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We discuss how threshold mechanisms can be effectively employed to control chaotic
systems onto stable fixed points and limit cycles of widely varying periodicities. Then, we
outline the theory and experimental realization of fundamental logic-gates from a chaotic
system, using thresholding to effect control. A key feature of this implementation is that a
single chaotic ‘processor’ can be flexibly configured (and re-configured) to emulate different
fixed or dynamic logic gates through the simple manipulation of a threshold level.
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1. Outline

We will first discuss the general formalism of an easily implementable control
strategy, namely, the use of a simple threshold mechanism to limit the dynamic
range of a state variable, thereby effecting flexible control over the dynamic
behaviour of the system. Then, we will focus on the application of thresholding to
flexibly obtain a wide range of controlled logic-gate responses, from a single
chaotic element. The ‘dynamic logic cells’ thus obtained can potentially serve as
building blocks for a novel dynamic logic architecture.
2. Threshold control algorithm

Consider a general N-dimensional dynamical system, described by the evolution
equation, dx/dtZF(x, t), where xhðx1; x2;.xN Þ are the state variables. In this
system, a variable xi is chosen to be monitored and threshold controlled. The
prescription for threshold control is as follows: control will be triggered whenever
the value of the monitored variable exceeds a prescribed critical threshold x� (i.e.
when xiOx�) and the variable xi will then be reset to x� (Sinha 1994, 1995, 2002;
Glass & Zheng 1994). The dynamics continues until the next occurrence of xi
exceeding the threshold, when control resets its value to x� again.
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Table 1. Threshold values versus periodicity, of a few representative controlled cycles, for the
chaotic logistic map xnC1Z4xn(1Kxn). (Note that cycles of the same period, but different
geometries, can be obtained in different threshold windows.)

threshold nature of controlled orbit

x�!0.75 period 1 (fixed point)
0.75!x�!0.905 period 2 cycle
x�w0.965 period 3 cycle
0.905!x�!0.925 period 4 cycle
x�w0.979 period 5 cycle
x�w0.93 period 6 cycle
x�w0.9355 period 7 cycle
x�w0.932 period 8 cycle
x�w0.981 period 9 cycle
x�w0.95 period 10 cycle
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This method only involves the monitoring and the occasional resetting of a
single variable and no parameters are perturbed in the original system. The
theoretical basis of the method does not involve stabilizing unstable periodic
orbits (Ditto et al. 1990; Ott et al. 1990), but rather involves clipping desired
time sequences and enforcing a periodicity on the sequence through the
thresholding action, which acts as a resetting of initial conditions. The effect of
this scheme is to limit the dynamic range slightly, i.e. ‘snip’ off small portions
of the available phase space and this small controlling action is effective in
yielding regular dynamics. In fact, chaos is advantageous here, as it possesses
a rich range of temporal patterns, which can be clipped to widely ranging
stable behaviours. This immense variety is not available from thresholding
regular systems.

It has been analytically proven that thresholding can yield stable periodic
orbits of all orders in one-dimensional chaotic maps (Sinha 1994, 1995, 2002; see
table 1). The analytical results based on symbolic dynamics (Sinha 1994, 1995,
2002; Glass & Zheng 1994) are exactly corroborated in a circuit realization of the
logistic map (Murali & Sinha 2003; see figure 1 for traces of representative
controlled orbits).

The success of the threshold method on higher dimensional systems, including
hyperchaotic systems, has also been demonstrated through extensive numerical
and laboratory experiments (Sinha & Ditto 2001; Murali & Sinha 2003). For
instance, it has been implemented in circuit realizations of chaotic jerk systems,
which are nonlinear third-order ordinary differential equations (ODEs),

d3x

dt3
CA

d2x

dt2
C

dx

dt
ZGðxÞ; ð2:1Þ

where G(x) is a piecewise linear function: G(x)ZBjxjKC with BZ1.0, CZ2.0
and AZ0.6 (Sprott 2000). On this system, we implement the threshold
mechanism on variable x, i.e. when xOx�, x is clipped to x�. A precision-clipping
circuit (Maddock & Calcutt 1997) is employed for this threshold action.
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Figure 1. Experimental verification of a range of controlled periods in a circuit realization of the
logistic map. The ordinate and abscissa represent traces of xnC1 and xn for (a) period 1 cycle, (b)
period 4 cycle, (c) period 7 cycle with threshold and (d) period 10 cycle. The threshold levels at
which these cycles were obtained coincide exactly with those predicted theoretically.

