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Distribution of Husimi zeros in polygonal billiards
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The zeros of the Husimi function provide a minimal description of individual quantum eigenstates and their
distribution is of considerable interest. We provide here a numerical study for pseudointegrable billiards which
suggests that the zeros tend to diffuse over phase space in a manner reminiscent of chaotic systems but
nevertheless contain a subtle signature of pseudointegrability. We also find that the zeros depend sensitively on
the position and momentum uncertaintiesg( and Ap, respectively with the classical correspondence best
whenAq=Ap=A/2. Finally, short-range correlations seem to be well described by the Ginibre ensemble of
complex matrices[S1063-651X99)03507-3

PACS numbeps): 05.45—-a, 03.65.Sq

I. INTRODUCTION tegrable, an Einstein-Brillouin-Keller ansatz for the wave
function[4]
This paper deals with phase space parameterizations of N
one-dimensionabilliard map eigenfunctions for polygonal w(q)~21 Ajexp(iS;/h) (1)
i=

enclosures. Specifically, we shall deal with the Bargman-

Husimi representation and study the distribution of its zerosyorks well at least in the limik — 0. In the aboveS; are the

for regular, irregular, and bouncing ball modes. Such a studyfinitely many) branches of the classical action at enefy
has been carried out before for integrable and chaotic bilandA; are constant amplitudes for integrable polygons. Such
liards[1,2], and these systems are now reasonably well unan ansatz, however, does not work for pseudointegrable bil-
derstood in the sense that the distribution reflects a corrdiards even though the number of sheets that constitute the
spondence with the underlying classical dynamics. As witHnvariant _surface is still finite. We shall not discuss the rea-
most other objects of interest in generic polygofedeudo-  SONS for its breakdown h.ere but mer_ely rema(k tha}t no defi-
integrable billiards, the distribution of zeros is interesting if nite behavior for pseudointegrable eigenfunctions is known.

only to explore the existence of such a correspondence wit or (_:Iassmally chaotic systems, on the other hand, the
: chnirelman theoren}5] (suitable phase-space measures
the classical system.

. I . constructed from the eigenfunctions must tend towards the
Of all possible Hamiltonian systems, billiards are perhapg;assical phase-space ergodic measuré a)) does pro-

the best understood category and exhibit the entire gamut gfige a semiclassical constraint, albeit in a measure theoretic
classical dynamics depending on the shape of the enclosurgense. Besides, there exist results on the amplitude distribu-
Of these, polygonal billiards form an important subcategorytion and spatial correlation function which have been subject
and apart from the rectangle and the trianglesto tests[6].

(713,713,713), (7/2,713,716), (m/2,m/4,7/4), all other po- Despite the absence of any such result for pseudointe-
lygonal enclosures are nonintegralp8j. Further, the ones drable polygons, numerical studifg| such as those for the

with rational interior angles are pseudointegrable; they hay@mplitude distribution or nodal plots suggest that typical
?lgenfunctlons are irregular and, broadly speaking, there is

mgir(i:g\?;:g:f szfrf;]::(;“i?lnpﬁ:\sg] Slgigerit;: asézt;n;s Oa:: Yéittle to distinguish them from the eigenfunctions in chaotic
) . ) .., systems. In the present paper, we shall try to refine this ex-
of the simplest examples of a pseudointegrable system is thgin g hogy of knowledge and will employ for this purpose a
7/3 enclosure for whicly=2;i.e., the invariant surface is a phase-space representation of quantum mechanics, which is
double torusHere, as in other pseudointegrable billiards, anknown to highlight certain semiclassical features for inte-
initial (paralle) beam of trajectories splits after successivegrable and chaotic systems. Our results are empirical, based
encounters with the 2/3 (in generalms/n,m>1) vertex  on extensive numerical studies, and can be simply expressed
and traverse different paths. as follows: the eigenfunctions of polygonal billiards as
There are several important consequences of pseudointgiewed in the Husimi representation tend to be irregblatr
grability at the classical level that are now known. However,nevertheless contain a subtle signature of classical pseudo-
as far as semiclassics is concerned, pseudointegrable billiarifgegrability.
are still rather poorly understood. When the dynamics is in- The paper is organized along the following lines. In Sec.
Il, we briefly review the Husimi-Bargman representations
and the results on random analytic functions. We introduce
*Electronic address: dbiswas@apsara.barc.ernet.in the systems that we shall study and the quantum map under
"Electronic address: sudeshna@imsc.ernet.in consideration in Sec. lll. This is followed by our numerical
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results on the Husmini function and the density of zeros ins one such example which can be expressed as a smooth-
Sec. IV. Finally, correlations are discussed in Sec. V and ouened Wigner function. In this case, the smoothening is

