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Our goal in this lecture is to indicate a proof
of the following result of Wenzl, which was
inspired by the result of Jones on restriction of
index values:

Theorem 1: (Wenzl) If there exists a se-
quence {ep :n=1,2,---} of orthogonal projec-
tions on Hilbert space, which satisfy the rela-
tions defining T'L(7), then
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T € (O, —] U {—SGCQ(E) :n=23,4,5,-- }
4 4 n
But we first need a digression into traces, con-

ditional expectations, and a variant of Tcheby-
shev polynomials of the second kind.



Definition: A linear functional ‘tr’' on an alge-
bra A is said to be

e a trace if tr (wy) = tr (yx) forall z,y € A;
e normalised if A is unital and tr(1) = 1,

e positive if A is a *-algebra and tr (z*x) >
OVx € A;

e faithful and positive if A is a *-algebra and
tr (z*2) >0V 0#z € A.

For example, M, (C) admits a unique normalised
trace (tr(x) = %Z;}zl x;;) which is automati-
cally faithful and positive.



Proposition FDC?*: The following conditions
on a finite-dimensional unital *-algebra A are
equivalent:

1. There exists a unital *-isomorphism from
. A— M,(C) for some n.

2. There exists a faithful positive normalised
trace on A.

Proof: (1) = (2): Set try =try, (yomn

(2) = (1): Set H={z:x € A}, define

(Z,7) = tr(y™z),
and note that H becomes an inner product
space.



Consider the map 7 : A — End¢(H) defined by

()Y = Ty
Observe that =« is an algebra homomorphism,
such that

(m(2)y, 2) = tr(z"zy) = tr((z72)"y) = (, n(z")Z)

i.e., m(x)* = w(x™).

The fact that A has a unit implies that = is
faithful (since n(z) = 0 = tr(z*z) = ||z||°
|7(x)1]|2 = 0 = = = 0. Finally, setting n
dim(H) = dim(A), and realising linear oper-
ators on H as matrices with respect t some
orthonormal basis of H, we may view 7 as a
faithful *~-homomorphism into M, (C). ]

Note: A *-algebra A as in the above Propo-
sition is nothing but a finite-dimensional C*-
algebra. Such an A may admit several faithful
positive normalised traces in general.



Suppose Ag C A is a unital inclusion of finite-
dimensional C*-algebras, and suppose ‘tr' is a
faithful positive normalised trace on A. Let
H = {a : a € A} be the finite-dimensional
Hilbert space as above, and let us simply iden-
tify £ € A with 7n(x) € Endp(H) - so that
xy = xy. (The artificial looking ‘hat’'s were
introduced in order to distinguish between z,
the operator on H and Zz, the vector in H.)
Let Ho = {ap : ag € Ag} and let ey, denote the
orthogonal projection of H onto the subspace
Hg. Since faithfulness of ‘tr’ translates into in-
jectivity of the map A > a+— a € H, we see that
there exists a uniquely defined C-linear map
EAO . A — Ap, usually called the ‘tr'-preserving
conditional expectation of A onto Agp, such
that ey (a) = E]Ea. The following facts may
be verified to hold, for all a,b € A,aqg,bg € Ap:

E,(agbbp) = agEa,(b)bg
Ey,(ag) = ag

tr|AOOEAO = tr
eaaes, = (Faya)ea,



There is a natural *-structure on T'L,(872) =
Dy (B) with the adjoint T* of a Kauffman dia-
gram 1T being defined as the diagram obtained
by reflecting 17" about a horizontal lilne in the
middle of the bounding box. Thus, E; is self-
adjoint for each z.

Also, there is a natural inclusion (= unital *-
algebra monomorphism) of TLy into TL, 41
which maps e¢; to ¢; for 1 < 7 < n. At the
level of diagrams, it identifies a T € I, with
the element of K, 4, btained by adding on a
vertical strand to the right end of 7.

Although the T'L,’'s are not quite C*-algebras
in general, they nevertheles come equipped with
a consistent family of traces {tr} and consis-
tent conditional expectations e, : D, 41(8) —
Dy (B) as follows:



If ais an (n+ 1,n 4+ 1) diagram, then &,(a)
IS obtained by just closing up the last strand.
Hence if a € Dn(3) then é,(a) = Ba. Define
en(a) = %e’fn(a) for a € Dp(B). Then e, is a
conditional expectation.

