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Abstract. We have studied the spatiotemporal behaviour of thresh-
old coupled chaotic neurons. We observe that the chaos is controlled by
threshold activated coupling, and the system yields synchronized tempo-
rally periodic states under the threshold response. Varying the frequency
of thresholding provides different higher order periodic behaviors, and
can serve as a simple mechanism for stabilising a large range of regu-
lar temporal patterns in chaotic systems. Further, we have obtained a
transition from spatiotemporal chaos to fixed spatiotemporal profiles, by
lengthening the relaxation time scale.

Keywords: Chaotic dynamics, Control and Synchronization.

1 Introduction

In the last two decades, many control techniques have been proposed including
the OGY [1] for controlling chaos in chaotic dynamical systems. In this paper, we
focus on the network of chaotic neuron model that has been proposed in studies
of the squid giant axon and the Hodgkin–Huxley equation [2]. We have applied
the threshold activated coupling to chaotic neurons to control chaos [3,4,5]. This
mechanism works in marked contrast to the OGY method. In the OGY method
the chaotic trajectories in the vicinity of unstable fixed points are controlled
onto these points. In threshold control, on the other hand, the system does not
have to be close to any particular fixed point before implementing the control.
Here the trajectory merely has to exceed the prescribed threshold. So the control
transience is typically very short. The chaotic neurons are controlled with the
threshold activated coupling and spatially synchronized temporal patterns with
different periods are obtained. We have investigated the effect of the variation
of the relaxation time on the spatiotemporal characteristics of the threshold
coupled chaotic neurons. We have also obtained a wide range of stable cyclic
behavior of threshold coupled chaotic neurons by simply varying the frequency
of control.

The threshold-activated coupling of chaotic systems are relevant for certain
mechanical systems like chains of nonlinear springs, as also for some biological
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systems, such as synaptic transmissions among neurons [6]. It is also relevant
to population migrations as it is reasonable to model the population of an area
(state at a site) as a nonlinear map and when this population exceeds a certain
critical amount the “excess” population moves to a neighboring area (site). The
threshold mechanism is also reminiscent of the Bak-Tang-Wiesenfeld cellular au-
tomata algorithm [7], or the “sandpile” model, which gives rise to self organized
criticality (SOC). The model system studied here is however significantly dif-
ferent, the most important difference being that the threshold mechanism now
occurs on a nonlinearly evolving substrate, i.e. there is an intrinsic deterministic
dynamics at each site. So the local chaos here is like an internal driving or per-
turbation, as opposed to external perturbation/driving in the sandpile model,
which is effected by dropping “sand” from outside.

The paper is organized as follows. In Sec.II, a model of chaotic neuron is
described. The threshold activated coupling is introduced as a control mechanism
for chaotic neurons and the effect of relaxation time scale on the spatiotemporal
properties of threshold coupled chaotic neurons is studied. In Sec.III, we have
studied the threshold activated coupling at the varying time interval to obtain
different temporal patterns of spatially synchronized neurons. The conclusion
are presented in the last section.

2 Chaotic Neuron Model

We study the following network of chaotic neuron model proposed by Aihara [2].

yn+1(i) = kyn(i) − αf(yn(i)) + a,

xn+1(i) = f(yn+1(i)), (1)

where, the sigmod function, f(x) = 1/[1 + exp(−x/ε)], is the output function
of the neuron; and ε is the steepness parameter of the sigmoid function. The
internal state of the ith neuron is yt(i) at time t, xt(i) is the output of the
neuron at time t, k is the decay parameter of the refractoriness, and α is the
refractory scaling parameter.

In Fig. 1(a), we have shown the output x of each chaotic neuron for the
network size N = 100 as a function of parameter α. Other parameters of the
map are k = 0.5, a = 1.0, and ε = 0.04. There are regions in parameter space
around α ∼ 1.1 and ∼ 1.4, where the system is chaotic.

