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Introduction:

von Neumann algebras, as they are called now, first made their appearance under
the name Rings of Operators in a series of seminal papers - see [MvN1], [MvN2],
[vN1], [MvN3] - by F.J. Murray and J. von Neumann starting in 1936. In their first
paper [MvN1], they specifically cite ‘attempts to generalize the theory of unitary
group representations’ and ‘demands by various aspects of the quantum mechanical
formalism’ among the reasons for the elucidation of this subject.

In fact, the simplest definition of a von Neumann algebra is via unitary group
representations: a collection M of continuous linear operators on a Hilbert space1

H is a von Neumann algebra precisely when there is a representation ρ of a group
G as unitary operators on H such that

M = {x ∈ L(H) : xρ(t) = ρ(t)x ∀t ∈ G}

As above, we shall write L(H) for the collection of all continuous linear operators
on the Hilbert space H; recall that a linear mapping x : H → H is continuous
precisely when there exists a positive constant K such that ‖xξ‖ ≤ K‖ξ‖ ∀ξ ∈ H.
If the norm ‖x‖ of the operator x is defined as the smallest constant K with the
above property, then the set L(H) acquires the structure of a Banach space. In fact
L(H) is a Banach *-algebra with respect to the composition product, and involution
x 7→ x∗ given by

〈xξ, η〉 = 〈ξ, x∗η〉 ∀ξ, η ∈ H .

The first major result in the subject is the remarkable double commutant theo-
rem, which establishes the equivalence of a purely algebraic requirement to purely
topological ones. We need two bits of terminology to be able to state the theorem.

First, define the commutant S′ of a subset S ⊂ L(H) by

S′ = {x′ ∈ L(H) : x′x = xx′ ∀x ∈ S} .

Second, the strong (resp. weak) operator topology is the topology on L(H) of
‘pointwise strong (resp., weak) convergence’: i.e., xn → x precisely when ‖xnξ −
xξ‖ → 0 ∀ξ ∈ H (resp., 〈xnξ − xξ, η〉 → 0 ∀ξ, η ∈ H).

Theorem 1. The following conditions on a unital *-subalgebra M of L(H) are
equivalent:
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1In order to avoid some potential technical problems, we shall restrict ourselves to separable

Hilbert spaces throughout these notes.
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(1) M = M ′′(= (M ′)′) .
(2) M is closed in the strong operator topology.
(3) M is closed in the weak operator topology.

The conventional definition of a von Neumann algebra is that it is a unital *-
subalgebra of L(H) which satisfies the equivalent conditions above. The equivalence
with our earlier ‘simplest definition’ is a consequence of the double commutant theo-
rem and the fact that any element of a von Neumann algebra is a linear combination
of four unitary elements of the algebra: simply take G to be the group of unitary
operators in M ′.

Another consequence of the double commutant theorem is that von Neumann
algebras are closed under any ‘canonical construction’. For instance, the uniqueness
of the spectral measure E 7→ Px(E) associated to a normal operator x shows that
if u is unitary, then Puxu∗(E) = uPx(E)u∗ for all Borel sets E. In particular, if
x ∈ M and u′ ∈ U(M ′), then u′Px(E)u′∗ = Pu′xu′∗(E) = Px(E), and hence, we
may conclude that Px(E) ∈ U(M ′)′ = (M ′)′ = M ;2 i.e., if a von Neumann algebra
contains a normal operator, it also contains all the associated spectral projections.
This fact, together with the spectral theorem has the consequence that any von
Neumann algebra M is the closed linear span of P(M).

The analogy with unitary group representations is fruitful. Suppose then that
M = ρ(G)′, for a unitary representation of G. Then the last sentence of the
previous paragraph implies that ρ(G)′ = C precisely when there exist no non-trivial
ρ-stable subspaces,3 i.e., when ρ is irreducible. In general the ρ-stable subspaces are
precisely the ranges of projection operators in M . The notion of unitary equivalence
of subrepresentations of ρ is seen to translate to the equivalence defined on the set
P(M) of projections in M , whereby p ∼ q if and only if there exists an operator
u ∈ M such that u∗u = p and uu∗ = q. (Such a u is called a partial isometry,
with ‘initial space’ = range p, and ‘final space’ = range q.) This is the definition
of what is known as the Murray-von Neumann equivalence rel M and is denoted
by ∼M . The following accompanying definition is natural: if p, q ∈ P(M), say
p ¹M q if there exists p0 ∈ P(M) such that p ∼M p0 ≤ q - where of course
e ≤ f ⇔ range(e) ⊂ range(f).

