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Implications of varying communication speeds in “globally” coupled maps
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We have constructed a generalization of “globally” coupled maps, where the speed of information propa-
gation can vary, giving rise to an “effective mean field,” which involves suitably time-delayed state variables
of the various lattice sites. We report the wealth of spatiotemporal phases our prototypical model yields and
describe the systematic effects of the various parameters on the dynamical characteristics of the system.
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INTRODUCTION such as Josephson junction arralyere too coupling via de-
layed fields is in fact most appropriafg]). One can then
The coupled map latticCML) was introduced by expect that the study of retarded long-range coupling, even
Kaneko[1] as a simple model capturing the essential featured) toy models, would help us understand such systems better.
of spatiotemporal dynamics in extended nonlinear systems.

Over the past decade research centered around CMLs has |. MODEL
yielded suggestive conceptual models of complex phenom- . .
ena in fields ranging from biology to engineerifigj]. A Now we describe the proposed class of generalized

CML is a dynamical system with discrete time, discrete GCMs. The space on which the dynamics occurs is a discrete
space, and continuous state variables. It usually consists @ne-dimensional lattice, with periodic boundary conditions,
dynamical elements on a lattice that interact with suitabljwhere the sites are denoted by a set of integers
chosen sets of other elements. In particular, globally coupled1, . .. N, N being the linear size of the latticéGenerali-
maps(GCMs), where the coupling includes all lattice sites, zations to higher-dimensional lattices are straightforward.
has yielded a host of very different features. This class oP€fined on each site is @ontinuous state variablgwhich
systems is of considerable interest in modeling phenomengorresponds to the physical variable of intereinoted by
as diverse as Josephson junction arrays, multimode lase(i), wheren is the discrete time. Now the local on-site
vortex dynamics, and even biological information processdynamics is given by a suitable nonlinear méfx). We
ing, neurodynamics, and evolutionary biology. The ubiquitychoose this to be the logistic map as it has widespread rel-
of distributed systems with high interconnectivity has madeevance in the context of low-dimensional chadéx)=1
GCMs the focus of sustained research intef2$t —ax?. The nonlinearity parameter is chosen to be 2, i.e.,
Here we propose a generalization of globally coupledthe local dynamics is completely chaotic.
maps to include a scenario where the speeds of information The coupling is “global” in the sense that the dynamics
propagation can vary, i.e., a situation that goes beyond thef a certain site is influenced by all the other sites. The cru-
usual instantaneous information exchange. This takes intoial difference from conventional globally coupled systems
account the possibility that a wide range of communicationis that the information of the state of the other sites is not
speeds may occur in a network of coupled dynamical sysreached instantaneously. Instead, the communication speeds
tems. Now such a generalization of the GCM would serve agre finite and local dynamical information takes a finite time
fertile ground for testing the implications of varying rates of to propagate through the lattice. This implies that the global
information flow in extended systems. Further, it yields acoupling is incorporated through an “effective mean field”
prototypical model that can potentially be “tailored” to a that consists o$uitably time-delayed states of the other sites
wider range of phenomena, as it considers physical situation$uch a scenario is relevant, for instance, in the context of
beyond the scope of current models. Some areas of immedi{obal coupling as a simplifying mean-field-type approach to
ate relevance, for instance, are neuromorphol@ggurons local couplings, which are usually diffusive. In such a situa-
process information from several different neurons at intion, local dynamical information generically takes a finite
creasing distances, in a delayed fashion, as nonsynchronotige to travel through the lattice from the source and it is of
coupling is a characteristic of chemical synapses; for ininterest to incorporate this feature in the mogel.
stance, in the long coordinating neurons, involving long- We now define a few important parameters. First, there is
distance coupling, the long-ranged interactions are througthe speed of information flov. In our discrete space-time
phase delays or lags that are determined by their distancittice this implies that information propagatessites(iso-
and these are important in understanding the complex timingyopically) in a single dynamical step. That is, information
relationships in intersegmental coordinati@j), optics(de- reaches a distance spannihgsites, after a time delajp
lays arise very naturally and ubiquitously in laser nonlinear=int(L/S) iterations. So the maximum time delay in a one-
dynamics; for instance, recent experiments on a fiber ringlimensional lattice of siz&l, with periodic boundary condi-
laser have brought to light how crucial it is to take into tions, iSD 5= int(N/2S).
account delays in the couplingt]), and electrical circuits Then the complete dynamical picture is
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N/2 “controlling” extended chaotic systen{svhich is essentially
- a search for algorithms that yield stable synchronized states
- [8]). So the emergence of synchronized fixed point dynamics
< from global coupling of chaotic elements may have practical
utility in the control of large interactive systems.
20 Here we briefly assess the static and dynamic features of

