Home-work 7

on lecture dated 24/10/09

In the following exercises, the symbols V_1, V_2 denote vector spaces, $L(V_1, V_2)$ denotes the set of all linear transformations from V_1 to V_2 , T denotes an arbitrary element of $L(V_1, V_2)$, and 0 denotes the 'zero vector' in any vector space.

- 1. Show that T0 = 0.
- 2. Prove that T is one-to-one if and only if $\{x \in V_1 : Tx = 0\} = \{0\}.$
- 3. Verify that the transformation of \mathbb{R}^2 given by anti-clockwise rotation by an angle θ about the origin is represented by the matrix given by

$$R_{\theta} = \left[\begin{array}{cc} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right]$$

4. Since $R_{\theta+\phi} = R_{\theta}R_{\phi}$, deduce the sum formulae for trigonometric functions:

$$cos(\theta + \phi) = cos \theta cos \phi - sin \theta sin \phi$$

$$sin(\theta + \phi) = sin \theta cos \phi + cos \theta sin \phi$$

- 5. If $M = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ denotes the matrix corresponding to reflection in the 'x-axis', then $MR_{\theta} = R_{\theta}M$ if and only if $\theta = 0$ or $\theta = \pi$. In particular, matrix multiplication is *not* commutative.
- 6. Prove that the equation

$$T(a+ib) = \left[\begin{array}{cc} a & -b \\ b & a \end{array} \right]$$

defines a vector space isomorphism of \mathbb{C} onto $T(\mathbb{C}) \subset M_2(\mathbb{R})$ which also preserves products.