The Murray-von Neumann classification of factors:

We start with a fact (whose proof is quite easy) and a consequent fundamental
definition.

Proposition 2. The following conditions on a von Neumann algebra M are equiv-
alent:

(1) for any p, q ∈ P(M), it is true that either p ¹M q or q ¹M p.
(2) Z(M) = M ∩ M ′ = C.

The von Neumann algebra M is called a factor if it satisfies the equivalent
conditions above.

2We will write U(N) (resp., P(N)) to denote the collection of unitary (resp., projection)

operators in any von Neumann algebra N .
3Here and in the sequel, we identify C with its image under the unique unital homomorphism

of C into L(H); and we reserve the symbol Z(M) to denote the center of M .
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The alert reader would have noticed that if G is a finite group, then ρ(G)′ is a
factor precisely when the representation ρ is ‘isotypical’. Thus, the ‘representation
theoretic fact’ that any unitary representation is expressible as a direct sum of iso-
typical subrepresentations, translates into the ‘von Neumann algebraic fact’ that
any ∗-subalgebra of L(H) is isomorphic, when H is finite-dimensional, to a direct
sum of factors. In complete generality, von Neumann showed (cf. [vN2]) that any
von Neumann algebra is expressible as a ‘direct integral of factors’. We shall inter-
pret this fact from ‘reduction theory’ as the statement that all the magic/mystery
of von Neumann algebras is contained in factors and hence restrict ourselves, for a
while, to the consideration of factors.

Murray and von Neumann initiated the study of a general factor M via a qual-
itative as well as a quantitative analysis of the relation ¹M on P(M). First, call a
p ∈ P(M) infinite if there exists a p0 ≤ p such that p ∼M p0 and p0 6= p; otherwise,
say p is finite. They obtain an analogue, called the dimension function, of the Haar
measure, as follows.

Theorem 3. (a) With M as above, there exists a function DM : P(M) → [0,∞]
which satisfies the following properties, and is determined up to a multiplicative
constant, by them:

• p ¹M q ⇔ DM (p) ≤ DM (q)
• p is finite if and only if DM (p) < ∞
• If {pn : n = 1, 2, · · · } is any sequence of pairwise orthogonal projections in
P(M) and p =

∑
n pn, then DM (p) =

∑
n DM (pn)

(b) M falls into exactly one of five possible cases, depending on which of the
following sets is the range of some scaling of DM :

• (In) {0, 1, 2, · · · , n}
• (I∞) {0, 1, 2, · · · ,∞}
• (II1) [0, 1]
• (II∞) [0,∞]
• (III) {0,∞}

In words, we may say that a factor M is of:

(1) type I (i.e., of type In for some 1 ≤ n ≤ ∞) precisely when M contains a
minimal projection

(2) type II (i.e., of type II1 or II∞) precisely when M contains non-zero finite
projections but no minimal projections

(3) type III precisely when M contains no non-zero finite projections.

Examples:

L∞(Ω, µ) may be regarded as a von Neumann algebra acting on L2(Ω, µ) as
multiplication operators; thus, if we set mf (ξ) = fξ, then m : f 7→ mf de-
fines an isomorphism of L∞(Ω, µ) onto a commutative von Neumann subalgebra
of L(L2(Ω, µ)). In fact, ‘up to multiplicity’, this is how any commutative von
Neumann algebra looks.

It is a simple exercise to prove that M ⊂ L(H) is a factor of type In, 1 ≤ n ≤ ∞
if and only if there exist Hilbert spaces Hn and K and identifications H = Hn ⊗K,
M = {x ⊗ idK : x ∈ L(Hn)} where dim Hn = n; and so M ∼= L(Hn).
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To discuss examples of the other types, it will be convenient to use ‘crossed
products’ of von Neumann algebras by ergodically acting groups of automorphisms.
We shall now digress with a discussion of this generalization of the notion of a semi-
direct product of groups.

If α : G → Aut(M) is an action of a countable group G on M , where M ⊂ L(H)

is a von Neumann algebra, and H̃ = `2(G,H), there are representations π : M →

L(H̃) and λ : G → U(L(H̃)) defined by

(π(x)ξ) (s) = αs−1(x)ξ(s), (λ(t)ξ) (s) = ξ(t−1s) .

