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Our goal in this lecture is to indicate a proof

of the following result of Wenzl, which was

inspired by the result of Jones on restriction of

index values:

Theorem 1: (Wenzl) If there exists a se-

quence {en : n = 1,2, · · ·} of orthogonal projec-

tions on Hilbert space, which satisfy the rela-

tions defining TL(τ), then

τ ∈ (0,
1

4
] ∪ {1

4
sec2(

π

n
) : n = 3,4,5, · · ·}

But we first need a digression into traces, con-

ditional expectations, and a variant of Tcheby-

shev polynomials of the second kind.
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Definition: A linear functional ‘tr’ on an alge-

bra A is said to be

• a trace if tr (xy) = tr (yx) forall x, y ∈ A;

• normalised if A is unital and tr(1) = 1;

• positive if A is a *-algebra and tr (x∗x) ≥
0∀x ∈ A;

• faithful and positive if A is a *-algebra and

tr (x∗x) > 0 ∀ 0 6= x ∈ A.

For example, Mn(C) admits a unique normalised

trace (tr(x) = 1
n

∑n
i=1 xii) which is automati-

cally faithful and positive.

2



Proposition FDC*: The following conditions

on a finite-dimensional unital *-algebra A are

equivalent:

1. There exists a unital *-isomorphism from

π : A → Mn(C) for some n.

2. There exists a faithful positive normalised

trace on A.

Proof: (1) ⇒ (2): Set trA = trMn(C) ◦ π

(2) ⇒ (1): Set H = {x̂ : x ∈ A}, define

〈x̂, ŷ〉 = tr(y∗x),

and note that H becomes an inner product

space.
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Consider the map π : A → EndC(H) defined by

π(x)ŷ = x̂y

Observe that π is an algebra homomorphism,

such that

〈π(x)ŷ, ẑ〉 = tr(z∗xy) = tr((x∗z)∗y) = 〈ŷ, π(x∗)ẑ〉

i.e., π(x)∗ = π(x∗).

The fact that A has a unit implies that π is

faithful (since π(x) = 0 ⇒ tr(x∗x) = ‖x̂‖2 =

‖π(x)1̂‖2 = 0 ⇒ x = 0. Finally, setting n =

dim(H) = dim(A), and realising linear oper-

ators on H as matrices with respect t some

orthonormal basis of H, we may view π as a

faithful *-homomorphism into Mn(C). �

Note: A *-algebra A as in the above Propo-

sition is nothing but a finite-dimensional C∗-
algebra. Such an A may admit several faithful

positive normalised traces in general.
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Suppose A0 ⊂ A is a unital inclusion of finite-

dimensional C∗-algebras, and suppose ‘tr’ is a

faithful positive normalised trace on A. Let

H = {â : a ∈ A} be the finite-dimensional

Hilbert space as above, and let us simply iden-

tify x ∈ A with π(x) ∈ EndC(H) - so that

xŷ = x̂y. (The artificial looking ‘hat’s were

introduced in order to distinguish between x,

the operator on H and x̂, the vector in H.)

Let H0 = {â0 : a0 ∈ A0} and let eA0
denote the

orthogonal projection of H onto the subspace

H0. Since faithfulness of ‘tr’ translates into in-

jectivity of the map A ∋ a 7→ â ∈ H, we see that

there exists a uniquely defined C-linear map

EA0
: A → A0, usually called the ‘tr’-preserving

conditional expectation of A onto A0, such

that eA0
(â) = ÊA0

a. The following facts may

be verified to hold, for all a, b ∈ A, a0, b0 ∈ A0:

EA0
(a0bb0) = a0EA0

(b)b0
EA0

(a0) = a0

tr|A0
◦ EA0

= tr

eA0
aeA0

= (EA0
a)eA0
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There is a natural *-structure on TLn(β−2) =

Dn(β) with the adjoint T ∗ of a Kauffman dia-

gram T being defined as the diagram obtained

by reflecting T about a horizontal lilne in the

middle of the bounding box. Thus, Ei is self-

adjoint for each i.

Also, there is a natural inclusion (= unital *-

algebra monomorphism) of TLn into TLn+1

which maps ei to ei for 1 ≤ i < n. At the

level of diagrams, it identifies a T ∈ Kn with

the element of Kn+1 btained by adding on a

vertical strand to the right end of T .

Although the TLn’s are not quite C∗-algebras
in general, they nevertheles come equipped with

a consistent family of traces {tr} and consis-

tent conditional expectations ǫn : Dn+1(β) →
Dn(β) as follows:
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If a is an (n + 1, n + 1) diagram, then ǫ̃n(a)

is obtained by just closing up the last strand.

