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Implications of varying communication speeds in ‘‘globally’’ coupled maps

Sudeshna Sinha
The Institute of Mathematical Sciences, CIT Campus, Madras 600 113, India

~Received 2 July 1997!

We have constructed a generalization of ‘‘globally’’ coupled maps, where the speed of information propa-
gation can vary, giving rise to an ‘‘effective mean field,’’ which involves suitably time-delayed state variables
of the various lattice sites. We report the wealth of spatiotemporal phases our prototypical model yields and
describe the systematic effects of the various parameters on the dynamical characteristics of the system.
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INTRODUCTION

The coupled map lattice~CML! was introduced by
Kaneko@1# as a simple model capturing the essential featu
of spatiotemporal dynamics in extended nonlinear syste
Over the past decade research centered around CMLs
yielded suggestive conceptual models of complex phen
ena in fields ranging from biology to engineering@1#. A
CML is a dynamical system with discrete time, discre
space, and continuous state variables. It usually consis
dynamical elements on a lattice that interact with suita
chosen sets of other elements. In particular, globally coup
maps~GCMs!, where the coupling includes all lattice site
has yielded a host of very different features. This class
systems is of considerable interest in modeling phenom
as diverse as Josephson junction arrays, multimode la
vortex dynamics, and even biological information proce
ing, neurodynamics, and evolutionary biology. The ubiqu
of distributed systems with high interconnectivity has ma
GCMs the focus of sustained research interest@2#.

Here we propose a generalization of globally coup
maps to include a scenario where the speeds of informa
propagation can vary, i.e., a situation that goes beyond
usual instantaneous information exchange. This takes
account the possibility that a wide range of communicat
speeds may occur in a network of coupled dynamical s
tems. Now such a generalization of the GCM would serve
fertile ground for testing the implications of varying rates
information flow in extended systems. Further, it yields
prototypical model that can potentially be ‘‘tailored’’ to
wider range of phenomena, as it considers physical situat
beyond the scope of current models. Some areas of imm
ate relevance, for instance, are neuromorphology~neurons
process information from several different neurons at
creasing distances, in a delayed fashion, as nonsynchro
coupling is a characteristic of chemical synapses; for
stance, in the long coordinating neurons, involving lon
distance coupling, the long-ranged interactions are thro
phase delays or lags that are determined by their dista
and these are important in understanding the complex tim
relationships in intersegmental coordination@3#!, optics~de-
lays arise very naturally and ubiquitously in laser nonline
dynamics; for instance, recent experiments on a fiber r
laser have brought to light how crucial it is to take in
account delays in the coupling@4#!, and electrical circuits
571063-651X/98/57~4!/4041~5!/$15.00
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such as Josephson junction arrays~here too coupling via de-
layed fields is in fact most appropriate@5#!. One can then
expect that the study of retarded long-range coupling, e
in toy models, would help us understand such systems be

I. MODEL

Now we describe the proposed class of generali
GCMs. The space on which the dynamics occurs is a disc
one-dimensional lattice, with periodic boundary condition
where the sites are denoted by a set of integersi , i
51, . . . ,N, N being the linear size of the lattice.~Generali-
zations to higher-dimensional lattices are straightforwar!
Defined on each site is a~continuous! state variable~which
corresponds to the physical variable of interest! denoted by
xn( i ), wheren is the discrete time. Now the local on-sit
dynamics is given by a suitable nonlinear mapf (x). We
choose this to be the logistic map as it has widespread
evance in the context of low-dimensional chaos:f (x)51
2ax2. The nonlinearity parametera is chosen to be 2, i.e.
the local dynamics is completely chaotic.

The coupling is ‘‘global’’ in the sense that the dynami
of a certain site is influenced by all the other sites. The c
cial difference from conventional globally coupled system
is that the information of the state of the other sites is
reached instantaneously. Instead, the communication sp
are finite and local dynamical information takes a finite tim
to propagate through the lattice. This implies that the glo
coupling is incorporated through an ‘‘effective mean field
that consists ofsuitably time-delayed states of the other site.
~Such a scenario is relevant, for instance, in the contex
global coupling as a simplifying mean-field-type approach
local couplings, which are usually diffusive. In such a situ
tion, local dynamical information generically takes a fini
time to travel through the lattice from the source and it is
interest to incorporate this feature in the model.!

