

∏
vXS(v),ξv(κ),ηv(κ).

Finally, given a closed picture P we define its associated picture invariant,
denoted IP , by the equation:

IP =
∑

κ

IP(κ) (3.9)

where the sum ranges over all states of P .
A reformulation of this definition of picture invariants will turn out to be use-

ful; we will need a couple of definitions.

DEFINITION 12 Let F denote the set of all functions f : [Nf ]→ T ∪ T †, where
Nf is some positive integer depending on f . For each f ∈ F , we define Hilbert
spaces D(f) and R(f)

D(f) = ⊗Nfi=1 ⊗b0(f(i))
li=1 P

s
f(i)
li

, R(f) = ⊗Nfi=1 ⊗b1(f(i))
mi=1 P

r
f(i)
mi

;

finally, for every x ∈ X , we define Zf,x : D(f) → R(f) by Zf,x = ⊗Nfi=1xf(i) -
where xT † is understood to mean x∗T .

13



DEFINITION 13 Suppose that f ∈ F and suppose there exists a bijection

σ :

Nf∐

i=1

({i} × [b0(f(i))])→
Nf∐

j=1

({j} × [b1(f(j))])

- where we use the symbol
∐

to signify disjoint union - which is ‘colour-preserving’
in the sense that

σ(i, l) = (j,m) ⇒ s
f(i)
l = rf(j)

m .

Then let Vσ : D(f)→ R(f) be the (obviously unitary) operator defined by

Vσ

(
⊗Nfi=1 ⊗b0(f(i))

li=1 ξ(i,li)

)
= ⊗Nfj=1 ⊗b1(f(j))

mj=1 ξσ−1(j,mj) .

Such a pair (f, σ) can be used to construct a closed picture as follows. TakeNf

vertices v1, · · · , vNf and label vi by S(vi) = f(i). For each (i, l) ∈ ∐Nf
i=1 ({i} × [b0(f(i))])

put in an edge from vj to vi where σ(i, l) = (j,m) and number this as the lth in-
arrow of vi and as the mth out-arrow of vj . Colour this edge sf(i)

l = r
f(j)
m . This

gives a closed picture which we denote by P(f, σ). It should be fairly clear that
by renumbering the vertices, we can get different (f, σ)’s representing the same
closed picture, and that further, this renumbering is the only ambiguity in describ-
ing a closed picture by an (f, σ).

REMARK 14 In order to demystify the surfeit of symbols in the discussion above,
and to explicitly explain how the pair (f, σ) indeed leads to a closed picture, an
example might help. So suppose the element f is given by requiring that Nf = 5
and that f(1) = S, f(2) = T ′†, f(3) = T †, f(4) = S ′, f(5) = S, with the colours

14



of the various inputs and outputs of these tangles given thus:

’S

b

a

c
’T’ +

e d

’T
+

a

af

f

b
b

S’

c

c

d

e

We have used our convention for numbering the inputs of a tangle and the outputs
of the dagger of a tangle: thus, for example, in our notation, we would have

sS1 = a, sS2 = b, rS1 = c, rT
†

1 = f = sT1 , etc.

For f as above, let σ be the ‘colour-preserving’ bijection from the set of inputs of
S;T ′†;T †;S ′;S respectively, - labelled by the set

(1, 1), (1, 2); (2, 1); (3, 1); (4, 1), (4, 2), (4, 3); (5, 1), (5, 2) −

to the set of their outputs - labelled by

(1, 1); (2, 1); (3, 1), (3, 2), (3, 3), (3, 4), (3, 5); (4, 1); (5, 1) −

given by the following table:

(i,l) (1,1) (1,2) (2,1) (3,1) (4,1) (4,2) (4,3) (5,1) (5,2)
σ(i,l) (3,2) (3,4) (4,1) (3,1) (1,1) (5,1) (2,1) (3,3) (3,5)

To see that things are indeed as stated, one only needs to look at the following

15



‘picture’:

S

S

S

T

T

’

’

+

+

a

a

bbb

b

c

c

d

e

f

- where the five tangles and their daggers are drawn in a vertical row, and the l-th
input of the i-th tangle (or dagger of a tangle) is connected to the m-th output of
the j-th tangle (or dagger of a tangle) if σ(i, l) = (j,m).

The relation between the two descriptions of closed pictures is clarified in our
next proposition.

PROPOSITION 15 Suppose that the pair (f, σ) is as in Definition 13. Then for
any x ∈ X , we have IP(f,σ)(x) = Tr (V ∗σ Zf,x).

