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An ensemble of uncoupled chaotic maps with spatially synchronized parametric fluctuations violates
the law of large numbers. This is clearly evident in the nonstatistical features of the mean field, whose
mean-square deviation (MSD) does not fall as 1/N with increasing N, where N is the number of ele-

ments in the system.

In fact the MSD saturates after a critical value of N =N.. This amazing
phenomenon is reminiscent of the nonstatistical behavior in globally coupled chaos.

Interestingly

though, there is no coupling in this system, and so the emergence of a subtle coherence in the global dy-
namics, as suggested by the existence of size-independent fluctuations, is very intriguing.

PACS numbers: 05.45.+b, 05.90.+m, 87.10.+¢

Complex systems, ranging from economic markets and
ecosystems to earthquakes and fluid mechanics, have gen-
erated a lot of research interest in recent years. The most
striking feature of many composite systems containing
large numbers of elements is that fascinating global phe-
nomena arise out of seemingly simple local dynamics. It
is then of considerable importance to investigate the
physics generic to such spatially extended systems.

Here we study a dynamical system which is a con-
glomeration of many individually chaotic elements. The
elements are uncoupled, unlike in other models of com-
posite systems where local or global coupling is intro-
duced [1-8]. Our system, in most general form, is then
given as an ensemble of /V local maps:

Xn+1(D) =1, (0):a,(0)) ¢D)
where n is discrete time, i is the site index (i=1,
2,...,N), and the a,(i)’s are the nonlinearity parame-

ters which may fluctuate in both space and time, i.e., be a
function of both n and i. In particular, the function f can
be the logistic map which is used extensively to model a
very wide variety of nonlinear dissipative phenomena, i.e.,
f(x)=1—ax?[9].

There are four distinct cases to be considered, deter-
mined by the nature of the fluctuations in the nonlineari-
ty parameter a, of the local maps. (i) a is constant:
a,()=a. Gi) a,(i)=a(l+on,)=a,, where o is the
strength of fluctuations in the nonlinearity parameter and
nn is a random number uniformly distributed in the inter-
val [—0.5,0.5]. Note that this fluctuation is a function of
time but is site independent; i.e., the noise in the parame-
ters is synchronous for all the elements and can thus be
considered spatially uniform, though random in time.
(iii) a, (1) =a(1+on')=a(i). Here the parameters are a
random function of site but remain frozen in time, i.e.,
the parameters are spatially fluctuating but temporally
invariant. (iv) a,(i) =a(1+onk). Here the fluctuations
are a function of both time and space.

We have simulated Eq. (1), for all the above cases,
with local logistic maps in the chaotic regime. The initial
conditions of the individual elements are randomly chosen
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in the interval [—1,1], and transients are allowed to die.
(For values of the nonlinearity parameter a <2 the
iterates of the map f(x) are bounded in the interval
[—1,11.) All results reported here are in the “turbulent”
phase, i.e., a phase where the chaotic local dynamics
displays no apparent coherence among the elements.
[Since there is no coupling, it is not surprising that there
is no explicit symptom of correlation after the elements
have evolved (chaotically) from random initial states.]

Let us consider the fluctuations of the mean field. If all
the state variables took quasirandom values almost in-
dependently, one would expect their aggregate, the mean
field A,,

1 N
hn=— 2 f(xn (), (2)
N j=

to obey the law of large numbers. If this were true the
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FIG. 1. The distribution of the mean field P(h) for the three
cases of Eq. (1): (a) case (i), (b) case (iii), and (¢) case (i),
with a=1.98, 0=0.02, and N=2500. The histogram is ob-
tained from a sampling over 10000 iterations.
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mean-square deviation (MSD) (=(h2) —(h,)?) would
decrease as 1/N, where N is the number of elements in
the system, and the mean field would converge to a
fixed-point value as N — oo,

To examine the above expectation, we have numerical-
ly measured the distribution of the mean field. As shown
in Fig. 1, the distribution function P(h) agrees roughly
with the Gaussian form, when /V is large. Note, however,
that the deviations of the mean field in case (ii), where
the maps evolve under synchronized parametric fluctua-
tions, are significantly larger than those in the other
cases.