conclusions are summarized in Sec. VI. achieved through the Gaussian centred at a phase-space point
(g,p). In Eq. (8) above,
Il. PHASE SPACE REPRESENTATIONS \/g 71
Phase-space representations of quantum wave functions Adi 201 Api= 20 ©

are best suited in semiclassical studies since the quantum o _ _
dynamics(Heisenberg equatiorthen appears as an explicit are the uncertainties ig andp, respectively. Note that, is
deformation of the classical dynami¢kiouville equation ~ merely a minimum-uncertainfMU) state decomposition of

by shifting the analysis onto the density operatpr the wave function) and can be expressed as

=|¢)(|. In quantum mechanics, however, the phase-space (2] )2
representation of a state is not unique since opgrafp@( pn(Q,p;h)= Cyray (10
for instance may be ordered in various ways while having
the same classical analog. A general expression for a quathere
siprobability distribution function may be expressed &k -
z
) yt Z =e7|2‘2/2 —|N). 11
Py (A,p.t) 2) goﬁl ) (1)
:(27.,)2f d?¢ EF T O{e ¢ e e p], {In)} are the harmonic oscillator number states!

@ =(o Yg—10")/(V24), and z=(o Yq—10Y%p)/
(v2#) with >0. Note thatz|z) =1 while (z|z')#0. Writ-

where Q) refers to the ordering that is chosen. The Wignerten explicitly for 1— degree of freedom,

distribution follows from a symmetric ordering of(p) 1 va.ooo »
which implies (X|2)= 27207 glPx— (x-)%/4(Aa)* (12)
Qfe i€ atg-ita —g-it*at-ita 3)

which is the minimum uncertainty wave packet whose
while the Husimi function is a result of antinormal ordering: Wigner transform is the Gaussian used in E). .
Cn e From Eq.(10), it is evident thatp,, takes only positive
e ¢ ale i =g e 1E7AT, (4 values. The minimum wave packetg) and(z| are eigen-
functions ofa anda’, respectively, with eigenvaluesand
z* . Equation(10) follows directly from Eqs(2) and(4) us-
ing the expansion of the identity operator

Using Egs.(2) and (3), the distribution function in the
Wigner representatiorp,,(q,p;#%), for a pure state can be
explicitly written as

1 - Tzfd(z)z Z], (13
Pw(q,p;ﬁ)ZWf (a=n/2|y)(yla+ n/2)e® "*dy, u2l2)(
(5 wheredu(z)=dqdp/(27h).

If the system under consideration is ergodic, the Husimi
‘density {pp}, corresponding to a sequence of eigenstates
{¢n(q)} with eigenvalue€,,—E, almost always converges

to the classical Liouville measupe: over the energy surface
3e. Thus, iff(q,p) is any smooth observable,