2485Configurable hardware
Another representative example is the double-scroll chaotic Chua’s attractor
given by the following set of (rescaled) three coupled ODEs (Dmitriev et al. 2001)

_x1 Zaðx 2Kx1Kgðx1ÞÞ; ð2:2Þ

_x2 Z x1Kx 2Cx3; ð2:3Þ

_x3 ZKbx 2; ð2:4Þ

where aZ10 and bZ14.87, and the piecewise linear function gðxÞZbxCð1=2Þ!
ðaKbÞðjxC1jKjxK1jÞ with aZK1.27 and bZK0.68. In this system, we
implement an even more minimal thresholding. Instead of demanding that the
x1 variable be reset to x�, if it exceeds x�, we demand this only in equation (2.3).
This has an easy implementation, as it avoids modifying the value of x1 in the
nonlinear element, which is hard to do. Thus, all we do then is to implement
x2Zx*Kx 2Cx 3 instead of equation (2.3), when x1Ox�, and there is no
controlling action if x1Ox�.
Phil. Trans. R. Soc. A (2006)



Table 2. Threshold ranges (in V ) versus periodicity of the controlled cycle for the chaotic system
given by (I) equation (1) and (II) equations (2.2)–(2.4).

threshold for system I threshold for system II nature of controlled orbit

x�!K2.00 x�!1.84375 fixed point
K2.00!x�!1.477 1.84375!x�!2.235 period 1 cycle
1.477!x�!2.242 2.235!x�!2.258 period 2 cycle
2.242!x�!2.321 2.258!x�!2.264 period 4 cycle
2.321!x�!2.325 2.264!x�!2.265 period 8 cycle
2.325!x�!2.331 2.265!x�!2.2653 period 16 cycle

S. Sinha and W. L. Ditto2486
The results of the threshold mechanism in these systems are summarized in
table 2. It is clear that the chaotic dynamics gets clipped to different stable
regular cycles for different threshold values.

The control transience is very short here (typically of the order of 10K3 times the
controlled cycle).Thismakes the control practically instantaneous.Theunderlying
reason for this is that the systemdoes not have to be close to any particular unstable
fixed point before control comes into effect, as in schemes based on the
Ott–Grebogi–Yorke concept (Ditto et al. 1990; Ott et al. 1990). Once a specified
state variable exceeds the threshold, it is caught immediately in a stable orbit.
Hence, there is no significant interval between the onset of control action and the
achievement of control. In addition, thresholding does not entail any run-time
computation during control, which reduces control latencies. Lastly, threshold
control is highly robustwith respect to noise, both in the threshold setting and in the
dynamics. This is easy to see analytically for one-dimensional systems, since
thresholding by design creates a super-stable orbit (as the derivative of the effective
map which determines the stability of the controlled system is exactly zero (Sinha
1994, 1995, 2002)). This robustness is also borne out in numerical and experimental
realizations for higher dimensional systems.
(a ) Hyperchaotic system

The method has also been demonstrated on a hyperchaotic electrical circuit
(Murali & Sinha 2003). This constitutes a stringent test of the control method
since the system possesses more than one positive Lyapunov exponent, hence
more than one unstable eigen direction has to be reigned in by thresholding a
single variable. In particular, we consider the realization of four coupled
nonlinear (rescaled) ODEs of the form

