Home-work 6

on lecture dated 10/10/09

- 1. Let $\{v_1, \dots, v_n\}$ be a basis for a vector space V and let w_1, \dots, w_n be any n vectors in any vector space W.
 - (a) Show that there exists a unique $T \in L(V, W)$ such that $Tv_i = w_i \ \forall i$.
 - (b) Show that the T of (a) above is 1-1 if and only if $\{w_1, \dots, w_n\}$ is linearly independent.
 - (c) Show that the T of (a) above is onto if and only if $sp(\{w_1, \cdots, w_n\}) = W$
- 2. If $T \in L(V, W)$, verify that ker T is a subspace of V and that ran T is a subspace of W.
- 3. For $T \in L(V, W)$, prove that T is 1-1 $\Leftrightarrow ker T = \{0\}$
- 4. For $T \in L(V, W)$, prove that T0 = 0 where of course the 0 on the left (resp., right) is the null vector in V (resp., W).
- 5. Verify that L(V, W) is a vector space with respect to the vector operations defined by

$$(S+T)v = Sv + Tv$$
, $(\alpha T)v = \alpha Tv$, $\forall v \in V$

6. For $S, T, U \in L(V)$, with multiplication defined by (ST)v = S(Tv), verify that

$$(ST)U = S(TU), \alpha(ST) = (\alpha S)T, (S+T)U = SU+TU, U(S+T) = US+UT.$$