whered is the degree of freedom of a dynamical system

Thus, the expectation of a dynamical variableis repre-
sented as

Tr[AIw><t//|]=fAw(q,p)pw(q,p)dqdp, (6)
| t@ppdade- | fapdue as E-E,
E
14

where

Aw(q,p)=f (a-n/2lAlg+ n/2)e? " dy. (@) Schnirelman’s theorem, however, allows an occasional ex-
ception(e.g., scarred stateand for this reason, a more ap-
The Wigner function, however, takes positive as well aspropriate description of nonintegrable eigenfunctions is de-
negativevalues and oscillates violently with a wavelendth sirable.
in phase space. A coarse-grained distribution function is thus In 1990, Leboeuf and Vord®] proposed that the zeros of
preferred and the Husimi function the Husimi function provide a minimal description of quan-
o tum stateg10]. The first step in this direction is the coherent
(@i—a;) state g'=1) or Bargman representatiofz| ¢ of a statd )
2(Aq;)? which maps unitarily the standard Hilbert space onto the

1
pn(Q,p;f) = Wf pW(q’,p’;ﬁ)exp( -
space ofentire functions with finite Bargman norm:

i=1

(pi—pD?|) )
" 2ap)? de % ®) ||¢||=mJR2|¢<z)|2e“Z'2dqdp 15
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One can thus considef(z) as a phase-phase representationcomplex classical action in thevariable, along which the
of the wave vectot). Note that the zeros of the Bargman zeros are equispaced with separation of ords. 1/
and Husimi functions are identical. The Bargman function, For the sake of completeness, it may also be noted that a
however, contains information about the phésethe wave random polynomial
function) as well and is hence a more fundamental object. _ 2 N
. Z)=apgtajzt+a,z:+---+ayz", 18
For the standard case when the phase space is a (itane W(2)=aota1zta, N (18)

Weyl-Heisenberg groufV,), with coefficients distributed according to E@.7), has zeros
> o which tend to accumulate around the unit cirgl&].
— o222 %N _n With this background, we shall explore the distribution of
v(z)=e nzo n! z (W), (16) Husimi zeros for polygonal billiard eigenfunctions in the fol-
lowing sections. Unless otherwise stated, we shall consider
wherea,, are the expansion coefficients|of) in terms of the ~ €nclosures with unit perimeter and=1 (coherent staje\We
harmonic oscillator number states. Similar results can b&hall also consider the enerdy=1, and instead quantize
written down for the spherfSU(2)] and the pseudo-sphere SO thati=1/k. The#—0 then corresponds to the classical
[SU(1,1)] [12,13, though unlike the case aF, or SU1,1),  dynamics aE=1.
the Bargman representation |@f) for SU(2) is finite, reflect-
ing the compactness of phase space. For Hamiltonian sysH. POLYGONAL BILLIARDS AND THE QUANTUM MAP
tems, however, energy conservation does ensure that the
manifold is compact so that E¢L6) has, in practice, only a
finite number of terms. Clearly, then, the Husimi-Bargman

Classical billiards are enclosures within which a point
particle undergoes specular reflection. The dynamics thus de-
: pends on its shape. For rational polygonal enclosures, the
zeros specify a state completely. o . )
- . AN . dynamics is constrained by two constants of motion such that
It is evident that the distribution of the Husimi-Bargman . : ; ; .
P . the invariant surface is two dimensional. For the rectangle
zeros depends on the distribution of the expansion coeffi- . i o .
) N . o and the integrable triangles, this is a torus for whigh1.
cientsa=(a;,ap, - . . ,ay). For chaotic systems, itis natural Fqr 4)| other rational polygons, the invariant surface is topo-
to expect that the chou:eaof an arbitrary basiarmonic os- logically equivalent to a sphere with multiple holeg>1).
cillator in this casgmakesa point in any direction of Hilbert  The simplest example is a double torgs=(2) which corre-
space with equal probability13]. Thze only constraint then sponds to enclosures such as thé¢3 rhombus or the
comes from normalization so thata;=1. For purposes of L-shaped billiard. In general, the genus of any rational poly-
computing the distribution of zeros, this is equivalent to thegon can be calculated from its interior angles. Thus, if
assumption that the coefficients are drawn from a Gaussiaim; r/n; are the interior angles of a rational polygon,
distribution[14]: N m—1
—

g=1+52 — (19

17

where N is the least common multiple af;, so that the
number of sheets that constitute the invariant surfaceNis 2
Thus various sets of internal angles may have the same ge-
nus but with differentN such that the number of distinct
l@omenta spanned by a generic trajectory varies from enclo-

