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Generating multi-scroll chaotic attractors by thresholding
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Abstract

This Letter proposes a novel thresholding approach for creating multi-scroll chaotic attractors. The general jerk circuit and Chua’s circuit with
sine nonlinearity are then used as two representative examples to show the working principle of this method. The controlled jerk circuit can
generate various limit cycles and multi-scroll chaotic attractors by tuning the thresholds and the width of inner threshold plateau. The dynamic
mechanism of threshold control is further explored by analyzing the system dynamical behaviors. In particular, this approach is effective and
easy to be implemented since we only need to monitor the threshold variables or their functions and then reset them if they exceed the desired
thresholds. Furthermore, two simple block circuit diagrams with threshold controllers are designed for the implementations of 1, 2, 3-scroll chaotic
attractors. It indicates the potential engineering applications for various chaos-based information systems.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Over the past two decades, chaos control has seen a dra-
matic increase since chaos is useful and has great potential
in many real-world engineering fields such as biomedical en-
gineering, digital data encryption, power systems protection,
reconfigurable hardware, and so on [1–3].

In essence, chaos control is guiding a chaotic system to
reach a desired goal dynamics via various controllers. Recently,
many different approaches or techniques have been proposed to
achieve chaos control, such as OGY approach, linear feedback
control, inverse optimal control, among many others [1–5]. It is
well known that the theoretical basis of most known methods
is stabilizing the unstable periodic orbits via parameter per-
turbation [3–5]. However, in this Letter, we introduce a novel
threshold control approach, which clips the desired state vari-
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ables or their functions instead of tuning system parameters, to
realize a contrary goal for creating complex multi-scroll chaotic
attractors [6–21].

There have been a large number of publications devoted to
the research topic of circuit design for generating multi-scroll
chaotic attractors over the last two decades [6–21]. Suykens
and Vandewalle introduced a family of n-double scroll chaotic
attractors [6]. Lü et al. proposed a switching manifold ap-
proach for creating chaotic attractors with multiple-merged
basins of attraction [7,8]. Yalcin et al. presented a family of
scroll grid attractors by using a step function approach [16], in-
cluding one-dimensional (1-D) n-scroll, two-dimensional (2-D)
(n × m)-grid scroll, and three-dimensional (3-D) (n × m × l)-
grid scroll chaotic attractors. Lü et al. proposed the hysteresis
series and saturated series methods for generating 1-D n-scroll,
2-D (n×m)-grid scroll, and 3-D (n×m× l)-grid scroll chaotic
attractors with rigorous theoretical proofs and experimental ver-
ifications [10,12,13].

In general, compared with the single-scroll chaotic attrac-
tors, the multi-scroll chaotic attractors have much higher com-
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Fig. 1. (a) Threshold controllers G0 and H0, where k1 and k2 are the lower and upper thresholds of x, respectively. (b) Threshold controllers G1 and H1, where
k1, k2, k3 and k4 are the lower threshold, middle thresholds and upper threshold of x, respectively. (c) Threshold controller H2, where h1 and h2 are the lower and
upper thresholds of the function of x, respectively.
plexity and more adjustability [9,15]. These properties indi-
cate that multi-scroll chaos generation has a generally applied
prospect in various chaos-based information technologies, such
as encryption and secure communication [9,15]. In particular,
multi-scroll chaotic attractors have many specific properties
and functions. For example, Yalcin et al. applied the switching
mechanism between two neighboring scrolls of a double-scroll
attractor to create the true random bit [17]. Recently, Lü and
Chen reviewed the main advances in theories, methods, imple-
mentations, and applications of multi-scroll chaos generation
[15,17].