2.1 Threshold Mechanism

Now, on this nonlinear network a threshold activated coupling is incorporated
[3,4,5]. The coupling is triggered when a site in the network exceeds the critical
value y∗ i.e. when a certain site yn(i) > y∗. The super critical site then relaxes
(or “topples”) by transporting the excess δ = (yn(i) − y∗) equally to its two
neighbors:

yn(i) → y∗
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Fig. 1. The output of each neuron x as a function of bifurcation parameter α for
N = 100 uncoupled neurons (a) and threshold y∗ = 0.5 coupled neurons (b)

yn(i − 1) → yn(i − 1) + δ/2
yn(i + 1) → yn(i + 1) + δ/2 (2)

The process above occurs in parallel, i.e. all supercritical sites at any instant
relax simultaneously, according to Eqs. 2, and this constitutes one relaxation
time step. After r such relaxation steps, the system undergoes the next chaotic
update. In some sense then, time n associated with the chaotic dynamics is mea-
sured in units of r. The relaxation of a site may initiate an avalanche of relaxation
activity, as neighboring sites can exceed the threshold limit after receiving the
excess from a supercritical site, thus starting a domino effect. This induces a
bi-directional transport to the two boundaries of the array. These boundaries
are open so that the “excess” may be transported out of the system.

The spatiotemporal behavior of the threshold coupled chaotic systems under
different threshold levels has been investigated both numerically and analyti-
cally, specifically, for the case of networks of chaotic logistic maps [3,4,5]. There
exist many phases in threshold space (0 < x∗ < 1), i.e. for x∗ ≤ 3/4 the dynamics
goes to a fixed point. When 0.75 < x∗ < 1.0, the dynamics is attracted to cycles
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Fig. 2. The output of threshold coupled neurons x as a function of threshold y∗ for
the fixed value of α = 1.4

whose periodicities depend on the value of x∗. By tuning the threshold level x∗

one thus obtain spatiotemporal cycles of different orders.
In Fig. 1(b), we have shown the output x of each chaotic neuron as a function

of parameter α with a threshold y∗ = 0.5. With the threshold activated coupling,
the chaos in the chaotic neurons is controlled around α ∼ 1.4. In Fig. 2, we have
shown the output x of each chaotic neuron as a function of threshold y∗ for the
fixed value of α = 1.4. There are two period–doubling bifurcations near y∗ ∼ 0
and ∼ 0.7.

For α = 1.4, we get controlled period-2 output dynamics of the network with
the threshold values y∗ < 0.7. The network of chaotic neurons is synchronized
with period two and all sites are taking values close to 0 and 1 alternatively for
y∗ < 0.7 and α = 1.4, where the system is chaotic in the absence of threshold
activated coupling. In Fig. 3, the space-time density plot of xn(i) is shown for
fixed values of α = 1.4, y∗ = 0.5 and N = 100 after the transient dynamics.

2.2 Relaxation Timescale

Note however, that the dynamical outcome crucially depends the relaxation time
r, i.e. on the timescales for autonomously updating each site and propagat-
ing the threshold-activated coupling between sites. For sufficiently large value
of relaxation time, i.e. in the limit r → ∞, the system is fully relaxed (sub-
critical) before the subsequent dynamical update. So the time scales of the two
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Fig. 3. Space-time density plots of an array of threshold-coupled chaotic neurons,
with threshold value y∗ = 0.5, size N = 100, and relaxation time r = 1000. The x-axis
denotes the time and the y-axis denotes the site index.

processes, the intrinsic chaotic dynamics of each site and the threshold-activated
relaxation, are separable. Here the relaxation mechanism is much faster than
the chaotic evolution, enabling the system to relax completely before the next
chaotic iteration. This scenario is similar to the SOC model, where the driving
force (perturbation) is very dilute, e.g. in the sandpile model the avalanche of
activity, initiated by an external “sand grain” dropped on the pile, ceases before
the next “sand grain” perturbs the pile.