_x1 Z ðkK2Þx1Kx2KGðx1Kx3Þ; ð2:5Þ

_x2 Z ðkK1Þx1Kx 2; ð2:6Þ

_x3 ZKx4 CGðx1Kx3Þ; ð2:7Þ

_x4 Zbx3; ð2:8Þ
where Gðx1Kx3ÞZ1=2b½jx1Kx3K1jCðx1Kx3K1Þ�, with kZ3.85, bZ88 and
bZ18 (Murali et al. 2001). Again, we implement a partial thresholding on variable
Phil. Trans. R. Soc. A (2006)
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Figure 3. (a) Uncontrolled hyperchaotic attractor and (b) controlled attractor for threshold Z0 V,
in the V1KV2 plane, corresponding to the x1Kx3 plane of equations (2.5)–(2.8).
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Figure 2. Circuit implementation of equations (2.5)–(2.8). The precision-clipping circuit, affecting
threshold control, is in the dotted box. VT is the threshold-controlled signal.
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x3;whenever x3Ox� in the system,G(x1Kx3) in equation (2.5)becomesG(x1Kx�), i.e.
we have x1ZðkK2Þx1Kx2KGðx1Kx*Þ, while equations (2.6)–(2.8) are unchanged.
When x3%x�, there is no action at all (see figure 2).

Both our experiments and numerical simulations (which are in complete
agreement) show that this scheme successfully yields regular stable cycles under a
wide range of thresholds (Murali & Sinha 2003). A representative example with
threshold set at 0V is shown in figure 3, which shows the controlled cycle in the
V1KV2 plane corresponding to the rescaled x1Kx3 plane of equations (5)–(8).

Thresholding, then, is especially useful in the situation where one wishes to
design controllable components that can switch flexibly between different
behaviours. Calibrating the system characteristics at the outset, with respect to
threshold, gives one a look-up table to directly and simply effect control at all
Phil. Trans. R. Soc. A (2006)
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consequent times, at no run-time cost. Thus, this scheme has considerable potential
for use in chaos-based applications. Further, the simplicity of the controller implies
lowcomplexity costs,which is important in technical applications seeking to exploit
the richness of chaos in a direct and an efficient way. In the section below, we shall
delineate one exciting application of thresholding, namely obtaining different logic
responses from a chaotic element.
3. Computing with chaotic elements

Here, we will demonstrate how the threshold controller, which clips chaos into
different temporal patterns, can serve as a basis for a dynamic logic unit (Sinha &
Ditto 1998, 1999). The aim is to use a single chaotic element to emulate different
logic gates, with the ability to switch easily between the different operational
roles. Such a computing unit may then allow a more dynamic computer
architecture, which is more flexible than fixed hardware. Unlike existing
paradigms that try to achieve flexibility by flexible wiring, we envisage here
the flexibility arising from the computational modules themselves. Such flexible
logic modules can serve as the basis for a programmable general-purpose
computer, as all the fundamental gates, which are the necessary and sufficient
components of a universal computing machine, can be realized by them.

The necessary and sufficient components of computer architecture to date are the
logical AND, OR, NOT and Exclusive OR (XOR) operations from which we can
directly obtain all basic operations, like bit-by-bit addition andmemory (Mano 1993;
Bartee 1991). In conventional computer architectures, all gates can be constructed
by combining the fundamental NOR (or NAND) operation. For example, AND can
be realized by: AND(X,Y)ZNOR(NOR(X,Y),NOR(X,Y)) and XOR(X,Y) Z
NOR(NOR(NOR(X,NOR(X,Y))),NOR(NOR(NOR(X,X),Y))).

Clearly, this conversion process is inefficient in comparison with direct
implementation (which would require only one unit and no cascaded operations).
This is especially significant considering, perhaps, that such fundamental
operations may be performed billions of times. Therefore, the direct and flexible
implementations of gates are useful and could prove highly cost effective.

Here, we will show the direct and flexible implementation of all these logical
operations by thresholding a single chaotic element.

Consider a single chaotic element, whose state is represented by a value x, as our
chaotic chip or chaotic processor. This element receives two inputs I1 and I2 (for
AND, OR and XOR), or one input I (in case of NOT) and outputs a signal O. The
logical operations are defined by patterns of input-to-output mapping represented
by the truth table in table 3. Our aim is to design a scheme such that the chaotic
elements will yield the appropriate output for all possible sets of inputs.

