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The broad peaks seen in the power spectra of the mean field in a globally coupled map system indicate a subtle 
coherence between the elements, even in the "turbulent" phase. These peaks are investigated in detail with respect to the 
number of elements coupled, nonlinearity and global coupling strengths. We find that this roughly periodic behavior also 
appears in the probability distribution of the mapping, which is therefore not invariant. We also find that these peaks are 
determined by two distinct components: effective renormalization of the nonlinearity parameter in the local mappings, and 
the strength of the mean field interaction term. Finally, we demonstrate the influence of background noise on the peaks, 
which is quite counterintuitive, as they become sharper with increase in strength of the noise, up to a certain critical noise 
strength. 

I. Introduction 

G l o b a l l y  coupl ing  in dynamica l  sys tems yields  

a hos t  of  ve ry  nove l  fea tures .  This  class of  com-  

p lex  sys tems  is of  cons ide rab l e  i m p o r t a n c e  in 

m o d e l i n g  p h e n o m e n a  as d iverse  as Jo sephson  

junc t ion  a r rays ,  vo r t ex  dynamics  in fluids,  and  

even  e v o l u t i o n a r y  dynamics ,  b io logica l  in forma-  

t ion  p rocess ing  and  n e u r o d y n a m i c s .  The  ub iqu i ty  

of  g loba l ly  coup l ed  p h e n o m e n a  has  thus  m a d e  it 

a focus  of  much  r ecen t  r e sea rch  act ivi ty  [1-4] .  

In  this  p a p e r  we s tudy  the  g loba l ly  coup led  

m a p  ( G C M )  i n t r o d u c e d  by  K a n e k o  [2]. I t  is a 

d y n a m i c a l  sys tem of  N e l e m e n t s  consis t ing of  

loca l  m a p p i n g s  as well  as an addi t ive  average-  

t ype  in t e r ac t ion  t e rm,  t h rough  which the  g loba l  
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i n f o r m a t i o n  inf luences  the  ind iv idua l  e l ements .  I t  

is thus  ana logous  to a m e a n  field vers ion  of  

c o u p l e d  m a p  lat t ices.  The  expl ici t  fo rm of  the  

G C M  we use is 

Xn+l(i  ) = -  (1 - e ) f ( x , ( i ) )  

N 

+ ~ ~ f ( x , ( j ) ) ,  (1)  
j = l  

w h e r e  n is a d i sc re te  t ime  s tep  and i is the  index  

o f  the  e l e m e n t s  (i  = 1, 2 , . . . ,  N ) .  The  funct ion  

f i x )  was chosen  to  be  the  well  k n o w n  diss ipat ive  
chao t i c  logist ic  m a p  

f ( x )  = 1 - ax 2 . (2)  

This  choice  he lps  us to  m a k e  con tac t  wi th  previ-  
ous  resul ts .  

T h e  a b o v e  G C M  m o d e l  has  two confl ict ing 

t rends :  des t ruc t ion  o f  cohe rence  due  to  the  cha- 

ot ic  d y n a m i c s  of  the  ind iv idua l  e l emen t s ,  and  a 

k ind  of  synch ron iza t ion  th rough  the g lobal  av- 
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eraging. For large global coupling, this syn- 
chronization may be complete (all elements mov- 
ing coherently),  and appears even in the fully 
chaotic (in time) regime. On the other hand, for 
a nonlinearity parameter  a such that the local 
dynamics is strongly chaotic, and in the presence 
of a small coupling, the behavior of the system is 
" turbulent" .  This means that all elements of the 
lattice behave chaotically in time (all Lyapunov 
exponents are positive [3]), and that there is no 
clustering (partial "entra inment"  or synchroniza- 
tion). In fact, the distance between any two 
different elements of the lattice that have at 
some moment  close values grows exponentially 
with time. (For  e =0.1  and a = 1.99 this expo- 
nent is ~0.4) .  So, in practice, the elements of 
the lattice seem to behave like independent 
quasirandom variables. 