the solutions in this phase of the model. The static solution
must satisfy the conditior* = (1— ¢€)f(x*) + ex*, so when

w | V ITIVII | 1T 1 f(x)=1—2x2, the fixed point solutions for € e<1 arex*
=1/2 and—1. Linear stability of the static solution yields
- (taking into account the fact thad,_p=x* for D>0 and
Xn_p=X*+x for D=0) the NX N stability matrixJ=(1

s —e)f'(x*)1+(e/N)M, where the matrix is an identity ma-

2 | trix and the matrixM has entriesM(i,j)=1 when|j—i|
<§S, with i,j arranged cyclically. The magnitude of the ei-
1 | | | | genvalues of) [A;=(1—¢€)f'(x*)+(e/N)\;, where\;,]
=1,... N, are the eigenvalues of the matfik] will indi-
cate the stability of the spatiotemporal fixed poxft. For
coupling strength example, forS~N/2 it is easily seen that this gives the stable

* 1 H
FIG. 1. Schematic phase diagram, displaying the various dyan[ange Ofe, for x* =0.5, to bee> 3, which agrees completely

mical phases in the space of parameters: coupling strengthd W'th..the values o_btal_ned numerically. . .
communication spee8& (with system sizeN=1000). The phases (i) The eV9|UtI0n is a cycle t(_emporqlly, Wlth. a traveling-
are |, the spatiotemporal fixed point; Il, the cyclic temporal evqu-Wave'I'ke c_)scnlatory _SpaC? profile. An interesting featurg of
tion and oscillatory space profile: Ill, the cyclic temporal evolution tN€S€ spatial undulations is the dependence of the period of
with an irregular spatial profile; 1V, noisy cycles and spatial irregu- SPatial oscillationsTp,c 0n the maximum delay in the ef-
larity; and V, the “turbulent” phase. See the text for a detailed fective mean field, namely,

description of the phases.
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Xn+1(1) = (1= €)TOa(1)) + €hn(i), @ (see Fig. 2 Thus the dynamics in this phase present an
where the coupling strength is given by parametend the ~ @ltérnate way of producing traveling-wave solutions in spa-

effective mean fielch, (i) is given by tially extended syste_n‘(and this may be qu_ite relevant in the
neuronal context of intersegmental coordination, such as that
1 Pmax S(O+1)-1 responsible for undulatory locomotid8]).
h,(i)= N E AE Xp_p(i£A). 2 (iii) The evolution is a cycle temporally, with an irregular
D=0 ASSD

spatial profile.
(The site indices are cyclic due to periodic boundary condi- ('\.’) The system evolves_ as n0|sy.9ycles and is wrggular
tions andA<N/2.) The usual GCM limit is obtained when SPa“a”y- Spectra of dyngmlcal quant'mes §ucfh&mdx In
S>int(N/2), which implies that the maximum delay in- this phase are characterized by promingspikes on a noisy

; ; =Sy (i broad background and are very similar to the spectra associ-
volved is 0, 1.€.fin=2iXn(1) [6] ated with “periodic chaos'19].
Il RESULTS (v) The system displays no apparent regularity or correla-

tions in time or space. We call this phase “turbuleffl0].