Hence if a ∈ Dn(β) then ǫ̃n(a) = βa. Define

ǫn(a) = 1
β
ǫ̃n(a) for a ∈ Dn(β). Then ǫn is a

conditional expectation.

Let trn : Dn(β) → C be defined by trn(a) =

(ǫ1ǫ2 · · · ǫn−1)(a). Note that trn(a) = trn+1(a)

if a ∈ Dn(β). Hence we can and will denote

trn by tr. If a is a diagram, let c(a) be the

number of loops one gets when one closes all

the strands. Then tr(a) = βc(a)−n

tr : Dn(β) → C is a unital trace and satisfies

the following properties:

1. tr(x) = tr(ǫn(x)) ∀ x ∈ Dn+1(β).

2. enxen = ǫn−1(x)en ∀ x ∈ Dn(β).

3. tr(ei) = τ where τ = 1
β2.
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The following variants of Tchebyshev polyno-

mials of the second kind are important for us:

P0(x) = P1(x) = 1 (1)

Pn+1(x) = Pn(x) − xPn−1(x) (2)

Thus,

P0(x) = 1

P1(x) = 1

P2(x) = 1 − x

P3(x) = 1 − 2x

P4(x) = 1 − 3x + x2

P4(x) = 1 − 4x + 3x2

P5(x) = 1 − 5x + 6x2 − x3

P6(x) = 1 − 6x + 10x2 − 4x3

−−− −−−
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Lemma Pn:

If we set

σ =
1 +

√
1 − 4x

2
, σ =

1 −
√

1 − 4x

2

we have

(1) Pn(x) = σn+1−σn+1

σ−σ

(2) Pn(
1
4sec2θ) = sin(n+1)θ

2ncosnθsinθ

(3) The polynomial Pn is of degree m = [n2].

It’s leading coefficient is (−1)m if n = 2m and

(−1)m(m + 1) if n = 2m + 1.

(4) The polynomial Pn has distinct zeros given

by {1
4sec2( πj

n+1) : 1 ≤ j ≤ m}

(5) If n ≥ 2 and if 1
4sec2( π

n+2) < λ < 1
4sec2( π

n+1),

then Pi(λ) > 0 for 1 ≤ i ≤ n and Pn+1(λ) < 0.

9



Proof: (1) Note that σ and σ are the roots

of the equation p2 − p + x = 0, so the general

solution of the recurrence relation defining the

Pk’s is seen to be Pn = Aσn+1 + Bσn+1; the

‘boundary conditions’ demand that A + B = 0

(for n = −1) and Aσ + Bσ = 1 (for n = 0);

this yields (1).

(2) Setting x = 1
4sec2θ, we find that σ = reiθ, σ =

re−iθ where r = 1
2cosθ

, and hence σn+1−σn+1 =

2irn+1sin(n + 1)θ, σ − σ = 2irsinθ, thereby es-

tablishing (2).

(3) This is shown fairly easily by induction,

using the recurrence relation satisfied by the

Pn’s.

(4) It follows from (2) that the numbers 1
4sec2( πj

n+1)

yield m distinct zeros of Pn. Since Pn has de-

gree m, this assertion is clear.
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(5) It is seen from (2) that limx→−∞Pn(x) =

+∞ for all n; in particular, Pn is positive to

the left of its first zero, and since the function

x 7→ sec2(x) is an increasing function in (0, π
2,

it is seen that for all k ≤ n and j ≤ [frack2],

we have

λ <
1

4
sec2(

π

n + 1
)

<
1

4
sec2(

π

k + 1
)

<
1

4
sec2(

jπ

k + 1
)

and consequently λ lies to the left of the first

zero of Pk, whence Pk(λ) > 0.

On the other hand, the inequalities

1

4
sec2(

π

n + 2
) < λ <

1

4
sec2(

π

n + 1
) <

1

4
sec2(

2π

n + 2
)

show that λ lies between the first two zeros,

and we may conclude that indeed Pn+1(λ) < 0.
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Let TL(τ) =
⋃

n Tn(τ). Then TL(τ) is a ⋆ alge-

bra generated by 1, e1, e2, .... When τ > 0, ei’s

are self adjoint.

Lemma JW:(Wenzl) Let τ be a nonzero com-

plex number such that Pk(τ) 6= 0 for k =

1,2, · · · , n. Define (the so-called Jones-Wenzl

idempotents) fk in TL(τ) recursively as fol-

lows:

f0 = f1 = 1

fk+1 = fk − Pk−1(τ)

Pk(τ)
fkekfk, 1 ≤ k ≤ n.

Then, for 1 ≤ k ≤ n + 1, we have:

(1) fk ∈ Tk(τ).