For the verification of the law of large numbers we cal-
culate the MSD of the mean field with increasing number
of elements N. If each element is approximated by
an uncorrelated random number, it is expected that
MSD~1/N. In Fig. 2 MSD is plotted versus N, for the
cases (ii), (iii), and (iv). When the nonlinearity parame-
ter of the individual maps a, (i) are equal and constant in
time [case (i)] the system is simply a set of uncoupled
logistic maps and displays statistical behavior; i.e., the
MSD of the mean field respects the law of large numbers,
and goes as 1/N. It is after the inclusion of noise in the
system that we encounter something very interesting.
When parametric fluctuations exist in space, i.e., when
the nonlinearity parameter varies randomly from site to
site but remains frozen in time, and when the fluctuations
are both spatial and temporal [cases (iii) and (iv), respec-
tivelyl, we again have statistical behavior. But amazing-
ly, when the temporal parametric fluctuations are spatial-
ly uniform, i.e., all the elements are subject to the same
parametric fluctuations, which are random in time [case

(a)
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FIG. 2. Mean-square deviation A of the mean field vs system
size IV for four cases of Eq. (1) (a=1.98): curve (a) case (ii)
with 6=0.02, (b) case (ii) with 0=0.01, (¢) case (iii) with
6=0.02, and (d) case (iv) with 6=0.02. The A is calculated
over 10000 iterations.

(ii)], we get nonstatistical behavior. It is clear that the
MSD does not fall as 1/N. In fact the MSD almost satu-
rates after a critical value of N =N,, whose value depends
on the nonlinearity a and the strength of the fluctuations
o. This observation implies that an ensemble of uncou-
pled chaotic maps with spatially uniform parametric
Auctuations violates the law of large numbers [9].

These features appear to hold for all parameter values
of the logistic map, as long as the effective nonlinearity
parameter of the local map is in the chaotic regime. Fur-
ther, we have studied ensembles of different maps, such
as circle maps and tent maps [f(x) =a(0.5—|x—0.5|)]
[10], and find similar phenomena. This strongly suggests
that the above nonstatistical properties are independent
of the details of the model.

The above set of maps can be considered the zero-
coupling-parameter limit of coupled maps (with the addi-
tional important feature that the individual elements are
subject to fluctuations). Coupled maps have attracted a
lot of attention in recent times for two principal reasons
[1-8]: First, they are important in providing models for a
variety of nonlinear interactive phenomena, as diverse as
Josephson junction arrays, multimode lasers, vortex dy-
namics in fluids, and even evolutionary dynamics, biologi-
cal information processing, and neurodynamics; second,
they give rise to very novel phenomena, in particular, a
host of pronounced nonstatistical features.

Explicitly, a globally coupled map (GCM) is a system
of N elements, consisting of a set of local mappings cou-
pled by a “mean-field” type of interaction term, through
which global information influences the individual ele-
ments. It is thus analogous to a mean-field version of
coupled map lattices and can be given as [2-6]

x,,+|(i)=f(x,,(i))+sh,., (3)

where ¢ is the coupling parameter and A, is the mean
field. Remarkably, it was found that in the fully *“‘tur-
bulent” phase of the GCM, where coherence was com-
pletely destroyed by chaos in the individual maps and
there was no explicit manifestation of correlation among
the elements, a subtle collective behavior emerged [3-8].
This was evident in the marked nonstatistical behavior of
the mean field, whose fluctuations saturated at large lat-
tice size.

The anomalous dependence of the fluctuations of the
mean field on system size in noisy uncoupled map ensem-
bles is thus reminiscent of the scenario in globally cou-
pled chaos [11]. What is amazing is the fact that we do
not have any transparent way of seeing the source of
coherence among the elements here, due to the complete
absence of coupling interaction.

GCM had an additional interesting feature: The emer-
gence of broad peaks in the power spectrum of the mean
field. This indicated the development of a collective beat-
ing pattern in the global dynamics. Here, in contrast, the
mean field is still quite aperiodic and there is no evidence

3307



VOLUME 69, NUMBER 23

PHYSICAL REVIEW LETTERS

7 DECEMBER 1992

of any pronounced frequencies (see Fig. 3). This marks
the point of departure of this system from the GCM. In-
terestingly, the spectra of chaotic ensembles are distinctly
less “grassy” after the addition of synchronized noise
(Fig. 3). Also, the spectra of larger ensembles is some-
what smoother and flatter than those of smaller ensem-
bles.

