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We describe adaptive control algorithms whereby a chaotic dynamical system can be steered to a target state
with desired characteristics. A specific implementation considered has the objective of directing the system to
a state which is more chaotic or mixed than the uncontrolled one. This methodology is easy to implement in
discrete or continuous dynamical systems. It is robust and efficient, and has the additional advantage that
knowledge of the detailed behavior of the system is not requi@t063-651X98)50503-X]

PACS numbd(s): 05.45+b

Adaptive control algorithms have hitherto been imple-the parameter whose value determines the nature of the dy-
mented for the purpose of maintaining periodic behavior innamics. The adaptive control is effected by the additional

nonlinear systemfl—3]. Recently there has been some in- dynamics

terest in control algorithms whose aim is to target other types

of dynamical behavior. “Anticontrol” algorithms, namely,

those wherein the objective is to maintd#i or to enhance

p=e(P'=P), @

[5] the chaoticity of dynamical systems have been devisedwhere P* is the target value of some variable or property
These efforts have been motivated by practical situationgwhich could be a function of several variablgB, and the
where the enhancement or maintenance of chaos has desilue of e indicates the stiffness of control. The extension to
able consequences. Examples of these can be found in cotie situation of several control parameters is straightforward.
The scheme is adaptive since in the above procedure the
and chemical reactior{8], where the enhancement of chaos parameters which determine the nature of the dynasetfs
can lead to improved performance, or in biological applica-adjust or adapt themselves to yield the desired dynamics.
tions such as in neural systems, where the maintenance This has also been termed “dynamic feedback control” in
chaos provides the key to the avoidance of pathological bethe literature[10]. The adaptive principle is remarkably ro-
bust and efficient in generic nonlinear systeidk and may

In this Rapid Communication we describe an adaptivetherefore be of considerable utility in a large variety of phe-
anticontrol algorithm which is simple and easily imple- nomena, ranging from biological units to control engineer-
mented. The algorithm is set up to maintain a desired level oing.
For the maintenance of a stable fixed pdibf in a dis-
Lyapunov exponent or a local stretching rate. The techniquerete dynamical system for example, the procedure is as fol-
is sufficiently general and can be extended so as to makelaws. The nonlinear system evolves according to the appro-

texts as diverse as mixing flo§], electronic systemf7],

havior[9].

chaoticity, and to achieve a target value of the local

given dynamical system achieve a target value of any desiregriate equation

variable or function.

In the context of nonlinear dynamical systems, the
method of adaptive contrdlL,2] applies a feedback loop in

order to drive the system parameter parametepsto the

of the parametés) as described below.

Xn+l:f(a,Xn), (3)

where « is the parameter to be controlled. If the required
values required so as to achieve a desired or target state. Thialue ofx is, sayx*, then the additional equatidfor P=x)

is implemented by augmenting the evolution equation for the
dynamical system by an additional equation for the evolution

an+1:an+5(X*_Xn) (4)

Consider a generall-dimensional dynamical system de- has the desired effect of tuning the value @fso that the
dynamics of the combined equations gives>x* over a
wide range of initial conditions. The stiffnegsdetermines
how rapidly the system is controlled. The control time, de-
fined as the time required to reach the desired state, is cru-
cially dependent on the value ef Numerical experiments
show that for smalk the recovery time is inversely propor-
tional to the stiffness of control. This follows from the fact
that whene is small compared to the inverse timescales in
the original dynamical system, we can use an adiabatic ap-

proximation sinceu—0, from which [10] it follows that
control time will be proportional to . With modifications,

scribed by the evolution equation
X=F(X; u;1), (N

whereX=(X;,X,, ..., Xy) are the state variables andis
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FIG. 2. Probability distribution for finite time omMN-step

Lyapunov exponents in the adaptively controlled system. The target
Lyapunov exponent i&*=0.36 as in Fig. 1(a) N=20 and(b) N

=50 correspond to a stiffness ef0.001, while(c) N=20 and(d)

N =50 correspond to a stiffness ef=0.01.

FIG. 1. Variation of the parameter as a function of iteration
step. The target Lyapunov exponeniis=0.36, and the stiffness is
(@) €e=0.001 and(b) €e=0.01. The different curves correspond to
different initial a. In all cases, the targat* is achieved rapidly and

maintained. mately 0.36 atx~3.7 as well as atr=~3.86. Which of these

values the system adaptively goes to depends on the initial
this method can be made to control to a stable or unstablgtate, the stiffness, and the effective basin of attraction
periodic orbit of arbitrary period2,10,11. parameter spage For small stiffness, the system sticks
If the desired target state is chaotic rather than periodicglosely to one or the other attractor, only occasionally mak-
one needs to choose an appropriate propBrivhich should  ing an excursion from one to the other, while for large stiff-
reflect the desired chaotic nature of the target state. Therefoftess, the fluctuations in the parameter are much larger, as can
the natural choice oP is the Lyapunov exponent. It is thus be seenin Fig. 1. For small values of stiffness the time taken

clear that in order to achieve a desired value of the Lyapuno{o reach the desired goal is usually inversely proportional to
exponent, say\*, the procedure to be followed is similar the stiffness of control. Note, however, that increasing stiff-
(with P=\). ness beyond a point can make the method unstable and the

For a one-dimensiondlD) discrete dynamical system as dynamics unbounded. There is, therefore, an optimal strategy

in Eq. (3) above, the Lyapunov exponent is defined throughto be employed. While the optimal strategy to be used can be
worked out easily in a practical implementation, an analytic

optimality criterion is difficult to define.