Proof: By definition, the setB(f) = {ξ = ⊗Nfi=1⊗b0(f(i))
li=1 ξ(i,li) : ξ(i,li) ∈ Bs

f(i)
li

}
is an orthonormal basis for D(f). The equation

κξ(evi(li)) = ξ(i,li) (3.10)

16



is seen, once it has been unravelled, to define a bijection ξ ↔ κξ between B(f)
and the set of states of P(f, σ). This bijection is also seen to satisfy the equation

κξ(fvj(mj)) = ξσ−1(j,mj). (3.11)

Now note that

Tr (V ∗σ Zf,x) =
∑

ξ∈B(f)

〈Zf,x(ξ), Vσ(ξ)〉

=
∑

ξ∈B(f)

Nf∏

i=1

〈xf(i)(⊗b0(f(i))
li=1 ξ(i,li)),⊗b1(f(i))

mi=1 ξσ−1(i,mi)〉

=
∑

ξ∈B(f)

Nf∏

i=1

〈xf(i)(⊗b0(f(i))
li=1 κξ(evi(li)),⊗b1(f(i))

mi=1 κξ(fvi(mi)〉

=
∑

κ

∏

v

XS(v),ξv(κ),ηv(κ)(x)

=
∑

κ

IP(σ,f)(κξ)(x)

= IP(f,σ)(x) ,

as desired. 2

Using the representations πDf and πRf ofG onD(f) andR(f) defined, for each
f ∈ F , by

πDf (g)
(
⊗Nfi=1 ⊗b0(f(i))

li=1 ξli

)
= ⊗Nfi=1 ⊗b0(f(i))

li=1 (g
s
f(i)
li

· ξli)

πRf (g)
(
⊗Nfj=1 ⊗b1(f(j))

mj=1 ηmj

)
= ⊗Nfj=1 ⊗b1(f(j))

mj=1 (g
r
f(j)
mj

· ηmj) ,

we can now see - in the following Lemma, whose proof is a consequence of the
definitions - that our picture invariants are indeed invariant.

LEMMA 16 If f ∈ F and if σ is related to f as in Definition 13, then, with the
notation as above and as in Definition 12, we have, for all x ∈ X , and g ∈ G,

(a) πRf (g) ◦ Zf,x = Zf,g·x ◦ πDf (g) ;
(b) πRf (g) ◦ Vσ = Vσ ◦ πDf (g); and
(c) IP(f,σ) ∈ AG.

2
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DEFINITION 17 Define the additive unital semigroup

Λ = {λ : T ∪ T † → Z+ : λ is finitely supported} ,

and for each λ ∈ Λ, define Aλ to be the subspace of A spanned by monomials of
‘weight’ λ by which we mean a monomial of the form

∏

T∈T ∪T †



λ(T )∏

i=1

XT,ξiT ,η
i
T


 ,

where ξiT ∈ D(T ), ηiT ∈ R(T ).

LEMMA 18 With the foregoing notation, we have:
(a) the algebra A is Λ-graded (by the Aλ’s);
(b) the G-action on A leaves each Aλ invariant;

Proof: (a) It follows from the definition that if f (resp., g) is one of the ‘gener-
ating monomials’ for Aλ (resp., Aµ), then fg is one of the generating monomials
forAλ+µ; the desired conclusions follows from the fact that the ‘generating mono-
mials’ linearly span the Aν’s.

(b) is clear. 2

LEMMA 19 If V is a finite-dimensional Hilbert space, then

(
V ⊗

k ⊗ V ∗⊗l
)U(V )

=

{
0 if k 6= l
π(CΣk) if k = l

;

where we have made the identifications

V ⊗
k ⊗ V ∗⊗k = (V ⊗ V ∗)⊗k = (EndC(V ))⊗

k

= EndC(V ⊗
k

) ,

and π is the obvious permutation representation of the group algebra of the sym-
metric group Σk on V ⊗

k
. Explicitly, the vector

∑
i1,···,ik(eσ(i1) ⊗ · · · ⊗ eσ(ik)) ⊗

(ei1⊗· · ·⊗eik) corresponds under this isomorphism to π(σ), where {ei}i is an(y)
orthonormal basis for V , and {ei}i denotes the dual (orthonormal) basis for V ∗.

Proof: This result must be well-known, and documented somewhere in the lit-
erature. (It can also be deduced ([P]) from the Zariski density of U(V ) inGL(V ).)
We provide a direct proof here, for the sake of completeness.