A rough way of seeing the correspondence of noisy
maps to GCM is as follows: Expressing the mean field as
a sum of an average part (h) (which is constant) and a
fluctuating part (due to the deviations), we have the
GCM given as

Xp+1() =1—ax2(i)
+ e(constant + fluctuating part) . 4)

As a first approximation if we consider the fluctuating
part to be random, we have

Xn+1() =1—ax2@)+eh)+eon,
=1 —agn)x2G), (5)

where &h) is the small constant part, o is the strength of
the fluctuations, and 7, is a uniformly distributed random
number. The effective nonlinearity parameter of the re-
sulting approximate logistic map is a spatially uniform
(site-independent) quantity which fluctuates randomly in
time: acx(n). This is analogous to case (ii) of the chaotic
map ensembles considered here.

We have also studied a class of noisy systems very
similar to Eq. (5) and to ensembles with parametric noise
[Eq. (1)]. They are given as

Xn41) =f(x,();a) + ol (6)
5
/; |
a
-5
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FIG. 3. Power spectra of the mean field for case (ii) of Eq.
(1) with (from top to bottom) a=1.98, ¢=0.02, N=10;
a=198, 6=0.02, N=2500; and a=1.98, 6=0.0, N =2500.
Here we average over 10 runs of length 1024 each.
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where o is the strength of the noise and 7 is a uniformly
distributed random number. Here too we consider dif-
ferent cases analogous to the ones given for Eq. (1),
determined by the time and/or space dependence of the
noise. Numerical studies on Eq. (6) show results very
similar to that obtained on ensembles with parametric
noise: When the fluctuations are spatiotemporal, i.e., the
maps evolve under noise which varies randomly from site
to site at every instant of time, we observe statistical be-
havior in the mean field, as reflected in its conformity to
the law of large numbers; but, when all the elements are
subject to the same noise, which is random temporally
[analogous to case (ii) of Eq. (1)], the mean-field dynam-
ics exhibits clear nonstatistical behavior (see Fig. 4).
Thus, partial coherence in global dynamics is suggested
through the persisting size-independent fluctuations of
the mean field, found earlier to be a result of global cou-
pling, is now found to emerge from spatially synchron-
ized temporal noise as well.

In summary, we have studied the mean-field properties
of an ensemble of uncoupled chaotic maps evolving under
synchronized noisy dynamics (determined by the spatially
uniform random fluctuations of the nonlinearity parame-
ter in the individual elements). Such a composite system
is shown to display marked nonstatistical features charac-
terized by the violation of the law of large numbers, rem-
iniscent of the behavior in globally coupled chaotic maps.
So partial global coherence, evident through the existence
of size-independent fluctuations in the mean field, can
emerge from spatially synchronized stochastic influences
in uncoupled maps.

loga

-20

log N

FIG. 4. Mean-square deviation A of the mean field vs system
size N for four cases of Eq. (6) (a=1.98): curve (a) 6=0.01,
(b) 6=0.005, (¢) 6=0.0, and (d) 6=0.01. In cases (a) and
(b) the noise is spatially synchronized. In case (d) we have
spatiotemporal noise. The A is calculated over 10000 iterations.
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[9] MSD of a particular ensemble of size N (N large) in-
creases monotonically with noise strength o [up to values
of o such that a,(i) <2]. This rise is approximately
linear over a reasonably large range of noise strengths.

[10] This is in contrast to globally coupled systems, where cou-
pled tent maps do not display the nonstatistical features
found in many other coupled nonlinear maps, such as cou-
pled logistic and circle maps. (See Ref. [4] for details.)

[11] The distribution of the mean field P(h) was seen to be ap-
proximately Gaussian for the case of globally coupled
logistic maps [3]. This feature too is similar to that found
in our ensembles (see Fig. 1). Note, however, that in oth-
er globally coupled systems, it was observed that P(h)
was distinctly non-Gaussian [5,8]. It can then be expect-
ed that in chaotic ensembles [Eqs. (1) and (6)] with local
maps very different from the logistic map, P(h) may devi-
ate from Gaussian.
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