These representations satisfy the commutation relation λ(t)π(x)λ(t−1) = π(αt(x)),

and the crossed-product M oα G is the von Neumann subalgebra of L(H̃) defined

by M̃ = (π(M) ∪ λ(G))′′.
Let us restrict ourselves to the case of M = L∞(Ω, µ) acting on L2(Ω, µ). In this

case, it is true that any automorphism of M is of the form f 7→ f ◦ T−1, where T
is a ‘non-singular transformation of the measure space (Ω, µ)’ (= a bijection which
preserves the class of sets of µ-measure 0). So, an action of G on M is of the
form αt(f) = f ◦ T−1

t , for some homomorphism t 7→ Tt from G to the group of
non-singular transformations of (Ω, µ). We have the following elegantly complete
result from [MvN1].

Theorem 4. Let M,G,α be as in the last paragraph, and let M̃ = MoαG. Assume
the G-action is ‘free’, meaning that if t 6= 1 ∈ G, then µ({ω ∈ Ω : Tt(ω) = ω}) = 0.
Then:

(1) M̃ is a factor if and only if G acts ergodically on (Ω, µ) - meaning that the
only G-fixed functions in M are the constants.

(2) Assume that G acts ergodically. then the type of the factor M̃ is determined
as follows:

• M̃ is of type I or II if and only if there exists a G-invariant measure
ν which is mutually absolutely continuous with respect to µ, meaning
ν(E) = 0 ⇔ µ(E) = 0; (the ergodicity assumption implies that such a
ν is necessarily unique up to scaling by a positive constant;)

• M̃ is of type In precisely when the ν as above is totally atomic, and Ω
is the disjoint union of n atoms for ν;

• M̃ is of type II precisely when the ν as above is non-atomic;

• M̃ is of finite type - meaning that 1 is a finite projection in M̃ -
precisely when the ν as above is a finite measure;

• M̃ is of type III if and only if there exists no ν as above.

Thus, we get all the types of factors by this construction; for instance, we may
take:

(In) G = Zn acting on Ω = Zn by translation, and µ = ν = counting measure
(I∞) G = Z acting on Ω = Z by translation, and µ = ν = counting measure
(II1) G = Z acting on Ω = T = {z ∈ C : |z| = 1} by powers of an aperiodic

rotation, and µ = ν = arc-length measure
(II∞) G = Q acting on Ω = R by translations, and µ = ν = Lebesgue measure
(III) G = ax + b group acting in the obvious manner on Ω = R, µ = ν =

Lebesgue measure.
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Such crossed products of a commutative von Neumann algebra by an ergodically
acting countable group were intensively studied by Krieger ([Kri1], [Kri1]). We
shall simply refer to such factors as Krieger factors.4

Abstract von Neumann algebras:

So far, we have described matters as they were in von Neumann’s time. To come
to the modern era, it is desirable to ‘free a von Neumann algebra from the ambient
Hilbert space’ and to regard it as an abstract object in its own right which can act
on different Hilbert spaces - eg: L∞(Ω, µ) is an object worthy of study in its own
right, without reference to L2(Ω, µ).

The abstract viewpoint is furnished by a theorem of Sakai(cf. [Sak]); let us define
an abstract von Neumann algebra to be an abstract C∗-algebra5 M which admits a
pre-dual M∗ (i.e., M is isometrically isomorphic to the Banach dual space (M∗)

∗.
It turns out that a pre-dual of such an abstract von Neumann algebra is unique up
to isometric isomorphism. Consequently, an abstract von Neumann algebra comes
equipped with a canonical ‘weak∗-topology’, usually called the σ-weak topology on
M . The natural morphisms in the category of abstract von Neumann algebras
are ∗-homomorphisms which are continuous with respect to σ-weak topologies on
domain and range. It is customary to call a linear map between abstract von
Neumann algebras normal if it is continuous with respect to σ-weak topologies on
domain and range.

The equivalence of the ‘abstract’ definition of this section, with the ‘concrete’ one
given earlier (which depends on an ambient Hilbert space) relies on the following
four facts:

(1) L(H) is an abstract von Neumann algebra, with the pre-dual L(H)∗ being
the so-called ‘trace class’ of operators, equipped with the ‘trace-norm’.

(2) A self-adjoint subalgebra of L(H) is closed in the strong operator topology,
and is hence a ‘concrete von Neumann algebra’ precisely when it is closed
in the σ-weak topology on L(H).

(3) If M is an abstract von Neumann algebra, and N is a *-subalgebra of M
which is closed in the σ-weak topology of M , then N is also an abstract
von Neumann algebra, with one candidate for N∗ being M∗/N⊥ (where
N⊥ = {ρ ∈ M∗ : n(ρ) = 0 ∀n ∈ N).