Let trn, : Dn(B) — C be defined by trnp(a) =
(e1€2---€ep—1)(a). Note that trn(a) = tr,41(a)
if a« € Dn(B). Hence we can and will denote
trnp, by tr. If a is a diagram, let c(a) be the
number of loops one gets when one closes all
the strands. Then tr(a) = gela)—n

tr : Dnp(B) — C is a unital trace and satisfies
the following properties:

1. tr(x) =tr(en(z)) VY x € D, 11(8).

2. enxen = ¢,_1(x)en V x € Dyp(B).
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3. tr(e;) = 7 where 7 = 52



The following variants of Tchebyshev polyno-
mials of the second kind are important for us:

Po(x) Py(z) =1 (1)
Pot1(z) = Pu(z) —2zPy_1(x) (2)

T hus,
Po(x) = 1
Pi(z) = 1
P(z) = 1—x
P3(zx) = 1-—-2x
Py(z) = 1-—3z+2°
Py(z) = 1—4x+ 322
Ps(z) = 1—5x462°—2z°

1 — 62 4+ 1022 — 423

Pg(x)



Lemma Fp:

If we set
1+vV1—-4x  1—+/1—-4x
O — , O —
2 2
we have
n+1_ —m—+1
(1) Pu(z) = 7 =2

(2) Pu(isec?p) = Sinint1)o

— 2Ncos™Bsinb

(3) The polynomial P, is of degree m = [5].
It's leading coefficient is (—1)™ if n = 2m and
(=1)"™(m+1) ifn=2m-+ 1.

(4) The polynomial P, has distinct zeros given
by {gsec® () 1 1 <j < m}

(5) If n > 2 and if %secz(%_l_z) <AL %secQ(nL_l_l),
then P;(A\) >0 for 1 <i<mn and P,41(\) <O0.
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Proof: (1) Note that ¢ and & are the roots
of the equation p? — p 4+ z = 0, so the general
solution of the recurrence relation defining the
P.'s is seen to be P, = Ao"*T1 4 Ba"T1: the
‘boundary conditions’ demand that A+ B =0
(for n = —1) and Ao 4+ Bd = 1 (for n = 0);
this yields (1).

(2) Setting z = %86629, we find that o = ret?, 7 =

re~"% where r = ;1 and hence o"t1-gnt1 =
cosb

2ir"Tlsin(n + 1)6,0 — 5 = 2irsind, thereby es-
tablishing (2).

(3) This is shown fairly easily by induction,
using the recurrence relation satisfied by the
Py's.

(4) It follows from (2) that the numbers %secz(n”—_lfl)
yield m distinct zeros of B,. Since P, has de-
gree m, this assertion is clear.
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(5) It is seen from (2) that limg— o Pn(x) =
+oco for all n; in particular, P, is positive to
the left of its first zero, and since the function
x — sec?(z) is an increasing function in (0,3,
it is seen that for all £ < n and 5 < [frack2?],
we have

1
A < Zsec?(
4

1
< Zsec?(
4 kE+1

1 2 j7T
< _
4866 (k T

7

n-+1
7

)
)
)

and consequently X lies to the left of the first
zero of P, whence P.(\) > 0.

On the other hand, the inequalities

1 1 1 2
“sec?( il ) < A< =sec?( il ) < Zsec?( d
4 n -+ 2 4 n—+1 4 n -+ 2
show that )\ lies between the first two zeros,

and we may conclude that indeed P, 1(\) < 0.

)
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Let TL(7) =U,,Tn(7). Then TL(7) is a x alge-
bra generated by 1,eq,eo,.... When 7> 0, ¢;'s
are self adjoint.

Lemma JW:(Wenzl) Let 7 be a nonzero com-
plex number such that P.(r) # 0 for k =
1,2,---,n. Define (the so-called Jones-Wenzl
idempotents) f, in T L(7) recursively as fol-
lows:

Jo=/1 = 1

P
Jev1 = Jr— ]1{3,{27()7)

Then, for 1 <k<n-4 1, we have:

fkekfkv 1 S k S n.