Equation(16) with the above distribution is referred to as a
random analytic function

Random analytic function$RAF’s) for various groups
have been studied in some detail when the coefficients asure 10 enclosure
complex[13,15—17 corresponding to systems without time ; : . .
reversal symmetry. The results point to a universal behavior, While the genus daes affect certain classical features of

Thus, the density of zeros is uniform with spacings of thethe systeni22], its influence on quantum states is not known

order of 1/\/N and the two-point correlation has a simple for certain. Studies on irrational and rational rhombus bil-

form [17,18 independent of the location of the zeros. Im or_Iiards show that there is little difference between the mor-
’ pend : - 'mpor- hologies of generic eigenfunctions or their Husimi densities
tantly, random analytic functions do seem to model chaoti

systems very wel[16.19 23]. Shudo and Shimiz{23] even note that'". .. the dif-
y For RAF’Z with réal 60efﬁcient9§s stems with time re- ference between random features of eigenfunctions of quan-
yst ; tum polygonal and the desymmetrized dispersing system are
versal symmetry Prosen[20] has studied the density and

. . > . . .minute ... .” The only difference, they noted, was the oc-
the k-point correlations. The density in this case is nonuni- .
. currence of bouncing ball states though these can be ob-
form due to the presence of zeros on the symmetry (@hes

real lina. Away from the real axis, however, the density served in other chaotic systems such as the stadium billiard.

becomes uniform, and in this region, correlations tend to- Our investigation of polygonal biII_iar_d eige_r_lfunctions lies
wards the case Wi,th complex coefficiénts There are few nu™” this backdrop. Instead of the Husimi densities themselves,
merical studies, however, on chaotic systems with time rew® shall study their zeros follqwmg Tualle and Vo@j_
versal symmetry though it might be expected that RAF’sThe systems we choose are triangles and rhombus billiards,
with real coefficients do model them rather well.

In contrast, it is knowr]21] that for integrable systems,
eigenfunctions follow a WKB-type ansdtzee Eq(1)] in the
Bargmann representation too, from which it follows that the

zeros lie on fixed curves which are anti-Stokes lines of the (V2+E)¥(q)=0, (20

and for all practical purposes, these can be treated as pseudo-
integrable systems irrespective of the internal afgk25.

The eigenvalues and eigenfunctions can be obtained by
solving the Helmholtz equation
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FIG. 1. Thez axis is the Husimi density,, of the equilateral P
triangle eigenfunction at=900.142 corresponding to the quantum o ) _ ) o
numbers (26,81). FIG. 2. Husimi zeros of the eigenfunction considered in Fig. 1.

with ¥(q)=0 on the boundary. The problem can, however,2€ros along fixed curves typical of integrable systems.
be reduced to an eigenvalue problem for an integral operator NOte that classical Poincarsection plots in suitable

K or aguantum Poincarenapin various wayg26]: (Birkhoff) coordinates do not immediately reveal the dra-
matic difference between integrable and pseudointegrable
s)= O ds’ (s )Kp(s,s k), 21 pongons. In both cases, the pomts lie along a finite number

ws) 3€ Y )Kol ) @1 of sin =constant lines wheré is the angle between the ray

K and the inward normal at the boundary painfrhus there is
Kp(s,s';k)=— —cosa(s,s’)H(ll)(k|§— s'|), (22 little difference between the Poincasections of the equilat-
2 eral triangle and ther/3 rhombus. With increasing genus,
23 however, the number of such lines generally increases as the
trajectory explores a larger number of momentum directions.
Semiclassically, the Husimi eigendistribution function is
known to be localized near the torus for integrable systems
[27] while its zeros distribute themselves along curves maxi-
mally distant from the invariant curve@nti-Stokes lines
ey, > As an example, we first consider the equilateral triangle bil-
W(s)=n(s)- VE(s), @49 liard. Figure 1 shows the Husimi distribution of a typical
and the full interior eigenfunction can be recovered througteigenstate with quantum numben,n) =(26,81) while Fig.