(4) Any abstract von Neumann algebra (with separable pre-dual) is isomorphic
(in the category of abstract von Neumann algebras) to a (concrete) von
Neumann subalgebra of L(H) (for a separable H).

With the abstract viewpoint available, we shall look for modules over a von
Neumann algebra M , meaning pairs (H, π) where π : M → L(H) is a normal
*-homomorphism.

A brief digression into the proof of fact (4) above - which asserts the existence
of faithful M -modules - will be instructive and useful. Suppose M is an abstract
von Neumann algebra. A linear functional φ on M is called a normal state if:

4The term ‘Krieger factor’ is actually used for factors obtained from a slightly more general

construction, with ergodic group actions replaced by more general ergodic equivalence relations.

Since there is no difference in the two notions at least in good (amenable) cases, we will say no

more about this.
5This is a Banach algebra with an involution related to the norm by the so-called C∗-identity

‖x‖2 = ‖x∗x‖.
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• (positivity) φ(x∗x) ≥ 0 ∀x ∈ M ;
• (normality) φ : M → C is normal; and
• (normalization) φ(1) = 1.

(Normal states on L∞(Ω, µ) correspond to non-negative probability measures on
Ω which are absolutely continuous with respect to µ.) It is true that there exist
plenty of normal states on M . In fact, they linearly span M∗. This implies that
if M∗ is separable, then there exist normal states on M which are even faithful -
meaning φ(x∗x) = 0 ⇔ x = 0.

Fix a faithful normal state φ on M .6 The well-known ‘Gelfand-Naimark-Segal’
construction then yields a faithful M -module which is usually denoted by L2(M,φ)
- motivated by the fact that if M = L∞(Ω, µ), and φ(f) =

∫
fdν, with ν a proba-

bility measure mutually absolutely continuous with respect to µ, then L2(M,φ) =
L2(Ω, ν) with L∞(Ω, µ) acting as multiplication operators. The construction mim-
ics this case: the assumptions on φ ensure that the equation

〈x, y〉 = φ(y∗x)

defines a positive-definite inner-product on M ; let L2(M,φ) be the Hilbert-space
completion of M . It turns out that the operator of left-multiplication by an element
of M extends as a bounded operator to L2(M,φ), and it then follows easily that
L2(M,φ) is indeed a faithful M -module., thereby establishing fact (4) above.

Since we wish to distinguish between elements of the dense subspace M of
L2(M,φ) and the operators of left-multiplication by members of M , let us write
x̂ for an element of M when thought of as an element of L2(M,φ), and x for the

operator of left multiplication by x; thus, for instance, x̂ = x1̂, and xŷ = x̂y,
〈x1̂, 1̂〉 = φ(x), etc.

Modular theory:

While type III factors were more or less an enigma at the time of von Neumann,
all that changed with the advent of Connes. The first major result of this ‘type
III era’ is the celebrated ‘Tomita-Takesaki theorem’ (cf. [Tak]), which views the
adjoint mapping on M as an appropriate operator on L2(M,φ), and analyses its
polar decomposition. Specifically, we have:

Theorem 5. If φ is any faithful normal state on M , consider the densely defined

conjugate linear operator given, with domain {x̂ : x ∈ M}, by S
(0)
φ (x̂) = x̂∗. Then

(1) there is a unique conjugate-linear operator Sφ (the ‘closure of S
(0)
φ ’) whose

graph is the closure of the graph of S
(0)
φ ; if we write Sφ = Jφ∆

1

2

φ for the
polar decomposition of the conjugate-linear closed operator Sφ, then

(2) Jφ is an antiunitary involution on L2(M,φ) (i.e., it is a conjugate-linear
norm-preserving bijection of L2(M,φ) onto itself which is its own inverse)

(3) ∆φ is an injective positive self-adjoint operator on L2(M,φ) such that

Jφf(∆φ)Jφ = f̄(∆−1
φ ) for all Borel functions f : R → R, and most crucially

(4)

JφMJφ = M ′ and ∆it
φ M∆−it

φ = M ∀t ∈ R .

6Consistent with our convention about separable H’s, we shall only consider M ’s with separable

pre-duals.
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(Here and elsewhere, we shall identify x ∈ M with the operator of ‘left multipli-
cation by x’ on L2(M,φ).)