This has led to the following "simplicity" hy- 
pothesis: if in this turbulent regime the different 
elements of the lattice behave in fact as in- 
dependent  quasirandom numbers, then in the 
N---~ ~ limit the mean field h , ,  defined by 

1 u 
hn =- (3) 

j=l  

should converge to a fixed value, uncoupling the 
system. In fact, a similar idea has been used by 
Kuramoto and others [4] in order to analyze the 
N---~ w limit of a globally coupled system of limit 
cycle oscillators, and its coherent- incoherent  
transition. This "simplicity" hypothesis can also 
be cast in the following terms: consider for a 
moment  a system similar to eq. (1), with some 
fixed a and e, but where we substitute the time 
dependent  mean field h ,  by some c o n s t a n t  hin. 

This gives us a lattice of uncoupled logistic maps, 
which in the N---, ~ has an invariant probability 
distribution. From this distribution we can 
evaluate hour, defined as the average value of 
f(x). Then two questions come immediately to 
mind: is there a solution for the self-consistency 

e q u a t i o n  hout(hin ; a, ~) --- hin? And if so, is that 
solution stable under small fluctuations of hin , in 
the fully coupled model? 

Coming back to a finite lattice, we would 
expect the fluctuations that appear in the system 
to behave statistically, if this limiting value for h 
does exist. In particular, we should expect a 
decay in the mean square deviation (MSD) of 
the mean field ( ~ ( h  2) - ( h )  2) as 1/N (law of 

large numbers), and its distribution to be Gauss- 
ian (central limit theorem). These two questions 
were explored by Kaneko [3] and the results 
found were that the system in eq. (1) violated the 
law of  large numbers but not the central limit 
theorem (this last affirmation has been 
reevaluated in ref. [5], where it was found that 
the tails of the distribution diverged from those 
of a Gaussian). Even in the fully " turbulent"  
phase, where there is absolutely no synchroniza- 
tion among the elements, a subtle coherence 
emerged. This was reflected in the saturation of 
the MSD, that stopped decaying after some criti- 
cal lattice size N~, in the broad peaks that appear 
in the power spectrum of the mean field h~, and 
in the fact that the mutual information of the 
system remained non-zero for all lattice sizes. 

It should be noted that these results are not 
universal, since there are related systems that 
show proper  statistical behavior. In particular, it 
has been found [5] that a globally coupled lattice 
of tent maps (eq. (1) with f(x) = 1 - a]x]), be- 
haves as expected in its turbulent regime. The 
MSD of the mean field dies away as 1/N and the 
Fourier  transform of h n does not develop any 
peaks. 

In section 2 of this paper we examine, through 
numerical experiments, the transition between 
the power spectrum of a single x,,(i) (which is 
only mildly humped) to the spectrum of the 
collective quantity h ,  which displays broad 
peaks, indicating collective "beats"  in its dy- 
namics. Then,  in section 3 we examine the be- 
havior of another  global quantity, namely the 
probability distribution of the mapping, for pos- 
sible similar behaviour. Here too we find evi- 
dence of non-statistical behavior, with the emer- 
gence of a kind of collective "beating",  and a 
saturation in the fluctuations of the probability 



G. Perez et al. / Order in the turbulent phase of globally coupled maps 343 

values. This clearly means that the probabili ty 
distribution of the mapping is not invariant. In 
section 4 we at tempt  an analysis of this emer- 
gence of order in terms of two distinct effects, 
one due to an effective renormalization of the 
local nonlinear paramete r  of the map,  and 
another  due to the synchronization induced by 
the mean  field acting over  the individual ele- 
ments.  Finally we investigate the influence of 
noise in the system. The surprising result here is 
that  the peaks  in the power  spectrum of the 
mean  field get sharper  as the strength of noise 
increases, up to a certain critical noise strength. 
This counterintuitive phenomena  are demon-  
strated through numerical experiments  in section 
5. 