In the following, a novel threshold control method is intro-
duced. We use a general jerk circuit and Chua’s circuit with
sine nonlinearity as two representative examples to show the
working principle of the threshold control approach [1,2,14,15,
17]. The controlled jerk circuit can generate various limit cycles
and multi-scroll chaotic attractors by tuning the corresponding
thresholds. The dynamic mechanism of the threshold control
is then further investigated by analyzing the system dynamical
behaviors. Furthermore, two novel circuit diagrams with thresh-
old controllers are designed for the implementations of 1, 2,
3-scroll chaotic attractors. It tells us how to clip the practical
current to generate the desired dynamical behaviors.

The rest of this Letter is organized as follows. In Section 2,
a novel threshold control method is presented for creating
multi-scroll chaotic attractors and two simple examples are then
given. The dynamic mechanism of threshold control is then fur-
ther investigated in Section 3. The novel circuit diagram with
threshold controllers is then designed for the verifications of
1, 2, 3-scroll chaotic attractors in Section 4. Conclusions are
drawn in Section 5.

2. A typical threshold control approach

To begin with, consider a general n-dimensional controlled
system, which is described by

(1)Ẋ = F(X, t) + H(X),

where X = (x1, x2, . . . , xn)
T ∈ Rn is the state vector, Ẋ =

F(X, t) is the original dynamical system, and H(X) is a feed-
back threshold controller. The main working principle of this
threshold controller is summarized as follows: when the vec-
tor function ϕ(X) exceeds a given threshold value h0, then the
controller is triggered and reset to vector X∗, where ϕ(X) and
X∗ are the input and output of the threshold controller H(X),
respectively.

More detailedly, the threshold controller H(X) depends on
the original dynamical system Ẋ = F(X, t). That is, the thresh-
old controller H(X) is then designed based on the dynamical
behaviors of the system Ẋ = F(X, t). Since both F(X, t) and
H(X) have many different algebraic forms, it is very difficult
to give a unified theoretical analysis for the threshold con-
troller H(X). However, for some specific nonlinear threshold
controllers, such as the piecewise-linear and triangular func-
tions controllers, there are some fundamental design criteria
described in the following.

It should be especially pointed out that the thresholding
method is completely different from most of known approaches
of multi-scroll chaos generation [6–21]. For example, the fun-
damental working principle of the saturated function series as
shown in Fig. 3 in [12] is to generate the scrolls by using basic
saturated circuit and then connect all scrolls together. However,
the main idea of the thresholding method is to clip the linear or
nonlinear functions, including input and output variables and
their functions, to yield the desired states by thresholding. The
essential differences are outlined as follows: (i) the saturated
function series is linearly increased between the neighboring
saturated plateaus as shown in Fig. 3 in [12], however, the
threshold controller may be nonlinearly increased as shown in
Figs. 1(a)–(b), periodically changed as shown in Fig. 1(c), or
even aperiodically changed; (ii) the saturated function series
has a similar stair forms as shown in Fig. 3 in [12], however,
the threshold controller may be very different in function form
as shown in Fig. 1; (iii) the saturated function series is based
on the independent variables or their linear functions, however,
the threshold controller may be based on any independent or at-
tributive variables, or even their any functions. Therefore, the
thresholding approach has more freedom and plasticity on the
design of multi-scroll chaos generation.

Fig. 1(a) shows the threshold controllers G0 and H0, where
k1 and k2 are the lower and upper thresholds of x, respectively.
According to Fig. 1(a), when x � k2, the threshold controller
is triggered and then reset G0(x) (or H0(x)) to G0(k2) (or
H0(k2)); when x � k1, the threshold controller is triggered and
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reset G0(x) (or H0(x)) to G0(k1) (or H0(k1)). Fig. 1(b) displays
the threshold controllers G1 and H1 of x, where k1, k2, k3, and
k4 are the lower threshold, inner thresholds and upper threshold,
respectively. Hereafter, the region [k2, k3] is called the inner
threshold plateau. From Fig. 1(b), when x � k4, the thresh-
old controller is triggered and then reset G1(x) (or H1(x)) to
G1(k2) (or H1(k2)); when x � k1, the threshold controller is
triggered and reset G1(x) (or H1(x)) to G1(k1) (or H1(k1));
when k2 � x � k3, the threshold controller is triggered and then
reset G1(x) (or H1(x)) to G1(k2) (or H1(k2)). Fig. 1(c) shows
the threshold controller H2, where k1 and k2 are the lower and
upper thresholds of the function of x, respectively. According
to Fig. 1(c), when |x| � 18.2 and H2(x) � h1 (or H2(x) � h2),
the threshold controller is triggered and then reset H2(x) to h1
(or h2).