In our scheme, all logic gate operations involve the following steps (figure 4):

(i) Inputs:

x/x0CX1CX2 for the AND, OR and XOR operations, and
x/x0CX for the NOT operation
where x0 is the initial state of the system, and XZ0 when IZ0 and XZd when

IZ1.
Phil. Trans. R. Soc. A (2006)



Table 3. The truth table of the basic logic operations. (Column 1 shows AND (I1, I2), Column 2
shows OR (I1, I2) and Column 3 shows XOR (I1, I2), where the 2 inputs are I1 and I2. Column 4
shows the NOT gate, where there is 1 input: I.)

I1 I2 AND OR XOR I NOT

0 0 0 0 0 0 1
0 1 0 1 1 1 0
1 0 0 1 1
1 1 1 1 0

x

–

+

I

threshold reference
level

chaotic evolution
f(x)

threshold level
x0

inputs

output

*

Figure 4. Scheme for obtaining different logic responses from chaotic dynamics.
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(ii) Chaotic update: x/f (x)

where f (x) is a chaotic function.

(iii) Threshold mechanism to obtain output, i.e. the output Z is:

ZZ0 if f (x)%x�, and
ZZf (x)Kx� if f (x)Ox�

where x� is the threshold.
This is interpreted as OZ0 if ZZ0 and OZ1 if ZZd.
In our implementation, we demand that the input and output have equivalent

definitions (i.e. 1 unit is the same quantity for input and output). This is also
demanded among the different logical operations. Therefore, constant d assumes
the same value throughout a network, and this will allow the output of one gate
element to easily couple to another gate element as input. The elements can then
be ‘wired’ directly into gate arrays, implementing compound logic operations.

In order to obtain the desired input–output response, we need to satisfy the
conditions enumerated in table 4 for the different gates. Note that the symmetry
of inputs reduces the four conditions in the truth table 3 to three distinct
conditions, with rows 2 and 3 of table 3 leading to condition 2 in table 4. Hence,
given a dynamics f (x), corresponding to the physical device in actual
implementation, one must find values of x� and x0 that satisfy all the conditions
in table 4 simultaneously, in a robust manner (Munakata et al. 2002).
Phil. Trans. R. Soc. A (2006)



Table 5. Example of the implementation of the logical AND, OR, XOR and NOT operations, using
the logistic map f(x)Z4x(1Kx). (The value of d is 1/4 in this example.)

operation AND OR XOR NOT

x0 0 1/8 1/4 1/2
x� 3/4 11/16 3/4 3/4

Table 4. Necessary and sufficient conditions to be satisfied by a chaotic element in order to
implement the logical operations AND, OR, XOR and NOT.

operation AND OR XOR NOT

condition 1 f (x0)%x� f (x0)%x� f (x0)%x� f (x0)Kx�Zd
condition 2� f (x0Cd)%x� f (x0Cd)Kx�Zd f (x0Cd)Kx�Zd f (x0Cd)%x�

condition 3� f (x0C2d)Kx�Zd f (x0C2d)Kx�Zd f (x0C2d)%x�

S. Sinha and W. L. Ditto2490
Now, we give an explicit example of the basic procedure laid out earlier. As
a representative chaotic function, we take f (x) to be the prototypical logistic
map, a map known to be of widespread relevance to physical and biological
chaotic phenomena f (x)Z4x (1Kx), where x2[0,1]. We select the constant d to
be 1/4. This value is common to both input and output, and to all logic gates.
Table 5 shows a set of x0 and x� values that simultaneously satisfy all the
conditions in table 4.

For instance, for the AND operation, x0Z0 and x�Z3/4. This satisfies the
three conditions in table 4 as follows:

f ðx0ÞZ f ð0ÞZ 0%x*ðZ 3=4Þ;

f ðx 0CdÞZ f ð1=4ÞZ 0%x*ðZ 3=4Þ;

f ðx0 C2dÞKx* Z f ð1=2ÞK3=4Z 1K3=4Z 1=4Z d:

We would also like to underscore that the different chaos control and
synchronization schemes in existence, could possibly be exploited similarly, to
obtain different dynamic computing schemes.