2. Emergence of peaks in the power spectrum 

ance of one broad peak in the spectrum is almost 
immediate ,  as is evident f rom the power spectra 
for very low lattice sizes in fig. 1. It  takes larger 
lattices to resolve this peak  into its various com- 
ponents.  For these spectra we have evaluated the 
autocorrelat ion function, which is defined by 

1 ~ E~=xP(j+imodM)P(J) 
C = - ~  ,=, Z~=~ P(]) P(/) (4) 

where P ( j )  is the value of the power at the j th 
frequency index, and M is the number  of discrete 
points in the spectrum. This provides a good 
measure  of  the "flatness" of a spectrum, with C 
taking the value 1 when the spectrum is com- 
pletely fiat, and 0 when there are just 6-peaks.  A 
bet ter  indicator of the sharpness of the peaks is 
given by 

In this section we want to trace the develop- 
ment  of the peaks  in the power  spectrum of the 
mean  field. Clearly, when N = 1, i .e.,  when there 
is a single logistic map,  we have a very flat 
(aperiodic) spectrum. But even as we put in 
another  e lement  (N = 2) we find a "ghost"  of the 
peaks  making its presence felt. So, the appear-  

S = --logl0C , (5) 

where S = 0 is the signature of a completely flat 
spectrum and S - - - ~  is the signature of (very 
sharp) g-peaks.  We find that S increases very 
fast with increasing lattice size N (size fig. 2), 
indicating that the peaks emerge rapidly, on 
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Fig. I. Power spectra of the mean field for lattice sizes 
N = 1,8, 64 and 512 (from top to bottom). Here a = 1.99, 
e = 0.1 and we average over 100 runs of 1024 iterations each. 
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Fig, 2. Measurc of the sharpncss of the peaks in the power 
spectra, as defincd in the text, vs. lattice size N (a = 1.99, 

=0.1). 
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addition of elements, from the flat spectrum 
corresponding to a system with a single element. 

We also investigate the power spectra of par- 
tial sums, given as 

S.,(n) = l L f(x.( i))  , (6) 
l~ i= l 

where the x,,(i) evolve under the effect of the 
full mean field h , ,  as given by eq. (1). The 
power spectrum for a single element under the 
influence of the full mean field (Sl(n)) shows 
some influence of the roughly periodic behavior 
of h ,  (see fig. 3). It contains, in any case, much 
more periodic modulation that the single isolated 
logistic map, as can be seen by comparing to the 
topmost spectrum in fig. 1. It is interesting to 
notice that this behavior remains unchanged for 
small partial sums, so much so that the different 
spectra look like parallel displacements of each 
other,  except for the intrusions of the two main 
frequencies. This suggests that under the in- 
fluence of the full mean field the partial sums 
behave as h,  plus some amount of white noise, 
where the intensity of this noise decays initially 

as 1/N. This behavior is quite different from that 
of the mean field for small lattices, shown in fig. 
1. 

