Home-work 5

on lecture dated 03/10/09

In the following, assume V is an n-dimensional space, and that W_1, W_2 denote subspaces of V

- 1. Show that $W_1 \cap W_2$ contains a non-zero vector if $dim(W_1) + dim(W_2) > n$. Deduce that any two planes through the origin in \mathbb{R}^3 meet in a straight line if they are not the same.
- 2. (a) Give examples of a pair of subspaces such that $dim(W_1) + dim(W_2) = n$ where $W_1 \cap W_2 = \{0\}$
 - (b) Show that two subspaces can satisfy the criteria of the previous formula if and only if every vector $v \in V$ is uniquely expressible in the form $v = w_1 + w_2$ with $w_i \in W_i$, i = 1, 2. (When this happens, we say $V = W_1 \oplus W_2$ is the 'internal direct sum' of the subspaces W_1 and W_2 .)
- 3. Given vector spaces U and V, write

$$U \oplus V = \{(u, v) : u \in U, v \in V\}$$

- (a) Verify that $U \oplus V$ is a vector space with respect to 'coordinatewise operations' defined by $\alpha(u_1, v_1) + (u_2, v_2) = (\alpha u_1 + u_2, \alpha v_1 + v_2)$ for all $(u_1, v_1), (u_2, v_2) \in U \oplus V$.
- (b) Define $U_1 = \{(u, 0) \in U \oplus V : u \in U\}$ and $V_1 = \{(0, v) \in U \oplus : v \in V\}$. Verify that $U \oplus V$ is the internal direct sum of U_1 and V_1 .
- (c) Show that the external direct sum $(U \oplus V)$ is 'isomorphic' to the internal direct sum of U_1 and V_1 in a natural fashion. For this reason, we dispense with the adjectives 'internal' and 'external' and use the notation $U \oplus V$ in both cases.
- (d) If U and V are finite-dimensional, verify that

$$\dim(U \oplus V) = \dim(U) + \dim(V)$$

- 4. (This exercise is to lead up to a verification of the fact that the collection \mathcal{W} of subspaces of a finite -dimensional vector space V is a lattice.) Let $W_1, W_2 \in \mathcal{W}$.
 - (a) Verify that $W_1 \cap W_2$ is also a subspace and contains any subspace that is contained in both $W_i, i = 1, 2$.

(b) Verify that $W_1 + W_2 = \{w_1 + w_2 : w_1 \in W_1, w_2 \in W_2\}$ is also a subspace, and is contained in any subspace which contains both $W_i, i = 1, 2$.