cosé(s,s’)=n(s)-p(s,s'),

whereE=K2, p(s,s’)=(s—s')/|s—s’|, andn(s) is the out-
ward normal at the poirﬁ. The unknown function is now the
normal derivative on the boundary

the mapping 2 is a plot of its zeros. Clearly, the Husimi distribution is
| peaked on the corresponding torus as evident from Fig. 3

V(g =— — & dsHO(k|S— & s). 25 while the zeros lie on lines located away from the torus.
(@ 4 % Ho (K] D#(s) @9 Further, the zeros are equispaced on each line though the

) o o o spacings typically do vary from line to line.
duced 1-d function ¢(q) and we shall use this to study strajght lines in all integrable polygons and the equilateral

phase-space represerjtations z_:lnd look at their zeros. For #hingle with its high symmetry is a rather special case. In
enclosure of unit perimetefwhich we shall assume from

now on, ¥(q+1)=4¢(q). The Bargman transformy(z) 1

thus obeys a quasiperiodicity condition as wél), 0ol ‘ . . ©
Wz +1)=elPy(2), (26) ol : : j
and the norm-finiteness condition becomes :: : : -
1 toe 1 2 e osh . ¢ : ) o1
=5 | b [ delucae < 2m o | j
: . N
IV. HUSIMI ZEROS IN POLYGONS: RESULTS 02 N ¢ o ° °
The distribution of Husimi-Bargman zeros in polygonal T, : . o
billiards has not been investigated before, and as remarked e e e e e
earlier, the only properties known about the eigenfunctions g

are from numerical studies. The lack of concrete results FiG. 3. Classical surface of the section plot in Birkhoff coordi-
leaves us with little expectation and perhaps the only conjecnates of trajectories on the corresponding tdisee Fig. 1 for de-
ture that can be made is that the distribution of Husimi zerosails). Here p=sin 6§ where ¢ is the angle between the ray and the
of polygonal billiards should differ from the regularly spaced inward normal at the poing measured along the boundary.
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FIG. 4. Husimi zeros of the equilateral triangle mode kat FIG. 6. Zeroes of a neighboring bouncing-ball “pure rhombus”
=532.751 viewed in ther/3 rhombus. mode atk=660.531.

fact, the distribution of zeros of an equilateral state viewed irin a quarter of the phase space. Clearly, they are more or less
another enclosurgrelated by symmetry—for instance, the randomly distributed with no clear alignment along any
(716,713,7/2) triangle or thew/3 rhombug looks very dif-  curve, barring some exceptions where two or more zeros are
ferent. Figure 4 is an example where the fixed curves are ndlistributed around somp=const line. These observations
always straight lines though the zeros are equispaced alorge in sharp contrast to the distribution of zeros for integrable
each curve. polygons.

As examples of pseudointegrable polygons, we shall con- We next look at the zeros of a neighboring bouncing-ball
sider rhombus and triangle billiards. Since the choice of enstate. Studies on the stadium billiard have shown that the
closure plays an important role in determining the distribu-Husimi zeros of bouncing-ball modes are distributed ran-
tion of zeros, we shall use the/3 rhombus to compare the domly over the entire phase space as in case of irregular
regular and irregular states. Note that the regular states imodes—an observation that may seem counterintuitive,
this case correspond to equilateral triangle modes which varkeeping in mind the existence of approximate quantum num-
ish on the shorter diagonal and they comprise approximateliers in the description of such staf@8§]. Figure 6 shows the
half the total number of states in the'3 enclosurgFig. 4 is  Husimi zeros of a typical bouncing-ball mode in thd3
an examplg The irregular states, on the other hand arerhombus. The distribution is no different from the earlier
“pure rhombus” modes[7] which do not vanish on the case with few zeros distributed aroupe: const lines and the
shorter diagonal. Barring the bouncing-ball modes, “pureother zeros distributed randomly.
rhombus” modes display features typical of irregular wave The symmetry of the rhombus leads to redundant zeros
functions. We shall look for the differences in the distribu- and hence poor statistics as compared to an unsymmetric
tion of zeros betwee(i) regular and irregular modes afi)  polygon at the same energy. However, it does show that the
bouncing-ball and nonbouncing-ball “pure rhombus” Husimi zeros do not align themselves along fixed curves but
modes. rather tend to diffuse over phase space with some amount of