(1) fr € Ti(7).

(2) If K> 2, then 1 — f; is in the algebra gen-
erated by {e1, - ,er_1}

(3) (epfr)? = pfkgz)ekfk , (frer)? = pffi?l)fkek;

(4) fi. is an idempotent.
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(5) fkeizo,eifk:Oifigk—l.

(6) tr(fr) = Pi(7).

When 7 > 0, f is selfadjoint.

Proof: The proof is by induction on k. As-
sertions 1 — 6 are clearly true for k£ < 2. Now
assume that 1 — 6 are valid for 1 < k <[ where
[ > 2. We will show the result is true for
k=14 1.

Since f; is in T;(7), it follows by definition that

Ji+1 isin the algebra generated by 1,e7,e2, -, €.
Hence fj41 € Tj41(7). Since 1 — f; is in the
algebra genrated by eq,eo,---,e;_1 , by defini-

tion, it follows that 1 — fl—|—1 is in the algebra
generated by eq,eo, -, €;.
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Now note that fj41/f; = fi+1 and fifi+1 = fi+1
since f; is an idempotent. Since f; € T)(7), ;41

commutes with f;. Thus,
P_1(7)

el+1J1 — () Jiei+1ee14+1/0

Piyq1(7)

py(7)

Pry1(7)
Hence (ej+1fi41)% = 33;(17)7 41141

el+1J1+1€141

el+1J1

P
The proof that (fjyi1e41)? = 33;(17)7 fi+1€1+1

IS similar.

Next
i1
P_q(T P_+(T 2
= ff—2 ;léf))fzezfz-l-( jPlér())> fieifielfi
_ 2 SPa(r) P_1(m)\° A7)
= 17 -2y Pk (2] Gt
P_+(T
= f;— - 1( )fzezfz=fl+1

Py(7)
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Hence f;41 is an idempotent.

Since fl—l—lei = fl+1flei1 it follows that fl—l—lei =
O ifq S [—1. Now fl—|—1el — flel — Pl_l(T)(flel)Q.

But (fie)? = pf_l(a)fzez, and so ];‘{1(4:161 = 0.
Hence fi41e; = 0 for i < 1. Similarly e;f,41 = O.
Next,
rfian) = er(h) - S e
= () - T2 ()
= tr(fy) — ngf;)tr(fzez(ez)fz)
= ()~ =2 D)

= B(7) —7F_1(7) = P1(7)
If 7> 0 then P.(7) is real. Hence by induction
it follows that f;s are selfadjoint. (]
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We shall next prove the following lemma, be-
fore proceeding to prove Wenzl's theorem.

Lemma 1: Let r be such that gsec®(;75) < 7
%SGCQ(HL_H) for some n € N, with n > 2. Sup-
pose w : TL(r) — B(H) be a x homomor-
phism, where H is a Hilbert space. Let el
denote the idempotents in TL(7). Then the
Jones-Wenzl idempotents fk 's are defined for
k= 1,2,---n 4+ 2. Suppose f, = n(fl) for
kEk<n-+2. Then

(1) 1—fr=e1VeryV---e,_q1 for k<n-+4 2.

(2) en—l—lfn—l—l = 0.

(3) ep41 is orthogonal to fy.
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Proof: Note that P.(r) > 0 for k = 1,2,---n
and FP,41(7) < 0. Hence the Jones-Wenzl
idempotents are defined for k=1,2,---n 4 2.

By Lemma JW, it follows that fre; = O for
1< k—1. Hence we have e; Ver V:---Ver_1 <
1 — fi.. Since 1 — f;. is in the algebra gener-
ated by eq,ep,---,er_q, it follows that 1 — f,. <
e1VerV---eL_1. This proves (1).