18



To start with, note that if g = ω ∈ T is a complex scalar of unit modulus,
then g acts as ωk−l on

(
V ⊗

k ⊗ V ∗⊗l
)

and consequently the assertion regarding
the case k 6= l is seen to follow.

So assume k = l. In view of the identifications spelt out explicitly in the
statement of the lemma, we need to show that if C : GL(V )→ End(V ⊗

k
) is the

representation defined by C(g)(T ) = (⊗kg)T (⊗kg)−1, then

C(g)(T ) = T∀g ∈ U(V )⇔ T ∈ π(CΣk) .

In view of the Schur-Weyl theorem, it suffices to show that

C(g)(T ) = T∀g ∈ U(V )⇔ C(g)(T ) = T∀g ∈ GL(V ) ,

and this is what we shall do. For this, we only need to show that if T is an
operator on

(
V ⊗

k
)

which commutes with operators of the form⊗kU for arbitrary

U ∈ U(V ), then T necessarily also commutes with operators of the form ⊗kS for
all S ∈ GL(V ). Indeed, suppose

T (⊗keitA) = (⊗keitA)T

for every self-adjoint operator A on V . Differentiation yields

T D(A) = D(A)T , (3.12)

where D(A) = A⊗ idV · · ·⊗ idV + · · ·+ idV ⊗· · ·⊗ idV ⊗A. Since the mapping
D : End(V ) → End V ⊗

k is C-linear, since the self-adjoint operator A was ar-
bitrary, and since any operator is a C-linear combination of self-adjoint operators,
we find that equation (3.12) holds for every A ∈ End(V ). Exponentiating once
again, we find that

TeD(A) = eD(A)T ∀A ,

and the lemma is proved. (The final statement of the lemma is verified by chasing
through the string of identifications referred to.) 2

PROPOSITION 20 The spaceAG
λ is linearly spanned by the set of all those picture

invariants IP(f,σ) for which f ∈ F satisfies λ(·) = |f−1(·)| (and of course σ is
related to f as in Definition 13).
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Proof: We prove the easier implication first. Fix an f ∈ F and a σ related to f
as in Definition 13. By definition λ(T ) is the number of vertices in P = P(f, σ)
which are labelled T while λ(T †) is the number of vertices labelled T †. It now
follows from equation (3.9) and the definition of IP(κ) that IP ∈ Aλ. Now
Lemma 18(b) and Lemma 16(c) show that IP ∈ AGλ .

To prove the other implication, take any λ and fix any one f ∈ F with the
property that |f−1(T )| = λ(T ) for all T ∈ T ∪ T †. Consider the map from
V (f) = (⊗Nfi=1 ⊗b0(f(i))

li=1 P
s
f(i)
li

)⊗ (⊗Nfj=1 ⊗b1(f(j))
mj=1 P ∗

r
f(j)
mj

) to Aλ defined by

(⊗Nfi=1⊗b0(f(i))
li=1 ξ(i,li))⊗ (⊗Nfj=1⊗b1(f(j))

mj=1 〈·, η(j,mj)〉)
Θ7→

Nf∏

i=1

Xf(i),ξi
f(i)

,ηi
f(i)

, (3.13)

where ξif(i) = ⊗b0(f(i))
li=1 ξ(i,li)) and ηif(i) = ⊗b1(f(i))

mi=1 η(i,mi). It is not hard to see that
this is an epimorphism of G-modules, where the G-action on V (f) is the natural
one (factoring through appropriate U(Pk)’s).

For k ∈ Col, write Vk(f) for the ‘sub-product’ of V (f) obtained by taking
only those (i, li) for which sf(i)

li
= k and those (j,mj) for which rf(j)

mj = k. Then
clearly V (f) ∼= ⊗k∈ ColVk(f). (Since f is a finitely supported function, this is
actually a finite tensor product.) Further, from the product-nature of the action, it
is seen that V (f)G ∼= ⊗k∈ ColVk(f)U(Pk). On the other hand, Lemma 19 implies
that a spanning set of Vk(f)U(Pk) is determined by the set of bijections between
the sets {(i, li) : s

f(i)
li

= k} and {(j,mj) : r
f(j)
mj = k}; and hence a spanning set

for V (f)G is given by the set of colour-preserving bijections

σ :

