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Targeting chaos through adaptive control
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We describe adaptive control algorithms whereby a chaotic dynamical system can be steered to a target state
with desired characteristics. A specific implementation considered has the objective of directing the system to
a state which is more chaotic or mixed than the uncontrolled one. This methodology is easy to implement in
discrete or continuous dynamical systems. It is robust and efficient, and has the additional advantage that
knowledge of the detailed behavior of the system is not required.@S1063-651X~98!50503-X#

PACS number~s!: 05.45.1b
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Adaptive control algorithms have hitherto been imp
mented for the purpose of maintaining periodic behavior
nonlinear systems@1–3#. Recently there has been some i
terest in control algorithms whose aim is to target other ty
of dynamical behavior. ‘‘Anticontrol’’ algorithms, namely
those wherein the objective is to maintain@4# or to enhance
@5# the chaoticity of dynamical systems have been devis
These efforts have been motivated by practical situati
where the enhancement or maintenance of chaos has d
able consequences. Examples of these can be found in
texts as diverse as mixing flows@6#, electronic systems@7#,
and chemical reactions@8#, where the enhancement of cha
can lead to improved performance, or in biological applic
tions such as in neural systems, where the maintenanc
chaos provides the key to the avoidance of pathological
havior @9#.

In this Rapid Communication we describe an adapt
anticontrol algorithm which is simple and easily impl
mented. The algorithm is set up to maintain a desired leve
chaoticity, and to achieve a target value of the lo
Lyapunov exponent or a local stretching rate. The techni
is sufficiently general and can be extended so as to ma
given dynamical system achieve a target value of any des
variable or function.

In the context of nonlinear dynamical systems, t
method of adaptive control@1,2# applies a feedback loop in
order to drive the system parameter~or parameters! to the
values required so as to achieve a desired or target state.
is implemented by augmenting the evolution equation for
dynamical system by an additional equation for the evolut
of the parameter~s! as described below.

Consider a generalN-dimensional dynamical system de
scribed by the evolution equation

Ẋ5F~X;m;t !, ~1!

whereX[(X1 ,X2 , . . . ,XN) are the state variables andm is
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the parameter whose value determines the nature of the
namics. The adaptive control is effected by the additio
dynamics

ṁ5e~P!2P!, ~2!

whereP! is the target value of some variable or prope
~which could be a function of several variables! P, and the
value ofe indicates the stiffness of control. The extension
the situation of several control parameters is straightforwa

The scheme is adaptive since in the above procedure
parameters which determine the nature of the dynamicsself-
adjust or adapt themselves to yield the desired dynam
This has also been termed ‘‘dynamic feedback control’’
the literature@10#. The adaptive principle is remarkably ro
bust and efficient in generic nonlinear systems@2#, and may
therefore be of considerable utility in a large variety of ph
nomena, ranging from biological units to control engine
ing.

For the maintenance of a stable fixed point@1# in a dis-
crete dynamical system for example, the procedure is as
lows. The nonlinear system evolves according to the app
priate equation

xn115 f ~a,xn!, ~3!

where a is the parameter to be controlled. If the requir
value ofx is, say,x!, then the additional equation~for P[x!

an115an1e~x!2xn! ~4!

has the desired effect of tuning the value ofa so that the
dynamics of the combined equations givesx→x! over a
wide range of initial conditions. The stiffnesse determines
how rapidly the system is controlled. The control time, d
fined as the time required to reach the desired state, is
cially dependent on the value ofe. Numerical experiments
show that for smalle the recovery time is inversely propor
tional to the stiffness of control. This follows from the fa
that whene is small compared to the inverse timescales
the original dynamical system, we can use an adiabatic
proximation sinceṁ→0, from which @10# it follows that
control time will be proportional to 1/e. With modifications,
R2507 © 1998 The American Physical Society
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this method can be made to control to a stable or unst
periodic orbit of arbitrary period@2,10,11#.

If the desired target state is chaotic rather than perio
one needs to choose an appropriate propertyP which should
reflect the desired chaotic nature of the target state. There
the natural choice ofP is the Lyapunov exponent. It is thu
clear that in order to achieve a desired value of the Lyapu
exponent, say,l!, the procedure to be followed is simila
~with P[l!.

For a one-dimensional~1D! discrete dynamical system a
in Eq. ~3! above, the Lyapunov exponent is defined throu

l5 lim
N→`

1

N (
i 50

N21

lnu f 8~a,xi !u. ~5!

The control equation~4! takes the form

an115an1e~l!2ln!, ~6!

where ln5 lnuf8(a,xn)u is the instantaneous value of th
Lyapunov exponent. Implementation of the methodology
say, the logistic equation, is direct and the relevant equat
are

xn115anxn~12xn!, ~7!

ln5 lnuan~122xn!u, ~8!

an115an1e~l!2ln!. ~9!

Shown in Fig. 1 is an implementation of the control f
l!50.36. Sincel~a! for the logistic equation is a highly
nonmonotonic function, there can be several parameter
ues for which the system has the samel, namely, severa
different attractors with the same Lyapunov exponent
possible. For example, the Lyapunov exponent is appr

FIG. 1. Variation of the parametera as a function of iteration
step. The target Lyapunov exponent isl!50.36, and the stiffness is
~a! e50.001 and~b! e50.01. The different curves correspond
different initial a. In all cases, the targetl! is achieved rapidly and
maintained.
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mately 0.36 ata'3.7 as well as ata'3.86. Which of these
values the system adaptively goes to depends on the in
state, the stiffness, and the effective basin of attraction~in
parameter space!. For small stiffness, the system stick
closely to one or the other attractor, only occasionally m
ing an excursion from one to the other, while for large sti
ness, the fluctuations in the parameter are much larger, as
be seen in Fig. 1. For small values of stiffness the time ta
to reach the desired goal is usually inversely proportiona
the stiffness of control. Note, however, that increasing st
ness beyond a point can make the method unstable and
dynamics unbounded. There is, therefore, an optimal stra
to be employed. While the optimal strategy to be used can
worked out easily in a practical implementation, an analy
optimality criterion is difficult to define.