We now define a few important parameters. First, ther
the speed of information flowS. In our discrete space-time
lattice this implies that information propagates toS sites~iso-
tropically! in a single dynamical step. That is, informatio
reaches a distance spanningL sites, after a time delayD
5 int(L/S) iterations. So the maximum time delay in a on
dimensional lattice of sizeN, with periodic boundary condi-
tions, isDmax5 int(N/2S).

Then the complete dynamical picture is
4041 © 1998 The American Physical Society
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xn11~ i !5~12e! f „xn~ i !…1ehn~ i !, ~1!

where the coupling strength is given by parametere and the
effective mean fieldhn( i ) is given by

hn~ i !5
1

N (
D50

Dmax

(
D5SD

S~D11!21

xn2D~ i 6D!. ~2!

~The site indices are cyclic due to periodic boundary con
tions andD<N/2.! The usual GCM limit is obtained whe
S. int(N/2), which implies that the maximum delay in
volved is 0, i.e.,hn5( ixn( i ) @6#.

II. RESULTS

We choose random initial conditionsx0( i )P@21,1# and
evolve the system according to Eq.~1!. After transience, we
follow the dynamical evolution of the effective mean fie
hn( i ) and the individual state variablesxn( i ) at various sites
i . Note that the spectral characteristics ofxn( i ) andhn( i ) are
independent of the sitei . ~Thus we may, with no ambiguity
drop the labeli in describing the time evolution of the var
ablesx andh @7#.!

A. Dynamical phases in the model

The principal dynamical phases that emerge in the sp
of the two crucial parameters coupling strengthe and speed
of information propagationS, are the following~see Fig. 1!.

~i! First is the spatiotemporal fixed point where the ent
lattice is synchronized, i.e., spatially homogeneous, and e
element is temporally invariant as well. This phase of
model has immediate relevance to the important and o
problem of

FIG. 1. Schematic phase diagram, displaying the various dy
mical phases in the space of parameters: coupling strengthe and
communication speedS ~with system sizeN51000). The phases
are I, the spatiotemporal fixed point; II, the cyclic temporal evo
tion and oscillatory space profile; III, the cyclic temporal evoluti
with an irregular spatial profile; IV, noisy cycles and spatial irreg
larity; and V, the ‘‘turbulent’’ phase. See the text for a detail
description of the phases.
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‘‘controlling’’ extended chaotic systems~which is essentially
a search for algorithms that yield stable synchronized st
@8#!. So the emergence of synchronized fixed point dynam
from global coupling of chaotic elements may have practi
utility in the control of large interactive systems.

Here we briefly assess the static and dynamic feature
the solutions in this phase of the model. The static solut
must satisfy the conditionx* 5(12e) f (x* )1ex* , so when
f (x)5122x2, the fixed point solutions for 0<e,1 arex*
51/2 and21. Linear stability of the static solution yield
~taking into account the fact thatxn2D5x* for D.0 and
xn2D5x* 1dx for D50) the N3N stability matrix J5(1
2e) f 8(x* )I 1(e/N)M , where the matrixI is an identity ma-
trix and the matrixM has entriesM ( i , j )51 when u j 2 i u
<S, with i , j arranged cyclically. The magnitude of the e
genvalues ofJ @L j5(12e) f 8(x* )1(e/N)l j , wherel j , j
51, . . . ,N, are the eigenvalues of the matrixM # will indi-
cate the stability of the spatiotemporal fixed pointx* . For
example, forS;N/2 it is easily seen that this gives the stab
range ofe, for x* 50.5, to bee. 1

2, which agrees completely
with the values obtained numerically.

~ii ! The evolution is a cycle temporally, with a traveling
wave-like oscillatory space profile. An interesting feature
these spatial undulations is the dependence of the perio
spatial oscillationsTspace on the maximum delay in the ef
fective mean field, namely,

Tspace5Dmax11

~see Fig. 2!. Thus the dynamics in this phase present
alternate way of producing traveling-wave solutions in sp
tially extended systems~and this may be quite relevant in th
neuronal context of intersegmental coordination, such as
responsible for undulatory locomotion@3#!.