In fact, the working principle of threshold controller is very
simple. That is, the threshold controller appropriately clips lin-
ear or nonlinear functions to yield the desired states. In the
following, we use a general jerk circuit as an example to show
the detailed working principle of the above threshold controller
[14,15,21]. A general jerk circuit is described by

(2)
...
x + cẍ + bẋ + ax = G(x),

where a, b, c are real parameters, G(x) is a nonlinear thresh-

old function, ẋ = dx
dτ

is the velocity, ẍ = d2x

dτ 2 is the acceleration,
...
x = d3x

dτ 3 is the jerk (or the changing rate of the acceleration by

mechanical means), τ = t
R0C0

, in which 1
R0C0

is the transforma-
tion factor of the time scale, and also the integral constant of the
integrator. Linz and Sprott studied the dynamical behaviors of
some simple jerk circuits [18]. The chaos generation conditions
of system parameters a, b, c will be further investigated in Sec-
tion 3. For more detailed dynamical behaviors of system (2),
please refer to [14,15,21] and references therein.

It is well known that system (2) is easy to be implemented
by using the op-amps and diodes. Moreover, the threshold func-
tion G(x) has many different algebraic forms, such as step
function, hysteresis function, saturated function, and even any
functions by cutting the tails that exceed the given threshold
values. For simplification, G0(x; k1, k2) is described by

(3)G0(x; k1, k2) =
{

k2, if x > k2,

x, if k1 � x � k2,

k1, if x < k1,

where k2 > k1 and k1, k2 are the lower and upper thresholds, re-
spectively. Fig. 1(a) shows the threshold function G0(x), which
can drive system (2) to create various limit cycles, single-scroll
and double-scroll chaotic attractors by tuning the thresholds of
controller G0(x).

System (2) with threshold controller (3) can generate vari-
ous complex dynamical behaviors by tuning the thresholds k1
and k2 for fixed parameters a, b, c. When a = 0.38, b = 0.6,
c = 0.35, k1 = −1, some representative dynamical behaviors
are listed below: (i) 2-cycle for 0.15 � k2 < 0.22; (ii) 4-cycle
for 0.09 < k2 < 0.15; (iii) 8-cycle for k2 ≈ 0.08; (iv) 3-cycle
for 0.297 � k2 < 0.31; (v) 6-cycle for k2 ≈ 0.32; (vi) chaos
for 0.254 < k2 < 0.296 and 0.4 < k2 < 0.58; (vii) 2-cycle for
0.59 < k2 < 0.64. These regions of parameter k2 are attained
by carefully theoretical analysis and numerical calculation [1].
The more detailedly dynamical behaviors of system (2) with (3)
are then further studied by using numerical calculation and the-
oretical analysis in Section 3.

To create the multi-scroll chaotic attractors from (2), one
needs to set more thresholds. That is, one needs to carefully
clip the threshold function into multiple segments. Consider a
more general case, G1(x; k1, k2, k3, k4) is then given by

(4)G1(x; k1, k2, k3, k4) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k4 − k3, if x > k4,

x − k3, if k3 � x � k4,

0, if k2 < x < k3,

x − k2, if k1 � x � k2,

k1 − k2, if x < k1,

where k1 < k2 < k3 < k4 and k1, k2, k3, k4 are the lower,
middle-left, middle-right and upper thresholds, respectively.
Fig. 1(b) shows the threshold controller G1(x), which can drive
system (4) to generate various limit cycles and 1, 2, 3-scroll
chaotic attractors.