3. Probability distributions 

We now investigate the dynamics of the prob- 
ability distributions, defined as 

N 

Pa(Y" n)= 1 ~ 0[6 - r x n ( i ) - Y l ] ,  (7) 
' 26N i~l 

for small 6 and large N. For a logistic map in the 
chaotic regime this quantity is invariant in the 
N--* ~ limit. Here  the individual local maps are 
well inside the chaotic regime (nonlinearity pa- 
rameter  a = 1.99). However,  the "beating" be- 
havior observed in the mean field should be 
reflected in the dynamics of the probability dis- 
tributions, and there is a good possibility that the 
finite lattice fluctuations in this distribution will 
not die out with growing N. What numerical 
experiments show is that indeed this happens, as 
can be seen in fig. 4, where the MSD of P(y)  as 
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Fig. 3. Power spectra of partial sums Sin, as defined in the 
text, for m = 1,8 ,64 and the full lattice (from top to 
bottom). Here a = 1.99, e =0.1 ,  N =  10000 and we average 
over 100 runs of 1024 iterations each. 
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Fig. 4. Mean square deviation of P+(y; n), (6 =0.01),  vs. 
lattice size N, at three different values of y; y = 0.0 (m),  y = 
0.5 (D),  and y = 0.9 (A)  (a = 1.99, ~ = 0.1, N =  10000 and 
the number  of iterations is 10 000). 
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a function of N is plotted for three different 
values of y. (It should be noted that we are 
considering well populated bins here). It is clear 
from the plot that, after a critical N, the MSD 
does not fall as 1 /N  but saturates instead. There- 
fore,  this distribution does not converge to an 

invariant distribution as N grows. 
Further,  we have noticed that the power spec- 

t rum of P ( y ;  n) shows the same broad peaks as 
the mean field h , .  This can be seen by taking the 
first few moments of the distribution and doing a 
spectral analysis. We have done this for the first 
four moments,  and the resulting spectra are al- 
most identical to that of the mean field. On the 
other  hand, we can also follow the time evolu- 
tion of the probability at a given value of y. Fig. 
5 shows the power spectrum of a representative 
bin, where the peaks are clearly discernible. 
(There  are, however,  other bins where the peaks 
are less pronounced or almost non-existing). Al- 
though these spectral curves are not equal to that 
of the mean field, the peaks on the "beating" 
bins match with those of h , ,  which is not surpris- 
ing, since these are just different manifestations 
of the same underlying collective effect. 

4. Dependence on the global coupling 
parameter 

It is instructive to study the functional depen- 
dence of the MSD on the global coupling param- 
eter e, since it gives the strength of the global 
averaging, and is in this sense the source of the 
synchronization effect. Thus, we have checked 
the value of the MSD of the mean field as a 
function of e. At  first viewing this functional 
dependence seems very erratic. (see fig. 6a). 
Moreover ,  in the explored range of e (0.0-0.2) ,  
the maximum value of the MSD was found to be 
one order  of magnitude larger than the value at 
E = 0.1, where most of the work has been con- 
centrated up to now [3]. 

We now attempt an explanation of this non- 
systematic behavior, and in particular of the 
surprisingly large values of the MSD found in 
certain small ranges of E. This can partially be 
accounted for if we consider the effects of the 
coupling as divided roughly in two components. 
One is the renormalization of the nonlinear pa- 
rameter  a by the introduction of the multiplica- 
tive 1 - E term in the individual maps. The other 
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Fig. 5. Power spectrum of Ps(y;n) (~=0.01) at y=0.9 .  
Here we average over 100 runs of 1024 iterations each 
(a = 1.99, ~ =0.1 and N =  10000). 
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Fig. 6. Mean square deviation vs. global coupling parameter 
for (a) the full map, as given in eq. (1) in the text, and (b) a 

set of uncoupled logistic maps with ae ,=  a ( 1 -  E) 2 (a = 
1.99, N = 10 000). 
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is the action of the mean field, whose effective 
strength in the dynamics of the individual ele- 
ments is determined by e. (Notice, however, that 
the nonlinear parameter a used to construct the 
mean field remains unaffected by the global cou- 
pling e). To check this hypothesis we have ex- 
plored, as a function of E, the behavior of a set 
of uncoupled logistic maps with the local non- 
linear parameter set to the renormalized value, 
which is given by 

aef  f = a(1 - e) 2 . (8) 