The distribution of finite-time Lyapunov exponents show
that the short-time chaoticity properties of the adaptive s
tem can be quite different from the equivalent chaotic s
tem. Shown in Fig. 2 are the distributions of adaptively co
trolled systems with the above averagel50.36, and with
different stiffness, for 20 and 50 steps, respectively. Wh
the desiredl is maintained in all cases, it is clear that th
adaptation works differently for large or small stiffness. Lo
stiffness allows the system to explore different attract
with different properties, giving a wider spread in th
Lyapunov exponents, while a higher stiffness ensures
the local l;l!, narrowing the distribution. Extensions o
this procedure can be made to control higher-dimensio
systems.

The fact that the control is always operative means t
the augmented system is robust to perturbations. Indee
the parameter is perturbed to a very different value, the s
tem readily and rapidly recovers to a dynamics such that
Lyapunov exponent is~nearly! l!, again with time that in-
versely depends one. Note, however, that this control work
only in the case of positivel!: one cannot adaptively contro
in this manner to a periodic orbit.

An application of practical importance is in enhancing t

FIG. 2. Probability distribution for finite time orN-step
Lyapunov exponents in the adaptively controlled system. The ta
Lyapunov exponent isl!50.36 as in Fig. 1.~a! N520 and~b! N
550 correspond to a stiffness ofe50.001, while~c! N520 and~d!
N550 correspond to a stiffness ofe50.01.
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mixing in chaotic systems. The appropriate adaptive strat
then is to takeP to be the stretching rate. Equation~2! thus
becomes

ṁ5e~Rtarget2Rlocal!, ~10!

whereRlocal is the instantaneous local stretching rate, a
Rtarget is the prescribed desired stretching rate, which can
principle be in any one of the dynamical variables charac
izing the system.

As an example, consider the Lorenz attractor,

ẋ5s~y2x!,

ẏ5mx2y2xz, ~11!

ż5xy2bz.

Choosing the evolution equation for the parameter to be

ṁ5e~Rtarget2 ẋ!, ~12!

where the instantaneous stretching rateRlocal5 ẋ, with ẋ
given by the evolution equation~11!, achieves the objective
Note that instead of thex direction,y or z can equally effec-
tively be used in the above control.

In the absence of knowledge of the evolution equation
above control can be effected by the discrete evolution eq
tion

m t1dt5m t1e~Rtarget8 2Dxt!, ~13!

whereDxt is the local stretching given byixt2xt2dti ~dt
small! whereRtarget8 5dtRtarget.

Shown in Fig. 3 is the result of an implementation of th
adaptive anticontrol equation~13! where the target stretchin
rate is specified to be 1.0 with the control stiffnesse50.1.
As can be seen, the controlled parameter first rapidly clim
~the rate of ascent being directly proportional to 1/e! from an
initial valuem535.0. Aroundm;380, it settles into fluctua-
tions which are of the integrated white noise type@i.e., the
power spectrum of the time series of these fluctuation
clearly S( f );1/f 2# lead to a very mixed system. Startin
off with any other value ofm leads to the same result, as do
control via Eq.~12! using the relation betweenRtarget and
Rtarget8 defined above.

The nature of adaptive anticontrol is such that the dyna
ics that obtains is intrinsically mixing. In contrast with sim
lar techniques where a stable state is targetted, the pre
mechanism@12# essentially drags the system rapidly to t
first appropriate state encountered in parameter sp
namely, one which matches the targeted local stretching
The system, in effect moves from~chaotic! attractor to at-
tractor, with significant fluctuations in the parameter tha
being controlled. By choosing a small target stretching ra
this same control mechanism can be used to obtain cycle
well. Somewhat fuzzy cycles are obtained, with the fuzzin
decreasing with decreasinge.
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It should be emphasized that knowledge of the map in
control algorithm above is in principle not required, since t
necessary information required to implement adaptive a
control is simply the difference between the current value
the variable and its previous value. On the other hand, i
essential that the parameterm being controlled must have th
driving power in order to effect large dynamical change
Parameters which are suitable for controlling are easy
identify through the appropriate dynamical phase diagram

In summary, we have presented here an adaptive a
rithm which can be used to achieve desired chaotic beha
in nonlinear dynamical systems. The anticontrol techniq
which is rapid, powerful and robust, extends adaptive con
methods for obtaining periodic orbits@1,2,11#. We have ap-
plied this to the case of achieving a target value of
Lyapunov exponent, or a desired value of the local stretch
rate and found that the methodology is successful in a n
ber of examples, including multidimensional and multip
rameter systems.

An important consideration is that the present method
be implemented without explicit knowledge of the dynamic
The possibility of treating the system as a black box is like
to be of utility in complex experimental applications@8,9#
necessitating the controlled maintenance or enhanceme
chaos.
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FIG. 3. Variation of the parameterm as a function of time for
the Lorenz attractor. The target stretching rate is 1.0, the stiffnes
e50.1, and the time step isdt50.01.
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@12# While the sign of the control dynamics given above holds
generic cases, there may be situations where the sign of
control dynamics is negative~for instance in the case of pa
rameterss andb in the Lorenz system!. This will happen if the
value of the initial parameter is larger than the closest para
eter which matches the target~not smaller, as is usual!. In real
implementations~where the dynamics is a black box! a gross
scan of the parameter space will give a reasonable indica
as to which sign to use.