System (2) with threshold controller (4) can create various
complex dynamical behaviors by tuning the thresholds k1, k2,
k3, k4 for fixed parameters a, b, c. When a = 0.38, b = 0.6,
c = 0.35, k1 = −2, k2 = −k3 and k4 = 2, some representa-
tive dynamical behaviors are outlined as follows: (i) 1-cycle for
0.1 � k3 − k2 < 0.4; (ii) 2-cycle for 0.44 � k3 − k2 < 0.52;
(iii) 4-cycle for 0.54 � k3 − k2 < 0.55; (iv) 3-scroll chaotic at-
tractor for 1.2 � k3 − k2 < 2.0. The above regions of parameter
(k3 − k2) are obtained by using carefully theoretical analysis
and numerical calculation [1]. And the more detailedly dynam-
ical behaviors of system (2) with (4) are further investigated via
numerical calculation and theoretical analysis in Section 3.

Moreover, the threshold controller has many different alge-
braic forms. This is because the threshold controller may ar-
bitrarily clip the independent and attributive variables and their
functions to create a desired multi-scroll attractor. To clarify the
diversity and plasticity of the threshold controller, one more ex-
ample is then given in the following. Tang et al. introduced sine
function into Chua’s circuit for generating multi-scroll chaotic
attractors [17], which is described by{

ẋ = μ(y − H(x)),

ẏ = x − y + z,

ż = −νy,

and

H(x) =

⎧⎪⎪⎨
⎪⎪⎩

b1π
2a1

(x − 2a1c1), x � 2a1c1,

−b1 sin( πx
2a1

+ d1), |x| < 2a1c1,

b1π
2a1

(x + 2a1c1), x � 2a1c1,

where μ, ν, a1, b1, c1, d1 are real parameters. When μ =
10.814, ν = 14.0, a1 = 1.3, b1 = 0.11, c1 = 7, d1 = 0, H(x) is
shown in Fig. 1(c).

It should be especially pointed out that the thresholding ap-
proach is very different from most of traditional chaotification
methods since there is no parameter perturbation in the con-
trolled system. It only needs to clip the given threshold function
by prescribed thresholds. The essence of thresholding approach
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is to slightly limit the dynamic range of original dynamical sys-
tem by snipping the state variables or their functions. Since a
chaotic attractor has many temporary patterns, such as unsta-
ble periodic orbits, we can clip chaos to the desired dynamical
behaviors by using suitable threshold controller. Moreover, the
thresholding method can also be employed to generate vari-
ous multi-scroll chaotic attractors by introducing appropriate
thresholds in the controller.

3. Dynamic mechanisms of the threshold controllers G0(x)

and G1(x)

In this section, the dynamic mechanisms of the threshold
controllers G0(x) and G1(x) are then further investigated.

3.1. System (2) with the threshold controller (3)

System (2) with the threshold controller (3) is given by

(5)
...
x + cẍ + bẋ + ax = G0(x).

Then system (5) can be divided into three different subspaces:
V1 = {X | x � k2}, V2 = {X | k1 � x � k2}, V3 = {X | x � k1},
where X = (x, ẋ, ẍ)T ∈ R3. Under the coordinate transforma-
tion (x, ẋ, ẍ) → (−x,−ẋ,−ẍ), system (5) has a natural sym-
metry for k1 = −k2. Moreover, system (5) is dissipative in each
subspace for ∂ẋ

∂x
+ ∂ẍ

∂ẋ
+ ∂

...
x

∂ẍ
= −c < 0.

If X ∈ V1,V3, system (5) becomes

(6)
...
x̃ + c ¨̃x + b ˙̃x + ax̃ = 0,

where (x̃, ˙̃x, ¨̃x)T = (x − k2
a

, ẋ, ẍ)T for X ∈ V1 and (x̃, ˙̃x, ¨̃x)T =
(x − k1

a
, ẋ, ẍ)T for X ∈ V3.