We have computed the MSD for such a system, 
and find that its profile is similar to that of the 
fully coupled maps (see fig. 6b). What is striking 
here is the appearance of a plateau of large 
values for the MSD close to a similar plateau in 
the fully coupled problem. This plateau occurs 
around aeff~-~-1.75 and corresponds to the 3- 
window of the logistic map [6]. The width of the 
plateau is related to the width of the periodic 
window. Furthermore, a second smaller and nar- 
rower sharp peak appears at aef ~ 1.94, which 
corresponds to a very narrow 4-window. This 
shows that there is an influence of the periodic 
windows of the logistic map in the value of the 
MSD for the fully coupled problem, through the 
e-dependent renormalization of the nonlinearity 
parameter in the local mappings. This hypothesis 
is further sustained by the fact that the power 
spectrum of h,  in the fully coupled map, for 
values of e corresponding to the largest plateau, 
shows a clearly dominant ~ frequency (see fig. 7), 
and the power spectrum for e corresponding to 
the smaller peak shows a clear ~ frequency (see 
fig. 8). 

So the skeleton of the functional dependence 
of the MSD on coupling comes from the effects 
of renormalizing the nonlinear parameter in the 
local maps, which may push them into periodic 
windows, leading to some synchronization. This 
synchronization is not complete, because the 
mean field is still being evaluated at the bare 
value of a, where the dynamics is strongly cha- 
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Fig. 7. Power spectrum of h n at • = 0 . 0 7 5  ( a = 1 . 9 9 ,  N :  
10000). Here we average over 100runs of 1024 iterations 

each. 

otic. It is, however, strong enough to produce 
the narrow ranges of e where the deviation is an 
order of magnitude larger than elsewhere. But 
this is clearly not a full explanation of the almost 
periodic fluctuations of h n. The MSD for the 
uncoupled case is much too small compared to 
that of the fully coupled case, and accounts for 
only the gross features of the MSD vs. e curve. 
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Fig. 8. Power spectrum of h ,  at • =0.0125 (a = 1.99, N =  
10000). Here we average over 100 runs  of 1024 iterations 

each. 
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So, the "flesh" of the MSD comes from the 
effects of the mean field which lead to synchroni- 
zation by global averaging. For  a full characteri- 
zation of the broad collective motion of the 
system one must then take into account both 
effects. As an extra verification, have also com- 
puted the MSD for a system analogous to eq. 
(1), but where the local maps are not multiplied 
by the 1 -  e term, and so there is no renormali- 
zation of the nonlinearity parameter.  For such a 
system the effects come solely from the inter- 
action with the mean field, and we find that the 
MSD, as expected, increases monotonically with 
e. We have investigated also a realistic physical 
system that displays the same kind of phenom- 
ena, with similar results [7]. 

5. Effects of  noise 

We now examine the effects of additive noise 
in the dynamics of the mean field. For this 
simulate the system 

x.+l(i ) = (1 - e)f(x.(i)) 
N 

E 
+ ~ ~ f (x , ( j ) )  + ~r~li,, (9) 

1=1 

where ~/i, is a random number uniformly distrib- 
uted in the interval [ -0 .5 ,  0.5]. As described in 
ref. [3], adding noise to the system impedes the 
saturation of the MSD, but does not restore the 
normal 1/N behavior. Instead, the fluctuations 
now decay as 1/N ~, with a < 1 for o- not too 
large. This effect appears only for noise strength 
above some threshold o- c. We have found that 
this anomalous decay of the MSD does not mean 
that the mean field h ,  stops being almost period- 
ic. On the contrary, it is found that for values of 
the added noise up to a value roughly equal to ~r c 
the sharpness of the power spectrum increases. 
This counterintuitive behavior can be clearly 
seen in figs. 9a, b and c, where we have plotted 
the power spectra for three values of or, and in 

fig. 10, which shows the value of S, the measure 
of sharpness defined in eqs. (4) and (5), vs. ~r. 
Clearly the sharpness increases with increasing 
noise, up to o- -- 0.009, and decreases from there 
on. We do not have an explanation of this very 
surprising phenomenon as yet. 
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Fig. 9. Power spectra of the mean field in the presence of 
noise of strength ~ = (a) 0.0, (b) 0.004, (c) 0.009 (a = 1.99, 
e = 0.1, N = 10 000). Here  we average over  100 runs  of  1024 
i terat ions each.  
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e = 0.1, N = 100013). 