Figure 5 displays the zeros of a typical irregular “pure clustering around a feyg= const lines. As further evidence,
rhombus” mode. The zeros are no longer distributed alongve display the Husimi zeros of a typical state in the
curves and they tend to diffuse all over the phase space. Noter/4,7/5) triangle in Fig. 7. They are indeed distributed over
that there is a reflection symmetry in this case aboutghe the entire classical phase space while the dashed lines indi-
=0.25, 0.5, and 0.75 lines; so the zeros need only be vieweéate a tendency to cluster around certain momenta. This ef-

fect, however, seems to be pronounced only in systems with
PR O A low genus. Thus, for the triangle with internal angles
09 o o e NN o o (977/301,797/501), there seems to be little or no clustering
(see Fig. 8 and the zeros seem to be genuinely distributed
over the entire phase space as in chaotic billiards. Figure 9

1
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AR SR SR S shows a set of four histograms which illustrate this differ-
B I s T e ] ence in clustering. The axis of the histograms gives the
A R O T momenta value and thg axis shows the fraction of zeros
Y N D occurring in a bin. The peaked distribution at spegifical-

sl ues for the low-genus/4,7/5) triangle indicates a cluster-
ing of its zeros. In contrast the high-genus case shows an
almost uniform distribution of zeros away from the real axis
B R NI o e e o marked by a nearly flat histogratbarring the enhanced den-
YR oz oa o6 o0& 1 sity aroundp=0).
Thus, eigenstates of generj25] pseudointegrable bil-
FIG. 5. Zeros of an irregular “pure rhombus” mode &t liards tend to behave like their chaotic counterparts insofar as

=650.336. the distribution of zeros is concerned. This suggests that
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P pe[—1,0] is a reflection off0,1]). They axis of the histogram

o . shows the fraction of zeros occurring in a bin aroymdere bin

FIG. 7. Husimi zeros of the /4, w/5) triangle mode at ;0 j5 0.025. Four cases are showa: zeros of the /4, 7/5)
900.239. The dashed lines indicate constarines about which triangle mode at 600.099b) zeros of the /4, 7/5) triangle mode
some zeros have a tendency to cluster. at 900.239/c) zeros of the (12345/89762, 201%/5431) triangle

. . . . . ., at 600.125, andd) zeros of the (12346/89762, 201%/5431) tri-
there is no obvious semiclassical correspondence in nonlnt%—ngle at 900.071. The peaked distribution at spegificalues for

grable polygonal billigrds. In integrable polygons, however,the low-genus /4, 7/5) triangle indicates a clustering of its zeros.
the correspondence is clear at least wep=Ap;=V#/2 |5 constrast the high genus case shows an almost uniform distribu-

[see Eq(9)]. However, when this not stthe minimum un-  tion of zeros marked by a nearly flat histograbarring the en-
certainty state is not a coherent stf26]), the zeros tend to  hanced density aroung=0).

move witho. As an example, we display here the zeros of an

equilateral triangle mode for two values of in Fig. 10.  from the real axis and hence are like those of random ana-
When o= \%/2, the zeros are equispaced and lie on a linelytic functions with real coefficients which presumably
However, aso is reduced, the zeros move outwards andmodel chaotic systems with time reversal symmetry. To as-
realign themselves on a curve as shown in the figure. Finallygertain how close the distributions are, we shall study here
as o is reduced further, the zeros start moving out of thethe nearest-neighbor spacing distributie¢s) and the two-
classical phase space. point correlationR,(r).