~iii ! The evolution is a cycle temporally, with an irregula
spatial profile.

~iv! The system evolves as noisy cycles and is irregu
spatially. Spectra of dynamical quantities such ash andx in
this phase are characterized by prominentd spikes on a noisy
broad background and are very similar to the spectra ass
ated with ‘‘periodic chaos’’@9#.

~v! The system displays no apparent regularity or corre
tions in time or space. We call this phase ‘‘turbulent’’@10#.
Later we will describe the surprising emergent features of
effective mean field in this phase.

In Fig. 3 we display bifurcation diagrams indicating th
details of the phases, as reflected in the value of the effec
mean field, for varying values of coupling strengthse, at
different communication speedsS. These diagrams represe
four horizontal cuts, atS51,25,125,250, in Fig. 1.

B. Transient dynamics

In recent years, rather exciting features of transien
closely related to many aspects of nonlinear dynamics,
being brought to light in both numerical and laboratory e
periments@11#. These developments have motivated us h
to research in depth the transient phenomena emerging
our model. The spectral characteristics of transient dynam
can be constructed by taking transient time series of indep
dent runs of reasonable length and averaging their po
spectra. We found that the power spectrum of the effec
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-
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FIG. 2. Spatial profilex( i ) vs i for a system
of size N51000, ate50.5 and communication
speedS5250, 125, 50, and 10.
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mean field~computed in this manner! displayed clear 1/f 2

behavior in thee,0.5 phase~see Fig. 4!. As the system size
N was increased and communication speedS decreased, the
transience grew as;N/2S. The evolution of individual sites
did not show any evidence of this long transient behav
and was merely noisy and flat@12#. This emergence of dy
namically significant global transient phenomena from sh
featureless local transience can provide a fertile ground
future numerical and experimental investigations.

One can rationalize this interesting transient phenome
as follows: Whene is low, the dynamics of the state var
ables at each sitex( i ) is chaotic and so the transient proce
and the evolution thereafter behaves almost like quasiran
numbers, thus yielding white-noise-like flat power spec
P( f );1/f 0 @13#. On the other hand, when the informatio

FIG. 3. Bifurcation diagrams showing the effective mean fie
vs coupling strengthe, for four values of communication speed
S51, 25, 125, and 250.
r
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propagation speedS is finite, collective quantities such as th
effective mean field will have a transient process quite lik
‘‘random-walk’’ function, i.e., from some initial value the
effective mean field will evolve essentially as a running su
incrementing 2S ‘‘random’’ components at each dynamica
time step. Aftern5N/2S iterations then, it will arrive at the
first ‘‘bonafide’’ effective mean field, i.e., a mean field that
comprised entirely of state variables evolving under th
asymptotic dynamics. This marks the end of the transi
process. So the transience time isN/2S ~which tends to in-
finity for low S as the system sizeN→`) and is an inte-
grated white-noise process, which naturally leads toP( f )

FIG. 4. Power spectrum of the transient dynamics of the eff
tive mean field in a system withS51, e50.1, andN51000. Here
we average over 20 transient runs of length 512 each. On the
scissa we have lnf, wheref is the frequency, and on the ordinate w
have lnP(f), whereP is the power.@See Fig. 5~b! for the power
spectrum of the asymptotic dynamics of the effective mean field
a comparison with the transient dynamics given here.#
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;1/f 2 @14#. This is exactly what is observed numerically
extensive simulations: The transient times scale asN/2S and
the transient spectra display powerP( f );1/f 2. So low in-
formation propagation speeds can yield an arbitrarily lo
transient dynamics for collective quantities, with we
defined 1/f 2 spectral characteristics. It thus constitutes a
other mechanism for~or, alternately, can be considered a
other source of! generating low-frequency noise in larg
systems.

C. Emergent coherence in the turbulent phase

It was observed, in previous studies of the ‘‘turbulen
phase of GCMs (S;N/2), that while there was no explici
evidence of correlation among the elements, there were
nounced signatures of subtle collective behavior@2#. This
was manifested in the development of broad peaks in
power spectra of collective quantities, such as the mean fi
as the number of elements coupled was increased~though the
individual evolutions were chaotic!. Now it is valuable to
ascertain which of these emergent features of conventi
GCMs persist at finite communication speeds~i.e., whenS
,N/2), especially in view of the fact that the implicit tim
averaging involved in constructing an effective mean fi
from delayed variables may be expected to eliminate the
lective coherence@15#.