Nf∐

i=1

({i} × [b0(f(i))])→
Nf∐

j=1

({j} × [b1(f(j))]) ,

i.e., the set of σ′s as in Definition 13. Unravelling the definitions and notations,
it is not too hard to see that the invariant of V (f) corresponding to such a σ gets
mapped under the map Θ - see equation (3.13) - to our picture invariant IP(f,σ). 2

4 The application to subfactor planar algebras
In this section, the symbol T will be reserved for elements of the ‘coloured op-
erad’ of planar tangles - see [J1],[J2],[J3]. Given a ‘subfactor planar algebra’
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P = {Pk}k∈Col, we can associate linear operators ZP
T to tangles T as described

in the ‘Facts’ of the Introduction.
Suppose Q = {Qk}k∈Col is another subfactor planar algebra, which is isomor-

phic, as a planar algebra, to P . Then we may assume without loss of generality
that Qk = Pk, as a Hilbert space, for each k ∈ Col; and if the space X and
the group G are as in the last section, then we may associate the point xQ ∈ X
defined by (xQ)T = ZQ

T . Theorem 3 shows that the planar algebras P and Q
are isomorphic precisely when the points xP and xQ lie in the same G-orbit.
Hence it follows from Proposition 20 that P and Q are isomorphic if and only
if IP(f,σ)(x

P ) = IP(f,σ)(x
Q) for all picture invariants IP(f,σ).

Before proceeding further, we should first mention that henceforth,

Col = {0+, 0−, 1, 2, 3, ...} .

It will help if we recall the definition of some tangles that we will be using in the
following analysis; for the precise definition of a tangle, see [J1]. (We shall find it
convenient to use the notation of [KLS].)

E
k

0
+ = Mk

*
=

*

*

*

The above pictures are for k > 0 (and have 2k strings impinging on the internal
boxes); the multiplication tangles M0± are defined as the Mk above, except that
they do not have any internal strings, and the region between the external box and
the two internal boxes is shaded white, resp., black.

Further, given a tangle, say T , we shall write T̄ to denote the tangle obtained
by rotating the * of every (external, as well as internal) disc anticlockwise to the
next marked point (and reversing the checkerboard shading). Hence for instance,
we have M̄0± = M0∓ , while R̄k = Rk for k > 1. Here, the symbol Rk denotes
the important rotation k-tangle, which is known - see [J1] - to satisfy R(k)

k = Ikk
(where we write R(k)

k for the ‘k-fold iteration of Rk’ and Ikk for the identity tangle
with one external and one internal disc both of colour k).
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LEMMA 21 In the pictorial notation of the earlier sections, we have (in any sub-
factor planar algebra) the following identities:

(a) ∀ k > 1,

0+

0+

M
_ +

k
M k

0+Ek

0+
M

0+Ek

_ +

−0

−0
=Rk

k k

k k k

k k

M
0

δ
2k .

+

_

(4.14)

(b)

0+
M

0+

0+

I
1

1
1 1

δ
2

δ
2 0+

_
E1

+

M
1

0+E
1

−0

−0

+
M
_1 1 1

1

11

=1

M
0_

. =.

+

(4.15)

(c)

0+−

0+−

0+−

0+−

0−+

0−+
0+−

0+−

0+−
0+−

0+− 0+− 0+−

0+−0+−
0+−

=

M
+

M
_

M M
+_I= (4.16)

(In (a) and (b) above, we write the expression ‘constant . picture’ to mean the
obvious thing - viz., the appropriate constant multiple of the operator represented
by the picture.)

Proof: (a) To start with, it must be noted - see the explanation in [DKS], for
instance - that the picture
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M k

k

kk

k

which has one input coloured k and no outputs, is to be interpreted as the linear
functional given by ‘trace in the left-regular representation’ of the algebra Pk.
Consequently, the picture

0+

0+

0+0+
k

E Mk

denotes the linear functional Pk 3 x → δkτk(x) ∈ C, where τk denotes the trace
on Pk described in Fact (7) of the introduction. Thus, the following picture

0+

0+0+k
E MM

k k
k

k

denotes the map
Pk ⊗ Pk 3 x⊗ y → δkτk(xy) ∈ C

Let T : Pk ⊗ Pk → C denote the map given by the picture

+0

−0

−0

−0

k
EM

k

_

k

k

k

_
M
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Notice that the adjoint operator T ∗ is given by the ‘dagger’ of this picture (i.e.,
the picture obtained by reversing all the arrows, and replacing all vertex labels by
their daggers). Clearly, we have

T (·) = 〈·, T ∗(1)〉

We shall imitate the ‘Sweedler notation of Hopf algebras’ and write

T ∗(1) =
∑

(x)

x1 ⊗ x2 .