The eigenvalues of system (6) are then given by

(7)λ1 = − c

3
+ 3

√
−q

2
+ √

Δ + 3

√
−q

2
− √

Δ,

and

λ2,3 = − c

3
− 1

2

(
3

√
−q

2
+ √

Δ + 3

√
−q

2
− √

Δ

)

±
√

3

2
i

(
3

√
−q

2
+ √

Δ − 3

√
−q

2
− √

Δ

)
(8)≡ α ± βi,

where Δ = ac3

27 − b2c2

108 − abc
6 + b3

27 + a2

4 , p = b − 1
3c2, and q =

2
27c3 − 1

3bc + a.
Our numerical simulations reveal that system (5) can gen-

erate chaotic attractors under the conditions of λ1 < 0, α > 0,
β �= 0. Therefore, the solution of system (6) is given by

(9)x̃(t) = A1e
λ1t + eαt

(
A2 cos(βt) + A3 sin(βt)

)
,

where A1 = ((α2 +β2)x̃(0)−2αỹ(0)+ z̃(0))/((λ1 −α)2 +β2),
A2 = ((λ2

1 − 2αλ1)x̃(0) + 2αỹ(0) − z̃(0))/((λ1 − α)2 + β2),
A3 = ((λ1α

2 − λ1β
2 − λ2

1α)x̃(0) − (β2 − α2 + λ2
1)ỹ(0) +

(α − λ1)z̃(0))/(β[(λ1 − α)2 + β2]).
Similarly, if X ∈ V2, then system (5) is described by

(10)
...
x + cẍ + bẋ + (a − 1)x = 0,
and its solution is given by

(11)x(t) = Ā1e
λ̄1t + eᾱt

(
Ā2 cos(β̄t) + Ā3 sin(β̄t)

)
,

where Ā1 = ((ᾱ2 + β̄2)x(0)−2ᾱy(0)+z(0))/((λ̄1 − ᾱ)2 + β̄2),
Ā2 = ((λ̄2

1 − 2ᾱλ̄1)x(0) + 2ᾱy(0) − z(0))/((λ̄1 − ᾱ)2 + β̄2),
Ā3 = ((λ̄1ᾱ

2 − λ̄1β̄
2 − λ̄2

1ᾱ)x(0) − (β̄2 − ᾱ2 + λ̄2
1)y(0) +

(ᾱ − λ̄1)z(0))/(β̄[(λ̄1 − ᾱ)2 + β̄2]), in which parameters ᾱ,
β̄ , λ̄1 are similarly defined by (7) and (8) with a replaced by
(a − 1).

Based on the above theoretical analysis, the dynamical be-
haviors of system (5) are completely determined by (9) and
(11). In essence, the function of threshold controller G0 is to
alternatively switch the dynamics between (9) and (11). Espe-
cially, the two thresholds k1, k2 control the displacement trans-
formation of the state variable x. System (5) can create various
limit cycles, single-scroll and double-scroll chaotic attractors
via tuning the thresholds k1, k2 of G0.

3.2. System (2) with the threshold controller (4)

System (2) with the threshold controller (4) is given by

(12)
...
x + cẍ + bẋ + ax = G1(x).

Thus system (12) can be divided into five different subspaces as
follows: V1 = {X | x � k4}, V2 = {X | k3 � x � k4}, V3 = {X |
k2 � x � k3}, V4 = {X | k1 � x � k2}, V5 = {X | x � k1}, where
X = (x, ẋ, ẍ)T ∈ R3. System (12) has a natural symmetry for
k1 = −k4 and k2 = −k3 under the coordinate transformation
(x, ẋ, ẍ) → (−x,−ẋ,−ẍ). Moreover, system (12) is dissipa-
tive in each subspace for c > 0.