We choose random initial conditiong(i) e[—1,1] and  Later we will describe the surprising emergent features of the
evolve the system according to Hd). After transience, we effective mean field in this phase.
follow the dynamical evolution of the effective mean field In Fig. 3 we display bifurcation diagrams indicating the
h,(i) and the individual state variableg(i) at various sites details of the phases, as reflected in the value of the effective
i. Note that the spectral characteristicsxgfi) andh,(i) are ~ mean field, for varying values of coupling strengthsat
independent of the site (Thus we may, with no ambiguity, different communication spee& These diagrams represent
drop the label in describing the time evolution of the vari- four horizontal cuts, a6=1,25,125,250, in Fig. 1.
ablesx andh [7].)

B. Transient dynamics

A. Dynamical phases in the model In recent years, rather exciting features of transience,

The principal dynamical phases that emerge in the spacelosely related to many aspects of nonlinear dynamics, are
of the two crucial parameters coupling strengtand speed being brought to light in both numerical and laboratory ex-
of information propagatior®, are the following(see Fig. 1L perimentg 11]. These developments have motivated us here

(i) First is the spatiotemporal fixed point where the entireto research in depth the transient phenomena emerging from
lattice is synchronized, i.e., spatially homogeneous, and eaatur model. The spectral characteristics of transient dynamics
element is temporally invariant as well. This phase of thecan be constructed by taking transient time series of indepen-
model has immediate relevance to the important and opedent runs of reasonable length and averaging their power
problem of spectra. We found that the power spectrum of the effective
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mean field(computed in this manngdisplayed clear 7 propagation speefiis finite, collective quantities such as the
behavior in thee<0.5 phasdsee Fig. 4 As the system size effective mean field will have a transient process quite like a
N was increased and communication sp&edkcreased, the “random-walk™” function, i.e., from some initial value the
transience grew as N/2S. The evolution of individual sites effective mean field will evolve essentially as a running sum,
did not show any evidence of this long transient behavioincrementing & “random” components at each dynamical
and was merely noisy and flat2]. This emergence of dy- time step. Aftem=N/2S iterations then, it will arrive at the
namically significant global transient phenomena from shorfirst “bonafide” effective mean field, i.e., a mean field that is
featureless local transience can provide a fertile ground focomprised entirely of state variables evolving under their
future numerical and experimental investigations. asymptotic dynamics. This marks the end of the transient
One can rationalize this interesting transient phenomenoprocess. So the transience timeN&£S (which tends to in-
as follows: Whene is low, the dynamics of the state vari- finity for low S as the system sizBl—o) and is an inte-
ables at each site(i) is chaotic and so the transient processgrated white-noise process, which naturally leadsP{d)
and the evolution thereafter behaves almost like quasirandom
numbers, thus yielding white-noise-like flat power spectra £ . —— —

P(f)~1/f° [13]. On the other hand, when the information ,
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0 02 04 06 08 0 02 04 06 08 1 we average over 20 transient runs of length 512 each. On the ab-
scissa we have fpwheref is the frequency, and on the ordinate we
FIG. 3. Bifurcation diagrams showing the effective mean field have IP(f), whereP is the power.[See Fig. ) for the power
vs coupling strengtte, for four values of communication speeds: spectrum of the asymptotic dynamics of the effective mean field for
S=1, 25, 125, and 250. a comparison with the transient dynamics given Here.
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FIG. 5. Power spectra of the effective mean field wigenl, —4000,e=0.1, and communication spe& 2000, 50, and 1 for

€=0.1, and s;_/stem sizh =250, 1000, and 400.0 for curves b, ._curvesa, b, andc, respectively. Here we average over 20 runs of
andc, respectively. The power spectrum of a single site in a IattlceIength 1024 each. On the ordinate we have(f), whereP is the

of sizeN=1000 is also shown above the mean-field spectra. Here . I
we average over 20 runs of length 1024 each. On the ordinate V\})ower, and on the abscissa we hdyevhich is the frequency.The

have IrP(f), whereP is the power, and on the abscissa we héye Snlt_s_of the ordinate IR(f) have _been_ tra_nslated f_or tvx_/o spectra by
L . additive constants for ease of visualization. Cubvs shifted down

which is the frequency. Note that we have taken care to discard thS 1 and curves by 4]

long transience mentioned in the tekThe units of the ordinate y y 2.

