Home-work 10

on lecture dated 21/11/09

1. (a) Verify that the matrix

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 5 \\ 2 & 5 & 14 \end{bmatrix}$$

is invertible by row-reducing it to the identity matrix.

- (b) Express the above matrix as a product of elementary matrices.
- 2. (The purpose of the next exercise is to illustrate, via example, the method of computing the inverse of a matrix via its socalled adjugate matrix, and to use that to illustrate the socalled *Cramer's rule* for solving a system of equations.)
 - (a) With A as in 1(a) above, let A_j^i denote the sub-matrix obtained by deleting the *i*-th row and *j*-th column of the matrix A. The **adjugate** matrix of A is then defined as the matrix adj A whose (i, j)-th entry is given by $(-1)^{i+j}det(A_i^j)$. (Thus, adj A is the transpose of the matrix with (i, j)-th entry given by $(-1)^{i+j}det(A_j^i)$. Compute the adjugate of A.
 - (b) Verify that $\frac{1}{det(A)}adj(A) = A^{-1}$.
 - (c) Show that the unique solution to the system of equations

$$x + y + 2z = a$$

$$x + 2y + 5z = b$$

$$2x + 5y + 14z = c$$

is given by

x = -	b	$\frac{2}{5}$	$2 \\ 5 \\ 14$	$\frac{1}{1}, y =$	1	$2 \\ 5 \\ 14$	$\frac{1}{1}, z = -$	1		$egin{array}{c} a \\ b \\ c \end{array}$	$ \begin{array}{c c} b \\ c \\ \hline 2 \\ 5 \end{array} $
		2	$2 \\ 5 \\ 14$		1	$2 \\ 5 \\ 14$		1	2	$2 \\ 5 \\ 14$	