The distribution of finite-time Lyapunov exponents shows
that the short-time chaoticity properties of the adaptive sys-
tem can be quite different from the equivalent chaotic sys-
tem. Shown in Fig. 2 are the distributions of adaptively con-
6) trolled systems with the above average-0.36, and with

different stiffness, for 20 and 50 steps, respectively. While
where \,=In|f'(a,x,)| is the instantaneous value of the the desired\ is maintained in all cases, it is clear that the

Lyapunov exponent. Implementation of the methodology in,adaptation works differently for large or small stiffness. Low

say, the logistic equation, is direct and the relevant equationgliffness allows the system to explore different attractors
are with different properties, giving a wider spread in the

Lyapunov exponents, while a higher stiffness ensures that
the local\~\*, narrowing the distribution. Extensions of
this procedure can be made to control higher-dimensional
(8)  systems.

The fact that the control is always operative means that
the augmented system is robust to perturbations. Indeed, if
the parameter is perturbed to a very different value, the sys-

Shown in Fig. 1 is an implementation of the control for tem readily and rapidly recovers to a dynamics such that the
M*=0.36. Sincen(a) for the logistic equation is a highly Lyapunov exponent ignearly \*, again with time that in-
nonmonotonic function, there can be several parameter valtersely depends oa Note, however, that this control works
ues for which the system has the samenamely, several only in the case of positive*: one cannot adaptively control
different attractors with the same Lyapunov exponent arén this manner to a periodic orbit.
possible. For example, the Lyapunov exponent is approxi- An application of practical importance is in enhancing the

1 N—1
A= lim — > Inlf' (a,x)]. (5)

The control equatioii4) takes the form

any1=apt e(N"—N\p),

Xn+1= @pXp(1—Xy), (7)
An=In|an(1—2x,)],

api1=apt+e(N*—N\,). 9
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mixing in chaotic systems. The appropriate adaptive strategy
then is to takeP to be the stretching rate. Equati¢?) thus

becomes 400 - y

/:L = €( 7?'target_ Riocal s (10

where R4 IS the instantaneous local stretching rate, and
RiargetiS the prescribed desired stretching rate, which can iny
principle be in any one of the dynamical variables character-

sqa [~ N

izing the system. F
As an example, consider the Lorenz attractor, E
X 'S 200 - T
X=o(y—x), 7
y=puX—y—Xz, (11)
. 100 — =
z=Xxy—bz
Choosing the evolution equation for the parameter to be
) ) T Y S W WA T S ST SN AR ST S N S GO S | | d
1= €(Riarger X), (12 a 100 200 300 400 saa

time
where the instantaneous stretching r&g.,=x, with x
given by the evolution equatiofil), achieves the objective.
Note that instead of the direction,y or z can equally effec-
tively be used in the above control.
In the absence of knowledge of the evolution equation the
above control can be effected by the discrete evolution equa- It should be emphasized that knowledge of the map in the
tion control algorithm above is in principle not required, since the
necessary information required to implement adaptive anti-
Bttt = Mt €(Rigrge™ AXy), (13 control is simply the difference between the current value of
the variable and its previous value. On the other hand, it is
essential that the parameieibeing controlled must have the
driving power in order to effect large dynamical changes.
Parameters which are suitable for controlling are easy to
identify through the appropriate dynamical phase diagrams.
In summary, we have presented here an adaptive algo-
hm which can be used to achieve desired chaotic behavior
in nonlinear dynamical systems. The anticontrol technique,
which is rapid, powerful and robust, extends adaptive control
methods for obtaining periodic orbif§,2,11. We have ap-
?)Iied this to the case of achieving a target value of the
Lyapunov exponent, or a desired value of the local stretching
rate and found that the methodology is successful in a num-

FIG. 3. Variation of the parametegr as a function of time for
the Lorenz attractor. The target stretching rate is 1.0, the stiffness is
€=0.1, and the time step t=0.01.

where Ax; is the local stretching given blx;—x;_ 5| (ot
smal) where Riyge= 0t Riarget:

Shown in Fig. 3 is the result of an implementation of this
adaptive anticontrol equatidi3) where the target stretching
rate is specified to be 1.0 with the control stiffness0.1.

As can be seen, the controlled parameter first rapidly climbﬁt
(the rate of ascent being directly proportional te)ffom an
initial value u=35.0. Aroundw~ 380, it settles into fluctua-
tions which are of the integrated white noise type., the
power spectrum of the time series of these fluctuations i
clearly S(f )~ 1/f?] lead to a very mixed system. Starting
off with any other value of. leads to the same result, as does

CO,””O' via Eq.(12) using the relation betweeRigerand  por of examples, including multidimensional and multipa-

Riargerdefined above. _ _ rameter systems.

_The nature of adaptive anticontrol is such that the dynam- - An important consideration is that the present method can
ics that obtains is intrinsically mixing. In contrast with simi- pe implemented without explicit knowledge of the dynamics.

lar techniques where a stable state is targetted, the preseffte possibility of treating the system as a black box is likely

mechanisn{12] essentially drags the system rapidly to theiq pe of utility in complex experimental applicatiofi8,9]

first appropriat_e state encountered in parameter_ SPacRecessitating the controlled maintenance or enhancement of
namely, one which matches the targeted local stretching ratgn4os.

The system, in effect moves frofichaotig attractor to at-

tractor, with significant fluctuations in the parameter that is R.R. and N.G. would like to thank the ICTP, Trieste,
being controlled. By choosing a small target stretching ratewhere some of this work was done, for its hospitality, and
this same control mechanism can be used to obtain cycles a$so acknowledge the support of Department of Science and
well. Somewhat fuzzy cycles are obtained, with the fuzzines§echnology Grant Nos. SP/MO-5/92 and SP/S2/E-03/96, re-
decreasing with decreasirg spectively.
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