When X ∈ V1,V3,V5, system (12) becomes (6), where
(x̃, ˙̃x, ¨̃x)T = (x − k4−k3

a
, ẋ, ẍ)T for X ∈ V1, (x̃, ˙̃x, ¨̃x)T =

(x, ẋ, ẍ)T for X ∈ V3, and (x̃, ˙̃x, ¨̃x)T = (x − k1−k2
a

, ẋ, ẍ)T for
X ∈ V5.

When X ∈ V2,V4, the system (12) becomes

(13)
...
x̂ + c ¨̂x + b ˙̂x + (a − 1)x̂ = 0,

where (x̂, ˙̃x, ¨̃x)T = (x + k3
a

, ẋ, ẍ)T for X ∈ V2 and (x̂, ˙̃x, ¨̃x)T =
(x + k2

a
, ẋ, ẍ)T for X ∈ V4.

Then the solution of system (13) is also given by (11) since
(13) has the same algebraic form with (11). Our theoretical

Fig. 2. The diagrammatic sketch of the structure for the proposed threshold
control system (12).
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(a) (b) (c)

Fig. 3. Phase portraits of the experimental observations for n-scroll chaotic attractors in the x–ẋ plane. (a) n = 1, (b) n = 2, (c) n = 3.
analysis also indicates that the dynamical behaviors of sys-
tem (12) are completely determined by (9) and (11). In fact,
the main function of threshold controller G1 is to alternatively
switch the dynamics between (9) and (11). In particular, the
four thresholds k1, k2, k3, k4 control the displacement transfor-
mation of state variable x. System (12) can create various limit
cycles and 1, 2, 3-scroll chaotic attractors via tuning the thresh-
olds k1, k2, k3, k4 of G1.

4. Circuit implementation

This section shows how to clip the practical current to gen-
erate the desired dynamical behaviors based on the designed
threshold controllers. The basic design idea is outlined as fol-
lows.

Fig. 2 displays the diagrammatic sketch of the structure
for the proposed threshold control system (12), which depicts
the basic procedure of the current realization. As a straight-
forward technique, three lossless integrators are cascaded and
a summing amplifier is employed to form a feedback loop.
A threshold controller is then utilized to realize the function
G(x). Fig. 3(a) shows the (x–ẋ) plane projection of a 1-scroll
chaotic attractor, where the threshold control voltage levels are
B1 = 0.3 V and B2 = −0.7 V. Moreover, if one slightly ad-
justs the threshold control voltage level B2 to −0.3 V, then the
circuit exhibits a typical 2-scroll chaotic attractor as shown in
Fig. 3(b). When the threshold control voltage levels of the bat-
teries are fixed at B1 = +1.3 V, B2 = −1.3 V, B3 = −0.3 V
and B4 = +0.3 V, a typical 3-scroll chaotic attractor is ob-
served as shown in Fig. 3(c). Finally, our circuit experiments
show that all circuit parameters are rather robust again small
perturbation or noise.

5. Conclusions

This Letter has introduced a systematic threshold control ap-
proach for generating multi-scroll chaotic attractors. We use the
general jerk circuit and Chua’s circuit with sine nonlinearity as
two representative examples to show the main working princi-
ple of the threshold control method. The dynamic mechanism of
this threshold control approach is then further explored by ana-
lyzing the system dynamical behaviors of the general controlled
jerk circuit. The controlled jerk system can generate various
limit cycles and multi-scroll chaotic attractors by tuning the cor-
responding thresholds. Moreover, this thresholding approach is
very effective and simple since one only needs to monitor the
threshold variables or their functions and then reset them if they
exceed the given thresholds. Finally, two novel circuit diagrams
with threshold controllers are designed for the implementations
of 1, 2, 3-scroll chaotic attractors. The high complexity, ad-
justability, and plasticity provide a general applied prospect for
multi-scroll chaotic attractors in chaos-based information and
communication systems. Recently, we have successfully real-
ized the voice encryption and communication by using multi-
scroll chaotic attractors and digital signal processing. Detailed
results will be reported in the near future.
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