At the other end of the spectrum is the limit of very small r where the local
dynamics and the coupling take place simultaneously. It is evident that lowering
r essentially allows us to move from a picture of separated relaxation processes
to one where the relaxation processes can overlap, and disturbances do not die
out before the subsequent chaotic update. It was observed in [8] that for short
relaxation times the system is driven to spatiotemporal chaos. This is due to
the fast driving rate of the system which does not provide enough time to spa-
tially distribute the perturbations and allow the excess to propagate to the open
boundaries. However large r gives the system enough time to relax, and allows
the excess to be transported out of the system through the open ends. So for
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Fig. 4. Bifurcation diagram of the output state of each neuron with respect to thresh-
old y∗ for an array of threshold–coupled chaotic neurons. Size N=50 and relaxation
times are (a) r = 1, (b) r = 50, (c) r = 100, and (d) r = 1000.

large r the system displays very regular behavior for a large range of threshold
values.

In Fig. 4, the bifurcation diagram of the output state of each neuron is shown
as a function of threshold y∗ for different values of relaxation time r. Fig. 5 shows
a example of dynamical transition of threshold coupled chaotic neurons from a
fixed temporal behavior to spatiotemporal chaos as r becomes smaller. There
is a transition from the spatiotemporal fixed point to spatiotemporal chaos as
we decrease the relaxation time. These transitions result from the competition
between the rate of intrinsic driving arising from the local chaotic dynamics and
the time required to propagate the threshold–activated coupling.

3 Thresholding at Varying Interval

Now, we implement the threshold mechanism at varying intervals nc, with 1 <
nc ≤ 20, i.e. the thresholding frequency ranges from once every two iterates of
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Fig. 5. Bifurcation diagram of the output state x of each neuron with respect to the
relaxation time r for an array of threshold–coupled chaotic neurons with threshold
y∗ = 0.5 and system size N = 50

the chaotic neuron maps to once every 20 iterates. We find that for all nc in this
range the chaotic neuron maps gets controlled onto an exact and stable orbit of
periodicity p ≥ nc, where p is an integer multiple of nc [9].

In Fig. 6 the temporal behavior of threshold coupled chaotic neurons is shown
for thresholding at different intervals nc. It is clear evident that thresholding at
different frequencies yields different temporal periods. For instance one obtain
temporal periods 15, 5, 7, and 18 with nc = 3, 5, 7 and 9 respectively. In fact it
can serve as a control parameter for selecting a different cyclic behaviors from the
chaotic neuron dynamics. This has particular utility in obtaining higher order
periods, which are difficult to obtain otherwise.

4 Conclusion

We have studied the spatiotemporal behaviour of threshold coupled chaotic neu-
rons. We observe that the chaos is controlled by threshold activated coupling,
and the system yields synchronized temporally periodic states under the thresh-
old response. Varying the frequency of thresholding provides different higher
order periodic behaviors, and can serve as a simple mechanism for stabilising a
large range of regular temporal patterns in chaotic systems. Further, we have
obtained a transition from spatiotemporal chaos to fixed spatiotemporal profiles,
by lengthening the relaxation time scale.
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Fig. 6. The temporal behavior of an array of spatially synchronized threshold-coupled
logistic maps, with threshold value y∗ = 0.5, size N = 100, and relaxation time r =
10000 for (a) nc = 3, (b) nc = 5, (c) nc = 7, and (d) nc = 9. The spatially synchronized
neurons have temporal periods 15, 5, 7, and 18 for nc = 3, 5, 7 and 9 respectively.

Threshold-coupled chaotic systems have the capacity to directly and flexi-
bly implement fundamental logic and arithmetic operations [10]. Such extended
dynamical systems offer much scope of parallelism, allowing rapid solutions of
certain problems utilizing the collective responses and collective properties of the
system [11,12]. So the varied temporal and spatial responses of the array of model
neurons studied here, can also be potentially harnessed to accomplish different
computational tasks, and the system may be used for information processing
[13].

Note that in terms of practical implementation, the threshold mechanism has
been implemented in electrical circuits [14]. Parallel distributed processing with
spatio–temporal chaos, on the basis of a model of chaotic neural networks, has
also been proposed [13], and a mixed analog/digital chaotic neuro–computer pro-
totype system has been constructed for quadratic assignment problems (QAPs)
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[15]. So our model system of threshold-coupled neurons, which combines thresh-
old mechanisms and neuronal units, should be readily realizable with electrical
circuits.
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