V. CORRELATIONS A. Nearest-neighbor distribution

In the previous section, we found that the zeros in nonin- The nearest-neighbor spacings distribution is the simplest
tegrable polygonal enclosures are uniformly distributed awaytatistic to perform though there exists no analytic predic-
tions for RAF’s with real or complex coefficients. The curve

4 . ; . . . . . .
X N xR w TR T T in Fig. 11 for random analytic functions is thus determined
D.B-x***x:x * X . * X x X x *);x”*xx-
. . xX *’;*** ***;‘* LT *x 1 . — . T T A
08 F* % x_ % ¥ * * * % o * x| @ @
h *
* ¥ * * XX g * x * * L X X
* 5 % * " * ** * ¥ * x* % * N * « ¥ 09 ° <
" * * % * x x X * ¥ * i ° x x o
0.7 * * * ¥
* * * % * * * X * * 0.8 |
* ,;% . * * * * ’; * o x x °
* * * * % * * *
e . L R P e o7t ° - " :
e X * % * * o ox ox ox X o X X x X ° X « °
o 05 | * ¥ * PRI * * ¥ % * * x g 0.6 - ° °
e R ox T o o KoL x X, X x x
¥ox x x L xx X, X I o 05 X ° x * ° x
04 . x % X xix x * x % x 1
* x X ox ¥ * * X oox Xy * N x x N
* X x x X * * X % x X % 04
03| X ., * * * o ¥ 7oA ° = d °
X ox o ox* e %y oo X x, L xw o x o % o3| . N « .
x % X x x ¥ x x % « * * ¥
02 KL % x % X * oy X o x ] ° x x °
*
e %% . x X % *" . ** L T 02 o x «
0.1 Fe ix Tow ¥ ox LI
M * * *
% x * x x X * - * * . ox % o X X 01 ox X o
o * * = x XX X K X ow x* L% o . LY AR .
-1 0.8 -0.6 04 0.2 0 P 0.2 04 0.6 0.8 1 Rl 08 08 04 02 0 0.2 04 06 0.8 1
P
FIG. 8. Husimi zeros of the (97/301, 797/501) triangle for FIG. 10. Two sets of zeros fdrg= %/2=0.064 583 2 ) and

which g>1. The distribution is similar to those of chaotic billiards 0.018 (&), respectively, for an equilateral state. Notice the zeros
even though the invariant surface is two-dimensional. Here moving away in the latter case. A%sq is reduced further, some of
=1500.1803. the zeros leave the classical phase space.
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FIG. 11. The integrated nearest-neighbor distributi(s) FIG. 12..The two-point correlatioR, for three different nonin-
:fSP(S,)dS’ for (l) nonintegl’able triangle&hol’t'dashed CUr\)E tegrable trlangles (‘8/31, 1777/97), . (9777/301, 797'/501), and
(i) Gaussian random analytic function with real coefficiefhiag- ~ (123457/89762, 2014/5431). Herer is measured in terms of the
dashed curve and i) the prediction for the Ginibre ensemble of Mean spacing/2mf.

complex matricegsolid line). ) ) )
wherev=nr</2 andr is measured in terms of the mean

numerically. A total of approximately 25000 zeros from 50 SPacing (/4=/N for the spherg This result holds for other
eigenstates of three different nonintegrable triangles has bedtiase-space topologies as well whér-c and the coeffi-
used for computing the nearest-neighbor distribution of ge€ients are complex. _
neric polygons. The zeros have been unfolded such that FOr Systems with time reversal symmetfseal coeffi-
JsP(s)ds=1 cients, the density is not uniform everywhere and hence