Notice now that both sides of the identity to be proved (i.e., equation 4.14)
represent endomorphisms of Pk. Since the left side represents δ2k times the unitary
operator ZRk , and since τk is a non-degenerate trace, it will suffice to prove that if
the the operator represented by the right side of equation 4.14 is B, then

τk(B(Z∗Rk(z))w) = δ2kτk(zw) ∀ z, w ∈ Pk.

However, the earlier analysis shows that

τk(B(Z∗Rk(z))w) = τk


∑

(x)

δkτk(x1Z
∗
Rk

(z))x2w




= δk
∑

(x)

τk(x1Z
∗
Rk

(z))τk(x2w)

= δk
∑

(x)

〈x1, (Z
∗
Rk

(z))∗〉〈x2, w
∗〉

= δk
∑

(x)

〈x1, ZRk(z
∗)〉〈x2, w

∗〉

= δk〈
∑

(x)

x1 ⊗ x2, ZRk(z
∗)⊗ w∗〉

= δk〈T ∗(1), ZRk(z
∗)⊗ w∗〉

= δkT (ZRk(z
∗)⊗ w∗) ,

where we have used (a) the fact that the inner product in Pk and τk are related by
〈u, v〉 = τk(uv), in the third line above, and (b) the ‘planar algebras’ requirement
relating the adjunction in Pk and the action of tangles in the fourth line above,
which implies that

(Z∗R(x))∗ = ZR(x∗) .
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Now let S denote the tangle defined by

S = Ē
0+

k ◦
(
M̄k ◦D1 Rk

)
;

notice that τ0− : P0− → C is the canonical identification of P0− with C; and
conclude from the definitions of S and T that T (ZRk(z

∗) ⊗ w∗) = τ0−(ZS(z∗ ⊗
w∗)); and hence

T (ZRk(z
∗)⊗ w∗) = τ0−(ZS(z∗ ⊗ w∗))

= τ0− ((ZS(z∗ ⊗ w∗))∗)
= τ0− ((ZS∗(z ⊗ w))) ,

where the tangle S∗ is obtained from the tangle S according to a specific procedure
(see [KS]); in the case at hand, we find, after staring at a few pictures, and invoking
the sphericality present in subfactor planar algebras, that

τ0− ((ZS∗(z ⊗ w))) = δkτk(zw) ,

thereby completing the proof of (a).
The proof of (b) and the case of 0+ in (c) are a verbatim repetition of the

above proof of (a), if one adopts the convention that Rk = Ikk for k ≤ 1. The only
modification one needs for k = 0− is that every occurrence of E0+

k should also be
replaced by Ikk . 2

REMARK 22 Since R(k)
k - i.e., the result of iterating Rk k times - is the same as

the identity tangle, we may, from Lemma 21(a), deduce an identity for Ikk - which
will be thought of as a counterpart for k > 1 of the identities Lemma 21 (b),(c);
we illustrate the case of k = 2 below.

0+
M

0+

0+

0+

0+ 0+

0+

0+

0+

0+

+ +2 2 2 2

0−

0−

0−

0−
_0 _0

2 = R R
2 2 2

=

2 2

. E

M M
_

2 2

2 2

2
E

+_
2

E

M M
_

2 2

2 2

2
E

+_
2

2

M M M

δ
− 8

+ +

(4.17)
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The point of the foregoing exercise is the following conclusion, which will be a
crucial one for us:

If in a closed picture, say P , every arrow of colour k is ‘substituted’ by the
analogue of the above picture with k in place of 2 (resp., the picture given by
Lemma 21(b) or (c)) if k > 1 (resp., k = 1 or 0±), then the result would be
a constant multiple of another picture invariant, say P1, which would have the
crucial property that it contains no directed closed path, and still agrees at all
subfactor planar algebras with index δ.

PROPOSITION 23 For any picture invariant IP(f,σ) there exist a pair S, T of tan-
gles of the same type, and an integer n (depending only on the picture) such that
for any subfactor planar algebra P of modulus δ, we have IP(f,σ)(x

P ) = δnχPS,T .

Proof: Begin with any picture invariant IP(f,σ) and use Remark 22 and Lemma
21 (b) and (c) (for k > 1, k = 1 and k = 0± respectively) to replace each arrow
of colour k in its picture by subpictures that are given by the right hand sides of
equations (4.17), (4.15) and (4.16). The resulting picture clearly specifies another
picture invariant whose value, at any subfactor planar algebra, agrees - see Remark
22 - with that of IP(f,σ) at that planar algebra, up to a multiplicative factor of a
power of δ.