InP(f) have been translated for two spectra by additive constants for

ease of visualization. Cunwis shifted down by 1 and the spectrum

of the single site by 4.

However, interestingly, one observes the development of
global “beating” patterns in our effective mean field, as
manifest in the emergence of peaks varying degrees of
~1/f2 [14]. This is exactly what is observed numerically in sharpnessin the spectrafor all values of communication
extensive simulations: The transient times scaldl@&S and  speeds SThis is very evident in the example displayed in
the transient spectra display powe(f)~1/f2. So low in-  Fig. 5, where we have the slowest possible communication
formation propagation speeds can yield an arbitrarily longspeed, namelyS=1, which is very far indeed fronS
transient dynamics for collective quantities, with well- ~N/2 corresponding to the usual GCM. Here too it is clear
defined 1f? spectral characteristics. It thus constitutes anthat prominent broad peaks begin to emerge in the spectra of
other mechanism fofor, alternately, can be considered an-the effective mean field, as lattice size increases, indicating
other source of generating low-frequency noise in large the development of collective “modes” in the global dy-
systems. namics of large systems. Note the contrast with the spectra of
a single sitggiven in the same figure for referencwhich is
C. Emergent coherence in the turbulent phase always noisy and flateven in very large latticesreflecting
It was observed, in previous studies of the “turbulent” the chaotic evolutions of the individual sites. It is quite re-
phase of GCMs $~N/2), that while there was no explicit markable, then, that theequence of past states of the sites
evidence of correlation among the elements, there were prglevelop certain sustained correlations, which result in the
nounced signatures of subtle collective behayi® This development of rough quasiperiodicities in the effective
was manifested in the development of broad peaks in thenean fieldThese “memory” effects in the dynamics, which
power spectra of collective quantities, such as the mean fielgllow the site variables to conspire over a spanDgf,y
as the number of elements coupled was incre@bedigh the iterations to produce a regularly beating mean field, are
individual evolutions were chaodicNow it is valuable to amazing, epsecially if one takes note of the fact that each
ascertain which of these emergent features of conventionahdividual site is losing track of its previous state exponen-
GCMs persist at finite communication spedds., whenS tially fast due to the existence of positive Lyapunov expo-
<N/2), especially in view of the fact that the implicit time nents[16].
averaging involved in constructing an effective mean field The magnitude of the spectral peaks expect¢di} de-
from delayed variables may be expected to eliminate the colerease ass decreases from the globally coupled limit, i.e.,
lective coherencgl5]. when S<N/2. However, remarkably, we find that &is
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lowered much further, i.e., pushed towards the other extrembrought to light some different transient dynamics of the
limit S—1, the peaks begin to become pronounced agaireffective mean field, which displays very cleafspectral

For instance, in the examples shown in Fig(l&tice size characteristics, with the length of transience scalintyl&s.
N=4000) the peak is very prominent f&=2000. Then, as Further, in the turbulent phase of our system, one observed
S is lowered it becomes more broad and routike at S  the emergence of certain persisting subtle coherences, as re-
=50, which is displayeq but asS is decreased further the flected in the development of prominent peaks in the spectra
peaks in the spectra become more pronounced ad@hen of the effective mean field, for all values of communication
limiting case ofS=1 is shown [17]. speedsS. These effects were most enhanced in the limit of
very largeS, followed by weak effects at moderagand
remarkably enouglidefying expectations of time averaging

) ~ blurring these effecisrather more pronounced collective
In summary, we have constructed a generalized GCM inmodes again at very smel

corporating the provision of varying communication speeds.
A variety of dynamical phases emerge, depending on the rate
of information propagatiors (1<S~N/2) and strength of
couplinge. The emergent phenomena include spatiotemporal
fixed points and spatiotemporal cycles, markedSogepen- | would like to thank Gabriel Perez for many stimulating
dent traveling-wave-like spatial oscillations. We have alsodiscussions on this topic.

CONCLUSION
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