Figure 11 shows a plot of the integrated spacing distribuR2(r1.72) is sensitive to the location of the zeros. Away
tion I (s)=f3P(s')ds’ for polygons and a comparison with fr_om the real axis, howeveR, has the limiting behavior
random analytic function having real coefficients. The agreeg'ven by Eq-(_3,0)- )
ment s fair but there are deviations indicating perhaps that For the Ginibre ensemble of complex random matrices,
the underlying assumption about the distribution of coeffi-tN€ densr_cy is uniform and the two-point correlatin un-
cients[see Eq(17)] is not fully justified. folded units

Remarkably, howe_ver, the Ginibre ensemfB®,31] of _ Ry(rq,rp)=1—exp —m|r;—ryl?) (31
complex random matrices shows much better agreement as is
evident from Fig. 11. In this case, the integrated spacings a function of the distance between the two zeros. Note that
distribution[31] 1 5(s) =i({s)s) where(s)=[gdg1—i(s)] Eq. (31 does not have the characteristic hump atl asso-

=1.142929 and ciated with random analytic functions.
N—1 In Fig. 12, we present results for three different triangles.
i(s)=1— lim H [en(sz)efsz], (28) The close agreement suggests that there is possibly a univer-
N_o N=1 sality in the distribution of zeros of nonintegrable polygons
(corroborated by similar studies on the nearest neighbde
where next compardsee Fig. 1Bthe average of the combined data
, with the predictions for the Ginibre ensemljiee Eq(31)]
X X X"
en(X) =1+ 7+ o+t (29

At small values ofs, Ig(s)~s* and henceP(s)~s°. In
comparison, the nearest neighbor spacing distribution for un-
correlated points thrown at random on the plane exhibits no
level repulsion.

Rott

B. Two-point correlation

For SU?2) random analytic functions with complex coef-
ficients, thek-point correlation function has been computed
by Hannay analytically. In particular, the two-point function

Ro(r1,r2)={p(ry)p(r,)) depends only on the relative dis- N TP N
tancer between points, andr, since the density if uniform.
In the asymptotidnumber of zerosN— o) limit, FIG. 13. The two-point correlatioR, averaged over the three

triangles(histogram compared to the prediction for Gaussian ran-
(30) dom analytic functions with complex coefficientdashed curve
and the Ginibre ensemble predictifgolid curve; see Eq31)].

(sinkfv +v?)coshy — 2v sinhv
sinkfv

Ro(r)=
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and Eq.(30). The deviations from the RAF predictiofi32] (iv) For generic pseudointegrable enclosures, the zeros
are evident while the Ginibre ensemble result agrees with owend to be randomly distributed over the entire phase space
data very well. as in chaotic billiards or random analytic functions with real
coefficients. This is especially true for polygons with high
VI. CONCLUSIONS genus.

We have studied the distribution of Husimi zeros in po- (v) The nearest-neighbor spacing distribution of zeros and

lygonal billiards in this paper and our observations can pdhe two-point correlatiomR,(r) suggests that for pseudointe-
summarized as follows grable billiards, the correlations are very well described by

(i) In integrable enclosures, the Husimi density is peaked® CGinibre ensemble of complex random matrices. It is,
on the classical torus and the zeros lie equispaced on fixddPWever, not clear why this is so and a proper understanding

curves that are located away from the torus when the minilS desirable.
mum uncertainty state is a coherent state.
(ii) The zeros tend to move as the uncertainties in position
and momentum are varied even as they obey the minimum ACKNOWLEDGMENTS
uncertainty relation. Thus, coherent statedpEAq
=\#/2) are the most classical of all minimum uncertainty The authors acknowledge stimulating discussions with
states. Professor A. Voros and thank Dr. Pragya Shukla for valuable
(iii) A weak signature of pseudointegrability can be assohelp in our studies on correlations. D.B. also acknowledges
ciated with the clustering of some zeros around a few lines aseveral useful discussions on quasiprobability distributions
observed in some low-genus polygons. with Dr. R. R. Puri.
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