6. Conclusions and comments 

peaks with respect to the number of elements 
coupled, and study their presence in partial aver- 
ages. Further,  we examine another important 
global quantity, namely the probability distribu- 
tion, and find that it is not  invariant, and like the 
mean field, does not obey the law of large num- 
bers. Moreover ,  there is evidence of a similar 
"beat ing" pattern in its power spectra, with 
frequencies of this roughly-periodic behavior 
matching those of the mean field. 

Next we find the functional dependence of the 
mean square deviation of the mean field on the 
global coupling parameter.  We then attempt to 
decompose the effect we observe as coming from 
two distinct sources: one, the renormalization of 
the nonlinearity parameter  in the local maps, 
and second, the contribution from the mean 
field, which introduces a degree of synchroniza- 
tion. This way of looking at the system helps us 
account for the extremely large deviations found 
in certain ranges of the coupling parameter.  We 
can in fact identify the largest plateau in the 
MSD vs. e graph with the period-3 window, into 
which the local maps are pushed due to the 
effective renormalization of a. 

Lastly, we explore the effects of noise on the 
rough periodicities observed in the mean field. 
We find that the periodicities do in fact persist up 
to a reasonably large strength of noise. Further- 
more,  the peaks actually get sharper with in- 
crease of the noise strength, up to a critical 
value. This strange effect is another instance of 
stabilization of periodic motion through small 
noise, resembling in a way the phenomenon of 
stochastic resonance [8]. However,  it is not evi- 
dent that there exists any direct connection be- 
tween our observations and this other problem. 

Here  we have investigated various aspects of 
the dynamics of the mean field in a globally 
coupled chaotic system. The mean field shows 
evidence of a rough periodicity as is suggested 
through the broad, significant peaks in its power 
spectrum. We trace the development of these 

Acknowledgements 

We are grateful for the hospitality of the Con- 
densed Matter  Group at the International Center 
of Theoretical Physics. We would also like to 
thank A. Erzan for valuable comments. 



G. Perez et al. / Order in the turbulent phase of  globally coupled maps 349 

References 

[1] J. Crutchfield and K. Kaneko, in: Directions in Chaos, 
ed. B.-L. Hao (World Scientific, Singapore, 1987); 
T. Hwa, Ph.D. thesis (MIT); 
P. Alstrom and R.K. Ritala, Phys. Rev. A 35 (1987) 300; 
P. Hadley and K. Wiesenfeld, Phys. Rev. Lett. 62 (1989) 
1335; 
R.V. Sole and J. Valls, Phys. Lett. A 153 (1991) 330; 
K. Kaneko, Physica D 54 (1991) 5. 

[2] K. Kaneko, Phys. Rev. Lett. 63 (1989) 219; Physica D 41 
(1990) 137. 

[3] K. Kaneko, Phys. Rev. Lett. 65 (1990) 1391. 

[4] Y. Kuramoto and I. Nishikawa, J. Stat. Phys. 49 (1987) 
569; 
H. Daido, J. Stat. Phys. 60 (1990) 753; 
S.H. Strogatz and R.E. Mirollo, J. Star. Phys. 63 (1991) 
613. 

[5] K. Kaneko, University of Tokyo preprint (1991). 
[6} P. Collet and J,P. Eckmann, Iterated Maps on the Inter- 

val as Dynamical Systems (Birkhauser, Basel, 1980). 
[7] G. Perez et al., Phys. Rev. A 45 (1992) 5469. 
[8] L. Gammaitoni et al., Phys. Rev. Lett. 62 (1989) 349; 

Phys. Lett. A 142 (1989) 59; 
for a comprehensive review, see F. Moss, in: Some 
Problems in Statistical Physics, ed. G.H. Weiss, Frontiers 
in Applied Mathematics (SIAM, Philadelphia, 1992). 