(2) If k ≥ 2, then 1 − fk is in the algebra gen-

erated by {e1, · · · , ek−1}

(3) (ekfk)
2 =

Pk(τ)
Pk−1(τ)

ekfk , (fkek)
2 =

Pk(τ)
Pk−1(τ)

fkek,

(4) fk is an idempotent.
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(5) fkei = 0 , eifk = 0 if i ≤ k − 1.

(6) tr(fk) = Pk(τ).

When τ > 0, fk is selfadjoint.

Proof: The proof is by induction on k. As-

sertions 1 − 6 are clearly true for k ≤ 2. Now

assume that 1−6 are valid for 1 ≤ k ≤ l where

l ≥ 2. We will show the result is true for

k = l + 1.

Since fl is in Tl(τ), it follows by definition that

fl+1 is in the algebra generated by 1, e1, e2, · · · , el.

Hence fl+1 ∈ Tl+1(τ). Since 1 − fl is in the

algebra genrated by e1, e2, · · · , el−1 , by defini-

tion, it follows that 1 − fl+1 is in the algebra

generated by e1, e2, · · · , el.
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Now note that fl+1fl = fl+1 and flfl+1 = fl+1
since fl is an idempotent. Since fl ∈ Tl(τ), el+1
commutes with fl. Thus,

el+1fl+1el+1 = el+1fl −
Pl−1(τ)

Pl(τ)
flel+1elel+1fl

=
Pl+1(τ)

Pl(τ)
el+1fl

Hence (el+1fl+1)
2 =

Pl+1(τ)

Pl(τ)
el+1fl+1.

The proof that (fl+1el+1)
2 =

Pl+1(τ)

Pl(τ)
fl+1el+1

is similar.

Next

f2
l+1

= f2
l − 2

Pl−1(τ)

Pl(τ)
flelfl +

(
Pl−1(τ)

Pl(τ)

)2

flelflelfl

= f2
l − 2

Pl−1(τ)

Pl(τ)
flelfl +

(
Pl−1(τ)

Pl(τ)

)2
Pl(τ)

Pl−1(τ)
flelfl

= fl −
Pl−1(τ)

Pl(τ)
flelfl = fl+1
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Hence fl+1 is an idempotent.

Since fl+1ei = fl+1flei, it follows that fl+1ei =

0 if i ≤ l− 1. Now fl+1el = flel −
Pl−1(τ)
Pl(τ)

(flel)
2.

But (flel)
2 =

Pl(τ)
Pl−1(τ)

flel, and so fl+1el = 0.

Hence fl+1ei = 0 for i ≤ l. Similarly eifl+1 = 0.

Next,

tr(fl+1) = tr(fl) −
Pl−1(τ)

Pl(τ)
tr(flelfl)

= tr(fl) −
Pl−1(τ)

Pl(τ)
tr(ǫl(flelfl))

= tr(fl) −
Pl−1(τ)

Pl(τ)
tr(flǫl(el)fl)

= tr(fl) −
Pl−1(τ)

Pl(τ)
tr(τfl)

= Pl(τ) − τPl−1(τ) = Pl+1(τ)

If τ > 0 then Pk(τ) is real. Hence by induction

it follows that f ′
ks are selfadjoint. �
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We shall next prove the following lemma, be-

fore proceeding to prove Wenzl’s theorem.

Lemma 1: Let τ be such that 1
4sec2( π

n+2) < τ <

1
4sec2( π

n+1) for some n ∈ N, with n ≥ 2. Sup-

pose π : TL(τ) → B(H) be a ⋆ homomor-

phism, where H is a Hilbert space. Let eT
i

denote the idempotents in TL(τ). Then the

Jones-Wenzl idempotents fT
k ’s are defined for

k = 1,2, · · ·n + 2. Suppose fk = π(fT
k ) for

k ≤ n + 2. Then

(1) 1 − fk = e1 ∨ e2 ∨ · · · ek−1 for k ≤ n + 2.

(2) en+1fn+1 = 0.

(3) en+1 is orthogonal to fn.
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Proof: Note that Pk(τ) > 0 for k = 1,2, · · ·n
and Pn+1(τ) < 0. Hence the Jones-Wenzl

idempotents are defined for k = 1,2, · · ·n + 2.

By Lemma JW, it follows that fkei = 0 for

i ≤ k − 1. Hence we have e1 ∨ e2 ∨ · · · ∨ ek−1 ≤
1 − fk. Since 1 − fk is in the algebra gener-

ated by e1, e2, · · · , ek−1, it follows that 1− fk ≤
e1 ∨ e2 ∨ · · · ek−1. This proves (1).

Observe that en+1fn+1en+1 =
Pn+1(τ)

Pn(τ)
en+1fn.