The new picture is seen to satisfy the following properties:
(a) it contains no directed closed paths except for self loops at M0± and M

†
0± , and

(b) no arrow in it goes from an S to a T † for any two tangles T and S.
Consider the connected components of the picture obtained from this one by

cutting each arrow that goes from a T † to an S, i.e., by replacing each such arrow
by

T † → → S.

It follows from (b) above that every such connected component is of one of two
types: either (i) all the vertices are labelled by elements of T , or (ii) all the vertices
are labelled by elements of T †. Fix a component of the former type. It is easy to
see, since the only arrows that remain are ones we have introduced through our
substituting ‘subpictures’ for the original arrows, that this component is necces-
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sarily of one of the following two forms for some k ≥ 1:

0+
M

0+

0+

0+0+
M

0+

0+

0+

E

Mk k
k

k

k

E

MX k
k

k

k

k

(4.18)

or of one of the following two forms:

0+−

0+−
0+−

0+−

0+− 0+−
M

M

0+−

0+−
0+−

0+−

0+− 0+−
M

M

X

(4.19)

where X is some tangle.
Thus in each case, there is a 0±-tangle S so that this connected component

specifies the same function on any planar algebra as does:

0+−

0+−

MS
(4.20)

In case of the first of the two forms for k ≥ 1, we take S to be E0+

k ◦ (Mk ◦D2 X).
Similarly, any connected component having only elements of T † can be re-
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placed by a picture of the following form:

0+−

_
+0

__+ +
 TM (4.21)

for some 0± tangle T to get a picture whose associated picture invariant takes the
same value on all subfactor planar algebras as the original one.

So if there are k connected components that involve only S’s and l connected
components that involve only T †’s then there are tangles T1, · · · , Tl and S1, · · · , Sk
such that IP(f,σ) agrees with a power of δ times the invariant specified by the
following picture:

0+−

0+−

M

0+−

0+−

M

0+−

0+−

M

0+−

0+−

0+−

_
+

0

_
+

0

_
+

0

1 1

2 2

l
k

+

+

+

T

 T

  T

S

S

S

σ

M
+

M
+

M
__ +

__

__

take the same value at any subfactor planar algebra. Here σ represents a permuta-
tion that specifies the way that the outputs of T †i ’s correspond to the inputs of the
Sj’s. (This comes about when we ‘splice’ back the edges that we cut.)
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It remains to construct S and T . Suppose that S1, · · · , Su are 0+ tangles while
Su+1, · · · , Sk are 0− tangles. Consider the 0+ tangle W in the figure below which

has u internal 0+ boxes and k − u internal 0− boxes (enclosed in a loop). Set
S = W ◦(D1,D2,···,Dk) (S1, S2, · · · , Sk) - which is, by definition, the tangle ob-
tained by substituting the 0+-tangles S1, · · · , Su into the first u boxes of W and
the 0−-tangles Su+1, · · · , Sk into the last k−u boxes of W . An entirely analogous
procedure applied to T1, · · · , Tl yields a tangle T ′, say. The fact that the picture
is closed implies that there exists a ‘colour-preserving bijection’ between the sets
of inoputs of T ′ and of S. Let T be the tangle obtained from T ′ by appropriately
renumbering its internal boxes using the permutation σ so that the ith output of T †

corresponds to the ith input of S. This T is a tangle of the same type as S.
Suppose now that P is a subfactor planar algebra with modulus δ; and let

xP ∈ X denote the corresponding point. The fact that there exists an integer n
- depending only on P(f, σ) - such that δnχPS,T = IP(f,σ)(x

P ) follows from the
following observations:

(a) the two pictures below represent the natural isomorphisms of P0± onto C
and C onto P0± respectively

0+−
M M

__

0−+ (4.22)

(b) ZP
W (a110+ , · · · , au10+ , au+110− , · · · , ak10−) = δ a1a2 · · · ak10+ for any

complex numbers a1, a2, · · · , ak, and

(c) for any two 0+-tangles S, T of the same type, ZP
S (ZP

T )∗(10+) = χPS,T10+ .
2

Proof of Theorem 2: That the χ·(S,T )’s are invariants of isomorphism classes of
subfactor planar algebras is the content of Corollary 5. The completeness of this
family of numerical invariants follows from Proposition 20 and Proposition 23. 2
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