The use of chaotic elements is compared with the possible use of periodic
elements on one hand, and random elements on the other. It is not possible to
extract all the different logic responses from the same element in case of
periodic components, as the temporal patterns are inherently very limited.
Therefore, periodic elements do not offer flexibility. Random elements, on the
other end, have many different temporal sequences; but they are not
deterministic and hence one cannot use them to design components. Only
chaotic dynamics enjoys both richness of temporal behaviour and determinism.
Here, we have shown how one can select temporal responses corresponding to
Phil. Trans. R. Soc. A (2006)
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Figure 5. Scheme for implementing the fundamental NOR gate with a Chua’s circuit.
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different logic-gate patterns from such dynamics, and this ability allows us to
construct flexible hardware (our efforts are in contrast to the earlier efforts of
Toth (1995)1).

The above theoretical scheme of implementing logic gates has been completely
verified in proof-of-principle experiments on logistic map circuits. We have also
extended the scheme to realize combination logic circuits, such as half-adders.
Therefore, the robust cascading of these dynamic logic units allows the
construction of basic computation modules, which are important steps towards
implementing bit-by-bit arithmetic operations and computer memory.

One can also use continuous time-chaotic systems, for instance, the Chua’s circuit
given by equations (2.2)–(2.4), to implement logic gates via the simple thresholding
discussed in the section above (Murali et al. 2003a,b). A representative example is
the implementation of the fundamental NOR operation on a pair of inputs (I1, I2).
This simply involves setting an input-dependent threshold x�CX1CX2, where
XZ0 when IZ0 and XZd when IZ1 (see figure 5 for a schematic). That is, the
threshold level is: x- if the input set is (0, 0), x�Cd if the input set is (0, 1)/(1, 0)
and x�C2d if the input set is (1, 1). The output is interpreted as 0 if the
thresholded variable xi is below threshold. The output is interpreted as 1 if the
thresholded variable xi is above threshold, and xiKx�Zd.

Now, for the NOR gate, we must have an output 1 for input set (0, 0), and
output 0 for input sets (0, 1), (1, 0) and (1, 1). This is obtained robustly for x-w0
and dw1.84, as evident from figure 6.

Therefore, unlike conventional static architecture-based computing para-
digms, these dynamical computing elements have flexibility and re-configurable
capability (Sinha et al. 2002a,b). Thus, it can yield a gate architecture that can
dynamically switch between different gates, without rewiring the circuit. Such
configuration changes can be implemented either by a predetermined schedule or
by the outcome of computation. Therefore, the flexibility of obtaining different
logic operations using varying thresholds on the same physical element may lead
to new dynamic architecture concepts (Taubes 1997).
1Our efforts are in contrast to the earlier efforts of Toth, A. & Showalter, K. 1995 J. Chem. Phys.
103, 2058, who obtain gates from chemical systems by delicately tuning many parameters
(involving both the construction of the apparatus, as well as the geometric configuration and
timing of the input and output waves). Fine adjustments of these lead to the desired phenomena. In
contrast here we have an adjustable threshold defining all the gates from the same system.

Phil. Trans. R. Soc. A (2006)
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Further, since all logic gates are obtained from identical single chaotic circuits,
one can envision that this will enable more efficient packing, in analogue
programmable gate implementations, as well as more efficient design. Another
significant potential advantage is also related to making all elements identical.
With clever programming approaches that take advantage of identical elements,
elements that endure damage or errors can be effectively disconnected from the
whole bath of chaotic elements and the remaining elements can continue normal
operations.

In conclusion, we have demonstrated the basic principles of a universal
programmable chaotic logic unit that can potentially provide the starting point
for more mature approaches of flexibly dynamic computational platforms, based
on the principle of large numbers of identical, re-configurable and re-program-
mable units.

This work was supported under a grant from the US Office of Naval Research (N00014-02-1019).
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