Observe that e,y 1fh41€n+1 = R]gg—(lg)en_l_lfn.
But e, 1/n+1€n41 IS pOsitive and ey, 41 /fn IS a
projection. Since P,41(7) < O, it follows that
ent1fn = 0 and (fpyient+1) fntrient1 = O
Hence f,,y1e,41 = 0 and e, 4 is orthogonal to
Jn. By taking adjoints, we get e, 41/,41 = 0.
This proves (2) and (3). ]
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Proposition (orth): Let H be a Hilbert space.
Suppose eq,eo,--- IS a sequence of non-zero
projections in B(H) satisfying the following re-
lation :

2 o _*x

e, — € — €
eie; = eje; =0 if [i—j[>2
ejeje; = Te; if i—jl=1

Then 7 € (0,7] U{zsec®(;h1) © n > 2},

Proof: There exists a nontrivial C* represen-
tation of TL(7) say « which is unital and for
which w(el) = e; where e/ denote the idem-
potents in TL(r). By taking norms on the
third relation, it follows that < 1. Suppose
that 7 is not in the set given in the propo-
sition. Then there exists n > 2 such that
%secQ(nL_l_Q) <7< %Secz(ni_'_l). Then P.(t) >0
for k=1,2,---n but P,41(7) < 0. Hence, the
Jones Wenzl idempotents fk 's are defined for
k=1,2,---n+2. Let f =n(fl) for k <n+2.
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By Lemma 1, it follows that en4-1 IS orthogonal
to fn. Bute,1 isorthogonal toejVesV---e,_1
which latter projection is, by Lemma 1, noth-
ing but 1—fy. Hencee,4+1 =ept1fntep41(1—
fn) = 0 which is a contradiction. This com-
pletes the proof. L]

Proof of Wenzl's theorem:

Suppose that 7 is not in the set described
above. Then there exists n > 2 such that
%secQ(nL_l_Q) <7< %8662(#). From lemma
?7, it follows thate,41/,41 =0. Alsoe;f 41 =
O for : < n. Hence f,41 <1—-e1VerV:---V
ent+1 = Jnt2- But froq4o < fr41. Hence f, 41 =
fn+42. Let k be the least elementin {2,3,---,n}
for which fk‘l-l = fk—I—Q' Let g; = ek_|_7;fk_1 for
1 > 0. We will derive a contradiction by show-
ing that ggs satisfy the hypothesis of Proposi-

tion (orth).
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Since ep4; commutes with f_; for « > 0, it
follows that g;'s are projections. For the same
reason, ggs satisfy the third relation of Propo-
sition (orth). First, we show that gg # 0. By
the choice of k, fi # fr+1. Hence frerfr 7 0.
Since f,. < fr._q1, it follows that f._ier = go #
0.

Now we show that g;g; = 0 if | — j] > 2. We
begin by showing gggo = 0. Observe that since
fk+1 = fr+2, we have

P];D;(lg) frerfr)e
Since Pyy1(7) # 0, it follows that e;4 1 fr = O.

By premultiplying and postmultiplying by ey o,

we see that e,y o/ = 0. Hence we have,

ex+1Jr = ep+1(fr—Sfrt+1)en+1 = ep+1(
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eper+2Jk—1

exer+2(fr—1 — fr)extoek

ept2ek(fr—1 — fr)exer+2

Pr_o(T)

Pr_1(1)
Pr_o(T)

~
Pr_1(7)

4og2

= epgoeg( fr—1ex—1fr—1)exer+4o

gog2

Since P.(7) # 0, it follows that gggo = 0. Let
1 > 2. Let us consider the partial isometry w =
(%)i_lek+i6k+i—1 k4D, Since w commutes
with e, and f._q, werfr_1 IS a partial isome-
try. Note that (wey fi._1)*werfr._1 = gogo = O.
Thus, g;90 = wey fr._1(werfr._1)* = 0. Hence
g;g0o =0 if 2> 2. Lets,5 be such that 5 > 4 2.
Now let u = (%)i+1ek+i€k—l—z’—l R o Then u is
a partial isometry which commutes with f._1
and ek_|_j.
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Let v = uegy;fr—1.- Then v is a partial isome-
try such that v*v = ggg; and vv* = g;g,. Since
v*v = 0, it follows that vv* = 0. Thus g;9; =
0. Therefore g; 's satisfy the assumptions of
Proposition (orth). Hence we have a contra-
diction. This completes the proof. L]
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