But en+1fn+1en+1 is positive and en+1fn is a

projection. Since Pn+1(τ) < 0, it follows that

en+1fn = 0 and (fn+1en+1)
⋆fn+1en+1 = 0.

Hence fn+1en+1 = 0 and en+1 is orthogonal to

fn. By taking adjoints, we get en+1fn+1 = 0.

This proves (2) and (3). �
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Proposition (orth): Let H be a Hilbert space.

Suppose e1, e2, · · · is a sequence of non-zero

projections in B(H) satisfying the following re-

lation :

e2i = ei = e⋆
i

eiej = ejei = 0 if |i − j| ≥ 2

eiejei = τei if |i − j| = 1

Then τ ∈ (0, 1
4] ∪ {1

4sec2( π
n+1) : n ≥ 2}.

Proof: There exists a nontrivial C⋆ represen-

tation of TL(τ) say π which is unital and for

which π(eT
i ) = ei where eT

i denote the idem-

potents in TL(τ). By taking norms on the

third relation, it follows that τ ≤ 1. Suppose

that τ is not in the set given in the propo-

sition. Then there exists n ≥ 2 such that
1
4sec2( π

n+2) < τ < 1
4sec2( π

n+1). Then Pk(τ) > 0

for k = 1,2, · · ·n but Pn+1(τ) < 0. Hence, the

Jones Wenzl idempotents fT
k ’s are defined for

k = 1,2, · · ·n+2. Let fk = π(fT
k ) for k ≤ n+2.
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By Lemma 1, it follows that en+1 is orthogonal

to fn. But en+1 is orthogonal to e1∨e2∨· · · en−1

which latter projection is, by Lemma 1, noth-

ing but 1−fn. Hence en+1 = en+1fn+en+1(1−
fn) = 0 which is a contradiction. This com-

pletes the proof. �

Proof of Wenzl’s theorem:

Suppose that τ is not in the set described

above. Then there exists n ≥ 2 such that
1
4sec2( π

n+2) < τ < 1
4sec2( π

n+1). From lemma

??, it follows that en+1fn+1 = 0. Also eifn+1 =

0 for i ≤ n. Hence fn+1 ≤ 1 − e1 ∨ e2 ∨ · · · ∨
en+1 = fn+2. But fn+2 ≤ fn+1. Hence fn+1 =

fn+2. Let k be the least element in {2,3, · · · , n}
for which fk+1 = fk+2. Let gi = ek+ifk−1 for

i ≥ 0. We will derive a contradiction by show-

ing that g′is satisfy the hypothesis of Proposi-

tion (orth).
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Since ek+i commutes with fk−1 for i ≥ 0, it

follows that gi’s are projections. For the same

reason, g′is satisfy the third relation of Propo-

sition (orth). First, we show that g0 6= 0. By

the choice of k, fk 6= fk+1. Hence fkekfk 6= 0.

Since fk ≤ fk−1, it follows that fk−1ek = g0 6=
0.

Now we show that gigj = 0 if |i − j| ≥ 2. We

begin by showing g0g2 = 0. Observe that since

fk+1 = fk+2, we have

ek+1fk = ek+1(fk−fk+1)ek+1 = ek+1(
Pk−1(τ)

Pk(τ)
fkekfk)ek

Since Pk+1(τ) 6= 0, it follows that ek+1fk = 0.

By premultiplying and postmultiplying by ek+2,

we see that ek+2fk = 0. Hence we have,
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g0g2 = ekek+2fk−1

= ekek+2(fk−1 − fk)ek+2ek

= ek+2ek(fk−1 − fk)ekek+2

= ek+2ek(
Pk−2(τ)

Pk−1(τ)
fk−1ek−1fk−1)ekek+2

= τ
Pk−2(τ)

Pk−1(τ)
g0g2

Since Pk(τ) 6= 0, it follows that g0g2 = 0. Let

i ≥ 2. Let us consider the partial isometry w =

(1
τ
)i−1ek+iek+i−1 · · · ek+2. Since w commutes

with ek and fk−1, wekfk−1 is a partial isome-

try. Note that (wekfk−1)
⋆wekfk−1 = g0g2 = 0.

Thus, gig0 = wekfk−1(wekfk−1)
⋆ = 0. Hence

gig0 = 0 if i ≥ 2. Let i, j be such that j ≥ i+2.

Now let u = (1
τ
)i+1ek+iek+i−1 · · · ek. Then u is

a partial isometry which commutes with fk−1

and ek+j.
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Let v = uek+jfk−1. Then v is a partial isome-

try such that v⋆v = g0gj and vv⋆ = gigj. Since

v⋆v = 0, it follows that vv⋆ = 0. Thus gigj =

0. Therefore gi ’s satisfy the assumptions of

Proposition (orth). Hence we have a contra-

diction. This completes the proof. �
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