FIG. 5. Power spectra of the effective mean field whenS51,
e50.1, and system sizeN5250, 1000, and 4000 for curvesa, b,
andc, respectively. The power spectrum of a single site in a lat
of sizeN51000 is also shown above the mean-field spectra. H
we average over 20 runs of length 1024 each. On the ordinate
have lnP(f), whereP is the power, and on the abscissa we havef ,
which is the frequency. Note that we have taken care to discard
long transience mentioned in the text.@The units of the ordinate
lnP(f) have been translated for two spectra by additive constants
ease of visualization. Curvec is shifted down by 1 and the spectru
of the single site by 4.#
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However, interestingly, one observes the developmen
global ‘‘beating’’ patterns in our effective mean field, a
manifest in the emergence of peaks~of varying degrees of
sharpness! in the spectrafor all values of communication
speeds S. This is very evident in the example displayed
Fig. 5, where we have the slowest possible communica
speed, namely,S51, which is very far indeed fromS
;N/2 corresponding to the usual GCM. Here too it is cle
that prominent broad peaks begin to emerge in the spectr
the effective mean field, as lattice size increases, indica
the development of collective ‘‘modes’’ in the global dy
namics of large systems. Note the contrast with the spectr
a single site~given in the same figure for reference!, which is
always noisy and flat~even in very large lattices!, reflecting
the chaotic evolutions of the individual sites. It is quite r
markable, then, that thesequence of past states of the sit
develop certain sustained correlations, which result in t
development of rough quasiperiodicities in the effect
mean field.These ‘‘memory’’ effects in the dynamics, whic
allow the site variables to conspire over a span ofDmax
iterations to produce a regularly beating mean field,
amazing, epsecially if one takes note of the fact that e
individual site is losing track of its previous state expone
tially fast due to the existence of positive Lyapunov exp
nents@16#.

The magnitude of the spectral peaks expectedly@15# de-
crease asS decreases from the globally coupled limit, i.e
when S,N/2. However, remarkably, we find that asS is
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FIG. 6. Power spectra of the effective mean field whenN
54000,e50.1, and communication speedS52000, 50, and 1 for
curvesa, b, andc, respectively. Here we average over 20 runs
length 1024 each. On the ordinate we have lnP(f), whereP is the
power, and on the abscissa we havef , which is the frequency.@The
units of the ordinate lnP(f) have been translated for two spectra
additive constants for ease of visualization. Curveb is shifted down
by 1 and curvec by 4.#
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57 4045IMPLICATIONS OF VARYING COMMUNICATION . . .
lowered much further, i.e., pushed towards the other extre
limit S→1, the peaks begin to become pronounced ag
For instance, in the examples shown in Fig. 6~lattice size
N54000) the peak is very prominent forS52000. Then, as
S is lowered it becomes more broad and rough~like at S
550, which is displayed!, but asS is decreased further th
peaks in the spectra become more pronounced again~the
limiting case ofS51 is shown! @17#.

CONCLUSION

In summary, we have constructed a generalized GCM
corporating the provision of varying communication spee
A variety of dynamical phases emerge, depending on the
of information propagationS (1<S;N/2) and strength of
couplinge. The emergent phenomena include spatiotemp
fixed points and spatiotemporal cycles, marked byS depen-
dent traveling-wave-like spatial oscillations. We have a
;
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brought to light some different transient dynamics of t
effective mean field, which displays very clear 1/f 2 spectral
characteristics, with the length of transience scaling asN/2S.
Further, in the turbulent phase of our system, one obser
the emergence of certain persisting subtle coherences, a
flected in the development of prominent peaks in the spe
of the effective mean field, for all values of communicatio
speedsS. These effects were most enhanced in the limit
very largeS, followed by weak effects at moderateS and
remarkably enough~defying expectations of time averagin
blurring these effects! rather more pronounced collectiv
modes again at very smallS.
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