Thus, each faithful normal state φ on M yields a one-parameter group {σφ
t : t ∈

R} of M - referred to as the group of modular automorphisms - given by

σφ
t (x) = ∆it

φ x∆−it
φ .

The extent of dependence of the modular group on the state is captured precisely by
Connes’ Radon Nikodym theorem ([Con1]) which shows that the modular groups
associated to two different faithful normal states are related by a ‘unitary cocycle
in M ’. This has the consequence that if ε : Aut(M) → Out(M) = Aut(M)/Int(M)
is the quotient mapping - where Int(M) denotes the normal subgroup of inner
automorphisms given by unitary elements of M - then the one-parameter subgroup

{ε(σφ
t ) : t ∈ R} of Out(M) is independent of φ.

Connes’ classification and injective factors:

Given a factor M , Connes defined

S(M) =
⋂

{spec(∆φ) : φ a faithful normal state on M}

which is obviously an isomorphism invariant. He then classified ([Con1]) type III
factors into a continuum of factors:

Theorem 6. Let M be a factor. Then,

(1) 0 ∈ S(M) ⇔ M is of type III; and
(2) if M is a type III factor, there are three mutually exclusive and exhaustive

possibilities:
• (III0) S(M) = {0, 1}
• (IIIλ) S(M) = {0} ∪ λZ, for some 0 < λ < 1
• (III1) S(M) = [0,∞)

Example 7. Consider the compact group Ω =
∏∞

n=1 Gn where Gn is a finite cyclic
group of order νn for each n. Let µ =

∏∞

n=1 µn, where µn is a probability measure
defined on the subsets of Gn which assigns positive mass to each singleton. Let
G = ⊕∞

n=1Gn be the dense subgroup of Ω consisting of finitely non-zero sequences.
It is not hard to see that each translation Tg, g ∈ G (given by Tg(ω) = g + ω) is
a non-singular transformation of the measure space (Ω, µ). The density of G in Ω
shows that this action of G on L∞(Ω, µ) is fixed-point-free and ergodic, with the
result that the crossed-product L∞(Ω, µ) o G is a factor.

Krieger showed that in the case of a Krieger factor M = L∞(Ω, µ) o G, the
invariant S(M) agrees with the so-called asymptotic ratio set of the group G of
non-singular transformations, which is computable purely in terms of the Radon-

Nikodym derivatives d(µ◦Tt)
dµ

. Using this ratio set description, it is not hard to see

that the Krieger factor M given by the infinite product Ω:

• is a factor of type IIIλ if νn = 2 and µn{0} = λ
1+λ

for all n;

• is a factor of type III1 if νn = 2 and µ2n{0} = λ
1+λ

, µ2n+1{0} = κ
1+κ

, for

all n, provided that {λ, κ} generates a dense multiplicative subgroup of R×

+;
• can be of type III0. 2



8 V. S. SUNDER

Among all factors, Connes identified one tractable class - the so-called injective
factors - which are ubiquitous and amenable to classification. To start with, he es-
tablished the equivalence of several (seemingly quite disparate) requirements on a
von Neumann algebra M ⊂ L(H) - ranging from injectivity (meaning the existence
of a projection of norm one from L(H) onto M) to ‘approximate finite dimension-
ality’ (meaning M = (∪nAn)′′ for some increasing sequence A1 ⊂ A2 ⊂ · · · ⊂ An ⊂
· · · of finite-dimensional ∗-subalgebras). In the same paper ([Con2]), Connes es-
sentially finished the complete classification of injective factors. Only the injective
III1 factor withstood his onslaught; but eventually even it had to surrender to the
technical virtuosity of Haagerup ([Haa]) a few years later!

In the language we have developed thus far, the classification of injective factors
may be summarized as follows:

• every injective factor is isomorphic to a Krieger factor;
• up to isomorphism, there is a unique injective factor of each type with the

solitary exception of III0;
• injective factors of type III0 are classified (up to isomorphism) by an invari-

ant of an ergodic theoretic nature called the flow of weights; unfortunately,
coming up with a crisp description of this invariant, which is simultane-
ously accessible to the non-expert and is consistent with the stipulated size
of this survey, is beyond the scope of this author.

The interested reader is invited to browse through one of the books ([Con3],[Sun]
and [Dix]) for further details; the third book is the oldest (a classic but the language
has changed a bit since it was written), the second is more recent (but quite sketchy
in many places), and the first is clearly the best choice (if one has the time to read
it carefully and digest it). Alternatively, the interested reader might want to browse
through the encyclopediac treatments [KadRin] or [Tak1].
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